1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
%
% symmetrien.tex -- Symmetrien
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\bgroup
\definecolor{darkgreen}{rgb}{0,0.6,0}
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
\frametitle{Symmetrien}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Diskrete Symmetrien}
\begin{itemize}
\item
Ebenen-Spiegelung:
\[
{\tiny
\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
}
\mapsto
{\tiny
\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*},
}
\;
\vec{x}
\mapsto
\vec{x} -2 (\vec{n}\cdot\vec{x}) \vec{n}
\]
\vspace{-10pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\def\a{10}
\def\b{50}
\def\r{2}
\coordinate (O) at (0,0);
\coordinate (A) at (\b:\r);
\coordinate (B) at ({180+2*\a-\b}:\r);
\coordinate (C) at ({90+\a}:{\r*cos(90+\a-\b)});
\coordinate (N) at (\a:2);
\coordinate (D) at (\a:{\r*cos(\b-\a)});
\clip (-2.5,-0.45) rectangle (2.5,1.95);
\fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2) -- cycle;
\draw[->,color=darkgreen] (O) -- (N);
\node[color=darkgreen] at (N) [above] {$\vec{n}$};
\fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2) -- cycle;
\fill[color=red] (O) circle[radius=0.06];
\draw[color=red] ({\a-90}:2) -- ({\a+90}:2);
\fill[color=blue] (C) circle[radius=0.06];
\draw[color=blue,line width=0.1pt] (A) -- (D);
\node[color=darkgreen] at (D) [below,rotate=\a] {$(\vec{n}\cdot\vec{x})\vec{n}$};
\draw[color=blue,line width=0.5pt] (A)--(B);
\node[color=blue] at (A) [above right] {$\vec{x}$};
\node[color=blue] at (B) [above left] {$\vec{x}'$};
\node[color=red] at (O) [below left] {$O$};
\draw[->,color=blue,shorten <= 0.06cm] (O) -- (A);
\draw[->,color=blue,shorten <= 0.06cm] (O) -- (B);
\end{tikzpicture}
\end{center}
\vspace{-5pt}
$\vec{n}$ ein Einheitsnormalenvektor auf der Ebene, $|\vec{n}|=1$
\item
Punkt-Spiegelung:
\[
{\tiny
\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
}
\mapsto
-
{\tiny
\begin{pmatrix*}[r]x_1\\x_2\\x_3 \end{pmatrix*}
}
\]
\end{itemize}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
\begin{block}{Kontinuierliche Symmetrien}
\begin{itemize}
\item Translation:
\(
\vec{x} \mapsto \vec{x} + \vec{t}
\)
\item Drehung:
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\def\a{25}
\def\r{1.3}
\coordinate (O) at (0,0);
\begin{scope}
\clip (-1.1,-0.1) rectangle (2.3,2.3);
\draw[color=red] (O) circle[radius=2];
\fill[color=blue!20] (O) -- (0:\r) arc (0:\a:\r) -- cycle;
\fill[color=blue!20] (O) -- (90:\r) arc (90:{90+\a}:\r) -- cycle;
\node at ({0.5*\a}:1) {$\alpha$};
\node at ({90+0.5*\a}:1) {$\alpha$};
\draw[->,color=blue] (O) -- (\a:2);
\draw[->,color=darkgreen] (O) -- ({90+\a}:2);
\end{scope}
\draw[->] (-1.1,0) -- (2.3,0) coordinate[label={$x$}];
\draw[->] (0,-0.1) -- (0,2.3) coordinate[label={right:$y$}];
\end{tikzpicture}
\end{center}
\[
\begin{pmatrix}x\\y\end{pmatrix}
\mapsto
\begin{pmatrix}
{\color{blue}\cos\alpha}&{\color{darkgreen}-\sin\alpha}\\
{\color{blue}\sin\alpha}&{\color{darkgreen}\phantom{-}\cos\alpha}
\end{pmatrix}
\begin{pmatrix}x\\y\end{pmatrix}
\]
\end{itemize}
\end{block}
\vspace{-10pt}
\begin{block}{Definition}
Längen/Winkel bleiben erhalten
\\
$\Rightarrow$ $\exists$ Erhaltungsgrösse
\end{block}
\end{column}
\end{columns}
\end{frame}
\egroup
|