1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#
# interpolation.m
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
global N;
N = 50;
global A;
global B;
A = (pi / 2) * [
0, 0, 0;
0, 0, -1;
0, 1, 0
];
g0 = expm(A)
B = (pi / 2) * [
0, 0, 1;
0, 0, 0;
-1, 0, 0
];
g1 = expm(B)
function retval = g(t)
global A;
global B;
retval = expm((1-t)*A+t*B);
endfunction
function dreibein(fn, M, funktion)
fprintf(fn, "%s(<%.4f,%.4f,%.4f>, <%.4f,%.4f,%.4f>, <%.4f,%.4f,%.4f>)\n",
funktion,
M(1,1), M(3,1), M(2,1),
M(1,2), M(3,2), M(2,2),
M(1,3), M(3,3), M(2,3));
endfunction
G = g1 * inverse(g0);
[V, lambda] = eig(G);
H = real(V(:,3));
D = logm(g1*inverse(g0));
for i = (0:N)
filename = sprintf("dreibein/d%03d.inc", i);
fn = fopen(filename, "w");
t = i/N;
dreibein(fn, g(t), "quadrant");
dreibein(fn, expm(t*D)*g0, "drehung");
fprintf(fn, "achse(<%.4f,%.4f,%.4f>)\n", H(1,1), H(3,1), H(2,1));
fclose(fn);
endfor
|