aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/ellintegral.tex
blob: b6f35fcbfeec5ab9c36c6064a961a2569288c94a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
%
% ellintegral.tex
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\section{Elliptische Integrale
\label{buch:elliptisch:section:integral}}
\rhead{Elliptisches Integral}
Bei der Berechnung des Ellipsenbogens in 
Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen}
sind wir auf ein Integral gestossen, welches sich nicht in geschlossener
Form ausdrücken liess.
Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als
neue spezielle Funktionen zu definieren.

\subsection{Definition
\label{buch:elliptisch:subsection:definition}}
Ein {\em elliptisches Integral} ist ein Integral der Form
\index{elliptishes Integral}%
\index{Integral, elliptisch}%
\begin{equation}
\int R\left( x, \sqrt{p(x)}\right)\,dx
\label{buch:elliptisch:def:allgemein}
\end{equation}
wobei $R(x,y)$ eine rationale Funktion von zwei Variablen ist und
$p(x)$ ein Polynom dritten oder vierten Grades.
Hätte $p(x)$ ein mehrfache Nullstelle $x_0$, müsste es durch $(x-x_0)^2$
teilbar sein, man könnte also einen Faktor $(x-x_0)$ aus der
Wurzel im Integraneden von \eqref{buch:elliptisch:def:allgemein}
ausklammern und damit das Integral in eine Form bringen, wo $p(x)$
höchstens zweiten Grades ist.
Solche Integrale lassen sich meistens mit trigonometrischen Substitutionen
berechnen.
Wir verlangen daher, dass $p(x)$ keine mehrfachen Nullstellen hat.

Man kann zeigen, dass sich elliptische Integrale in Summen von
elementaren Funktionen und speziellen elliptischen Integralen 
der folgenden Form überführen lassen
\cite[Abschnitt 164, p.~506]{buch:smirnov32}.

\begin{definition}
\label{buch:elliptisch:def:integrale123}
Die elliptischen Integrale erster, zweiter und dritter Art sind die
Integrale
\[
\begin{aligned}
\text{1.~Art:}&&&
\int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}
\\
\text{2.~Art:}&&&
\int \sqrt{\frac{1-k^2x^2}{1-x^2}}\,dx
\\
\text{3.~Art:}&&&
\int \frac{dx}{(1-nx^2)\sqrt{(1-x^2)(1-k^2x^2)}}
\end{aligned}
\]
mit $0<k<1$.
Es ist auch üblich, den Parameter $m=k^2$ zu verwenden.
\end{definition}

Wie gesagt lassen sich für diese unbestimmten Integrale keine 
geschlossenen Formen finden.
Es bleibt uns daher nichts anderes übrig, als die Integralgrenzen
festzulegen und damit eine Stammfunktion auszuwählen.

%
% Elliptisches Integral
%
\subsection{Vollständige elliptische Integrale
\label{buch:elliptisch:subsection:vollstaendig}}
In diesem Abschnitt legen wir beide Integrationsgrenzen fest und
untersuchen die entstehenenden Funktionen von den Parametern
$k$ und $n$.

\subsubsection{Definition der vollständigen elliptischen Integrale}
Da der Nenner in allen drei elliptischen Integralen eine Nullstelle
bei $\pm1$ hat, kann das Integral nur von $0$ bis $1$ erstreckt werden.

\begin{definition}
\label{buch:elliptisch:def:vollstintegrale123}
Die vollständigen elliptischen Integrale erster, zweiter und dritter
Art sind
\[
\begin{aligned}
\text{1.~Art:}&&
K(k)&=\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \\
\text{2.~Art:}&&
E(k)&=\int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}}\,dt \\
\text{3.~Art:}&&
\Pi(n, k)&=\int_0^1\frac{dt}{(1-nt^2)\sqrt{(1-t^2)(1-k^2t^2)}} 
\end{aligned}
\]
mit $0<k<1$.
\end{definition}

Die Funktionen hängen stetig von $k$ ab.
Die Nullstellen des Faktors $1-k^2x^2$ liegen ausserhalb des
Integrationsintervalls und spielen daher keine Rolle.
Die Werte von $K(k)$ und $E(k)$ für $k=0$ können direkt berechnet
werden:
\begin{align*}
K(0)
=
E(0)
&=
\int_0^1 \frac{dt}{\sqrt{1-t^2}}=\frac{\pi}2.
\end{align*}
Das Integral $\Pi(n,0)$ ist etwas komplizierter.

