aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/4/fp.tex
blob: caa6cebe7c4d819212681e195e5b592c82371e4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
%
% fp.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\bgroup
\def\feld#1#2#3{
	\node at ({#1},{5-#2}) {$#3$};
}
\def\geld#1#2#3{
	\node at ({#1},{6-#2}) {$#3$};
}
\def\rot#1#2{
	\fill[color=red!20] ({#1-0.5},{5-#2-0.5}) rectangle ({#1+0.5},{5-#2+0.5});
}
\definecolor{darkgreen}{rgb}{0,0.6,0}
\def\gruen#1#2{
	\fill[color=darkgreen!20] ({#1-0.5},{6-#2-0.5}) rectangle ({#1+0.5},{6-#2+0.5});
}
\def\inverse#1#2{
	\node at (9,{6-#1}) {$#1^{-1}=#2\mathstrut$};
}
\begin{frame}[t]
\frametitle{Galois-Körper}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Restklassenring$\mathstrut$}
$\mathbb{Z}/n\mathbb{Z}
=\{ \llbracket r\rrbracket\;|\; 0\le r < n \} \mathstrut$
ist ein Ring
\end{block}
\begin{block}{Nullteiler}
Falls $n=n_1n_2$, dann sind $\llbracket n_1\rrbracket$ und
$\llbracket n_2\rrbracket$ Nullteiler in $\mathbb{Z}/n\mathbb{Z}$:
\[
\llbracket n_1\rrbracket
\llbracket n_2\rrbracket
=
\llbracket n_1n_2 \rrbracket
=
\llbracket n\rrbracket
=
\llbracket 0 \rrbracket
\]
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
\begin{block}{Galois-Körper $\mathbb{F}_p\mathstrut$}
$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}\mathstrut$
\end{block}
\begin{block}{$n$ prim}
Für $n=p$ prim ist $\mathbb{Z}/n\mathbb{Z}$ nullteilerfrei
\medskip

$\Rightarrow \quad \mathbb{F}_p$ ist ein Körper
\end{block}
\end{column}
\end{columns}
\vspace{-20pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick,scale=0.45]
\fill[color=white] (-12,0) circle[radius=0.1];
\fill[color=white] (12,0) circle[radius=0.1];
\begin{scope}[xshift=-8cm]
\rot{2}{3}
\rot{4}{3}
\rot{3}{2}
\rot{3}{4}
\fill[color=gray!40] (-0.5,5.5) rectangle (5.5,6.5);
\fill[color=gray!40] (-1.5,-0.5) rectangle (-0.5,5.5);
\foreach \x in {-0.5,5.5}{
	\draw (\x,-0.5) -- (\x,6.5);
}
\foreach \x in {0.5,...,4.5}{
	\draw[line width=0.3pt] (\x,-0.5) -- (\x,6.5);
}
\foreach \y in {0.5,...,5.5}{
	\draw[line width=0.3pt] (-1.5,\y) -- (5.5,\y);
}
\foreach \y in {-0.5,5.5}{
	\draw (-1.5,\y) -- (5.5,\y);
}
\draw (-1.5,-0.5) -- (-1.5,5.5);
\draw (-0.5,6.5) -- (5.5,6.5);
\foreach \x in {0,...,5}{
	\node at (\x,6) {$\x$};
	\node at (-1,{5-\x}) {$\x$};
}
\foreach \x in {0,...,5}{
	\feld{\x}{0}{0}
	\feld{0}{\x}{0}
}
\foreach \x in {2,...,5}{
	\feld{\x}{1}{\x}
	\feld{1}{\x}{\x}
}
\feld{1}{1}{1}
\feld{2}{2}{4}
\feld{2}{3}{0} \feld{3}{2}{0}
\feld{2}{4}{2} \feld{4}{2}{2}
\feld{2}{5}{4} \feld{5}{2}{4}
\feld{3}{3}{3}
\feld{4}{3}{0} \feld{3}{4}{0}
\feld{5}{3}{3} \feld{3}{5}{3}
\feld{4}{4}{4}
\feld{4}{5}{2} \feld{5}{4}{2}
\feld{5}{5}{1}
\end{scope}
\begin{scope}[xshift=6cm]
\gruen{1}{1}
\gruen{2}{4}
\gruen{3}{5}
\gruen{4}{2}
\gruen{5}{3}
\gruen{6}{6}
\fill[color=gray!40] (-0.5,6.5) rectangle (6.5,7.5);
\fill[color=gray!40] (-1.5,-0.5) rectangle (-0.5,6.5);
\foreach \x in {-0.5,6.5}{
	\draw (\x,-0.5) -- (\x,7.5);
}
\foreach \x in {0.5,...,5.5}{
	\draw[line width=0.3pt] (\x,-0.5) -- (\x,7.5);
}
\foreach \y in {0.5,...,6.5}{
	\draw[line width=0.3pt] (-1.5,\y) -- (6.5,\y);
}
\foreach \y in {-0.5,6.5}{
	\draw (-1.5,\y) -- (6.5,\y);
}
\draw (-1.5,-0.5) -- (-1.5,6.5);
\draw (-0.5,7.5) -- (6.5,7.5);
\foreach \x in {0,...,6}{
	\node at (\x,7) {$\x$};
	\node at (-1,{6-\x}) {$\x$};
}
\foreach \x in {0,...,6}{
	\geld{\x}{0}{0}
	\geld{0}{\x}{0}
}
\foreach \x in {2,...,6}{
	\geld{\x}{1}{\x}
	\geld{1}{\x}{\x}
}
\geld{1}{1}{1}
\geld{2}{2}{4}
\geld{2}{3}{6} \geld{3}{2}{6}
\geld{2}{4}{1} \geld{4}{2}{1}
\geld{2}{5}{3} \geld{5}{2}{3}
\geld{2}{6}{5} \geld{6}{2}{5}
\geld{3}{3}{2}
\geld{4}{3}{5} \geld{3}{4}{5}
\geld{5}{3}{1} \geld{3}{5}{1}
\geld{6}{3}{4} \geld{3}{6}{4}
\geld{4}{4}{2}
\geld{5}{4}{6} \geld{4}{5}{6}
\geld{6}{4}{3} \geld{4}{6}{3}
\geld{5}{5}{4}
\geld{6}{5}{2} \geld{5}{6}{2}
\geld{6}{6}{1}
\inverse{1}{1}
\inverse{2}{4}
\inverse{3}{5}
\inverse{4}{2}
\inverse{5}{3}
\inverse{6}{6}
\end{scope}
\end{tikzpicture}
\end{center}
\end{frame}
\egroup