aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/4/qundr.tex
blob: a6f89bd4b01063a21f86e2d1cc68565ded281ea9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
%
% qundr.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\bgroup
\definecolor{darkgreen}{rgb}{0,0.6,0}
\definecolor{darkred}{rgb}{0.8,0,0}
\definecolor{darkblue}{rgb}{0,0,0.8}
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\coordinate (ll) at (-6,-3.6);
\coordinate (lr) at (6,-3.6);
\coordinate (ur) at (6,3.6);
\coordinate (ul) at (-6,3.6);

\def\d{0.6}
\def\D{0.5}

\coordinate (q) at (0,{-2.25+\d});
\coordinate (r) at (-1.5,{\d+\D});
\coordinate (a) at (1.5,{\d-\D});
\coordinate (c) at (0,{2.25+\d});

\coordinate (m1) at ($0.5*(q)+0.5*(r)$);
\coordinate (m2) at ($0.5*(q)+0.5*(a)$);
\coordinate (m3) at ($0.5*(c)+0.5*(r)$);
\coordinate (m4) at ($0.5*(c)+0.5*(a)$);

\def\t{1.5}
\coordinate (M1) at ($(m1)+\t*(m1)-\t*(m4)$);
\coordinate (M2) at ($(m2)+\t*(m2)-\t*(m3)$);
\coordinate (M4) at ($(m4)+\t*(m4)-\t*(m1)$);
\coordinate (M3) at ($(m3)+\t*(m3)-\t*(m2)$);

\begin{scope}
\clip (ll) rectangle (ur);

\uncover<3->{
	\fill[color=blue!30]
		($0.9*(m1)+0.1*(M1)+(-6,0)$) -- ($0.9*(m1)+0.1*(M1)$)
		-- (M4) -- (ul) -- cycle;
}

\uncover<4->{
	\fill[color=red!60,opacity=0.5]
		($0.9*(m2)+0.1*(M2)$) -- ($0.9*(m2)+0.1*(M2)+(6,0)$)
		-- (ur) -- (M3) -- cycle;
}

\uncover<2->{
	\fill[color=darkgreen!60,opacity=0.5]
		($1.09*(m3)-0.09*(M3)$) -- ($1.09*(m3)-0.09*(M3)+(-6,0)$)
		-- (ll) -- (M2) -- cycle;
}

\uncover<6->{
	\fill[color=gray,opacity=0.5]
		({6-0.1},{\d+0.22}) rectangle ({6-2.4},{\d+0.62});
	\node[color=yellow] at (6,\d) [above left] {überabzählbar\strut};

	\fill[color=gray,opacity=0.5]
		({-6+0.1},{\d-0.15}) rectangle ({-6+1.75},{\d-0.55});
	\node[color=yellow] at (-6,\d) [below right] {abzählbar\strut};

	\draw[color=yellow,line width=2pt] (-7,\d) -- (7,\d);
}

\end{scope}

\node at (q) {$\mathbb{Q}$\strut};
\node at ($(q)+(0,-0.2)$) [below] {Primkörper};

\uncover<3->{
	\node at (r) {$\mathbb{R}$\strut};
	\node at (r) [left] {$\text{reelle Zahlen}=\mathstrut$};
	\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (r);
	\node at ($0.5*(q)+0.5*(r)$)
		[below,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
	\node[color=blue] at (ul)
		[above right] {topologische Vervollständigung};
}

\uncover<4->{
	\node at (a) {$\mathbb{A}$\strut};
	\node at (a) [right] {$\mathstrut = \text{algebraische Zahlen}$};
	\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (a);
	\node at ($0.5*(q)+0.5*(a)$)
		[below,rotate={atan((2.25-\D)/1.5)}] {index $\infty$};
	\node[color=red] at (ur)
		[above left] {algebraische Vervollständigung};
}

\uncover<5->{
	\node at (c) {$\mathbb{C}$\strut};
	\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (r) -- (c);
	\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (a) -- (c);
	\node at ($(c)+(0,0.2)$) [above] {komplexe Zahlen};
	\node at ($0.5*(r)+0.5*(c)$)
		[above,rotate={atan((2.25-\D)/1.5)}] {index 2};
	\node at ($0.5*(a)+0.5*(c)$)
		[above,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
}

\uncover<3->{
	\node[color=darkblue] at (ul) [below right]
	{\begin{minipage}{0.3\textwidth}\raggedright
	Grenzwerte von Cauchy-Folgen in $\mathbb{Q}$ hinzufügen
	\end{minipage}};
}

\uncover<4->{
	\node[color=darkred] at (ur) [below left]
	{\begin{minipage}{0.3\textwidth}\raggedleft
	Nullstellen von Polynomen in $\mathbb{Q}[X]$ hinzufügen
	\end{minipage}};
}

\uncover<2->{
	\node[color=darkgreen] at (ll) [above right]
	{\begin{minipage}{0.4\textwidth}\raggedright
	\begin{block}{Archimedische Eigenschaft}
	Für $a>b >0$ gibt es $n\in\mathbb{N}$ mit
	$n\cdot b > a$
	\end{block}
	\end{minipage}};

	\node[color=darkgreen] at (ll) [below right]
		{geordneter Körper, nötig für die Definition von Cauchy-Folgen};
}

\end{tikzpicture}
\end{center}
\end{frame}
\egroup