Für $k\to 1$ ist $E(k)=1$, die Integrale $K(1)$ und $\Pi(n,1)$
sind dagegen divergent.

\subsubsection{Jacobi- und Legendre-Normalform}
Die Integrationsvariable $t$ der vollständigen elliptischen Integrale
kann durch die Substitution $t=\sin\varphi$ durch die Variable
$\varphi$ und das Integral über das Intervall $[0,1]$ durch ein
Integral über das Intervall $[0,\frac{\pi}2]$ ersetzt werden.
Mit
\[
\frac{dt}{d\varphi} = \cos\varphi = \sqrt{1-\sin^2\varphi}
\]
können die Funktionen $K(k)$, $E(k)$ und $\Pi(n,k)$ auch als
\begin{align*}
K(k)
&=
\int_0^{\frac{\pi}2}
\frac{
\sqrt{1-\sin^2\varphi}\,d\varphi
}{
\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
}
=
\int_0^{\frac{\pi}2}
\frac{d\varphi}{\sqrt{1-k^2\sin^2\varphi}}
,
\\
E(k)
&=
\int_0^{\frac{\pi}2}
\sqrt{\frac{1-k^2\sin^2\varphi}{1-\sin^2\varphi}}\sqrt{1-\sin^2\varphi}\,d\varphi
=
\int_0^{\frac{\pi}2}
\sqrt{1-k^2\sin^2\varphi}\,d\varphi
,
\\
\Pi(n,k)
&=
\int_0^{\frac{\pi}2}
\frac{
\sqrt{1-\sin^2\varphi}\,d\varphi
}{
(1-n\sin^2\varphi)\sqrt{(1-\sin^2\varphi)(1-k^2\sin^2\varphi)}
}
=
\int_0^{\frac{\pi}2}
\frac{
d\varphi
}{
(1-n\sin^2\varphi)\sqrt{1-k^2\sin^2\varphi}
}
.
\end{align*}
Diese Form wird auch die {\em Legendre-Normalform} der vollständigen 
\index{Legendre-Normalform}%
elliptischen Integrale genannt, während die Form von
Definition~\ref{buch:elliptisch:def:vollstintegrale123}
die {\em Jacobi-Normalform} heisst.
\index{Jacobi-Normalform}%

\subsubsection{Umfang einer Ellipse}
\begin{figure}
\centering
\includegraphics{chapters/110-elliptisch/images/ellipsenumfang.pdf}
\caption{Bogenlänge eines Viertels einer Ellipse mit Exzentrizität
$\varepsilon$.
Eine solche Ellipse hat Halbachsen $1$ und $\sqrt{1-\varepsilon^2}$,
ein entsprechender Ellipsenbogen ist für ausgewählte Werte in blau
eingezeichnet.
\label{buch:elliptisch:fig:ellipsenumfang}}
\end{figure}
Wir zeigen, wie sich die Berechnung des Umfangs $U$ einer Ellipse
mit Halbachsen $a$ und $b$, $a\le b$, auf ein volltändiges elliptisches
Integral zurückführen lässt.
Der Fall $a>b$ kann behandelt werden, indem die $x$- und $y$-Koordinaten
vertauscht werden.

