1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
%
% konstruktion.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\begin{frame}[t]
\frametitle{Konstruktion mit Zirkel und Lineal}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Strahlensatz}
\uncover<6->{%
Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$
kann mit Zirkel und Lineal konstruiert werden.}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
\uncover<7->{%
\begin{block}{Kreis--Gerade}
Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$
\uncover<13->{%
$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden}
\end{block}}
\end{column}
\end{columns}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\def\s{0.5}
\def\t{0.45}
\coordinate (A) at (0,0);
\coordinate (B) at ({10*\t},0);
\uncover<2->{
\draw (0,0) -- (30:{10.5*\s});
}
\uncover<3->{
\foreach \x in {0,...,10}{
\fill (30:{\x*\s}) circle[radius=0.03];
}
\foreach \x in {0,1,2,3,4,7,8,9}{
\node at (30:{\x*\s}) [above] {\tiny $\x$};
}
\node at (30:{10*\s}) [above right] {$q=10$};
}
\uncover<4->{
\foreach \x in {1,...,10}{
\fill (0:{\x*\t}) circle[radius=0.03];
\draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t});
}
}
\draw (A) -- (0:{10.5*\t});
\node at (A) [below left] {$A$};
\node at (B) [below right] {$B$};
\fill (A) circle[radius=0.05];
\fill (B) circle[radius=0.05];
\uncover<5->{
\node at (30:{6*\s}) [above left] {$p=6$};
\draw[line width=0.2pt] (0,0) -- (0,-0.4);
\draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4);
\draw[<->] (0,-0.3) -- ({6*\t},-0.3);
\node at ({3*\t},-0.4) [below]
{$\displaystyle\frac{p}{q}\cdot\overline{AB}$};
}
\end{tikzpicture}
\end{center}
\end{column}
\begin{column}{0.48\textwidth}
\uncover<8->{%
\begin{center}
\begin{tikzpicture}[>=latex,thick]
%\foreach \x in {8,...,14}{
% \only<\x>{\node at (4,4) {$\x$};}
%}
\def\r{4}
\def\a{50}
\coordinate (A) at ({\r*cos(\a)},0);
\uncover<10->{
\fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle;
\fill[color=gray]
(95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle;
}
\draw[->] (0,0) -- (95:\r);
\node at (95:{0.5*\r}) [left] {$c$};
\begin{scope}
\clip (-1,-0.3) rectangle (4.5,4.1);
\uncover<10->{
\draw (-1,0) -- (5,0);
\draw[->] (0,0) -- (\r,0);
\draw (0,0) circle[radius=\r];
\draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5);
}
\end{scope}
\uncover<11->{
\fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle;
}
\uncover<9->{
\fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle;
\fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07];
\draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1);
}
\uncover<11->{
\draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r);
\node[color=blue] at (\a:{0.5*\r}) [above left] {$c$};
}
\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0);
\fill[color=blue] (0,0) circle[radius=0.04];
\fill[color=blue] (A) circle[radius=0.04];
\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$};
\uncover<12->{
\fill[color=white,opacity=0.8]
({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25})
rectangle
({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25});
\node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right]
{$b=\sqrt{c^2-a^2}$};
\draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r);
\fill[color=red] (\a:\r) circle[radius=0.05];
\fill[color=red] (A) circle[radius=0.05];
}
\end{tikzpicture}
\end{center}}
\end{column}
\end{columns}
\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:}
Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$}
\end{frame}
|