Die Parametrisierung
\[
t\mapsto \begin{pmatrix}a\cos t\\ b\sin t\end{pmatrix}
\]
einer Ellipse führt auf das Integral
\begin{align}
U
&=
\int_0^{2\pi} \sqrt{a^2\sin^2t + b^2\cos^2 t}\,dt
\notag
\\
&=
4\int_0^{\frac{\pi}2}
\sqrt{a^2\sin^2t + b^2(1-\sin^2 t)}
\,dt
\notag
\\
&=
4b \int_0^{\frac{\pi}2} \sqrt{1-(b^2-a^2)/b^2\cdot \sin^2t}\,dt
\label{buch:elliptisch:eqn:umfangellipse}
\end{align}
für den Umfang der Ellipse.
Bei einem Kreis ist $a=b$ und der zweite Term unter der Wurzel fällt weg,
der Umfang wird $4b\frac{\pi}2=2\pi b$.
Die Differenz $e^2=b^2-a^2$ ist die {\em lineare Exzentrizität} der Ellipse,
\index{lineare Exzentrizität}%
der Quotient $e/b$ wird die {\em numerische Exzentrizität} der Ellipse
genannt.
Insbesondere ist $k = \varepsilon$.

Das Integral~\eqref{buch:elliptisch:eqn:umfangellipse} erhält jetzt die
Form
\[
U
=
4b\int_0^{\frac{\pi}2} \sqrt{1-k^2\sin^2t}\,dt
\]
und ist damit als elliptisches Integral zweiter Art erkannt.
Für den Umfang der Ellipse finden wir damit die Formel
\[
U
=
4b E(k)
=
4b E(\varepsilon).
\]
Das vollständige elliptische Integral zweiter Art $E(\varepsilon)$
liefert also genau den Umfang eines Viertels der Ellipse mit
numerischer Exzentrizität $\varepsilon$ und kleiner Halbachse $1$.
Für den extremen Wert $\varepsilon=0$ entsteht der Umfang einer Ellipse,
also $E(0)=\frac{\pi}2$.
Für $\varepsilon=1$ ist $a=0$, es entsteht eine Strecke mit Länge $E(1)=1$.

\subsubsection{Komplementäre Integrale}

\subsubsection{Ableitung}
XXX Ableitung \\
XXX Stammfunktion \\

\subsection{Unvollständige elliptische Integrale}
Die Funktionen $K(k)$ und $E(k)$ sind als bestimmte Integrale über ein
festes Intervall definiert.
Die {\em unvollständigen elliptischen Integrale} entstehen, indem die
\index{unvollständiges elliptisches Integral}%
obere Grenze des Integrals variabel wird:
\[
\begin{aligned}
\text{1.~Art:}&&
F(x,k)
&=
\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}
&&=
\int_0^\varphi \frac{d\vartheta}{\sqrt{1-k^2\sin^2\vartheta}}
\\
\text{2.~Art:}&&
E(x,k)
&=
\int_0^x \sqrt{\frac{1-k^2t^2}{1-t^2}}\,dt
&&=
\int_0^\varphi \sqrt{1-k^2\sin^2\vartheta}\,d\vartheta
\\
\text{3.~Art:}&&
\Pi(n,x,k)
&=
\int_0^x \frac{dt}{(1-nt^2)\sqrt{(1-t^2)(1-k^2t^2)}}
&&=
\int_0^\varphi
\frac{d\vartheta}{(1-n\sin^2\vartheta)\sqrt{1-k^2\sin^2\vartheta}},
\end{aligned}
\]
die erste Formel ist jeweils die Jacobi-Form, die zweite die Legrendre-Form
\index{Jacobi-Form}%
\index{Legendre-Form}%
mit dem Parameter $\varphi$, gegeben durch
$\sin \vartheta=x$.
Wie bei den vollständigen elliptischen Integralen ist auch hier in manchen
Referenzen die Parameterkonvention mit dem Parameter $m=k^2$ üblich.

Die vollständigen elliptischen Integrale sind die Werte der 
unvollständigen elliptischen Integrale mit $x=1$, also
\begin{align*}
K(k) &= F(1,k),
&
E(k) &= E(1,k),
&
\Pi(n,k) &=\Pi(n,x,k).
\end{align*}
Man beachte auch, dass $F(x,0) = E(x,0)$ gilt.

\begin{figure}
\centering
\includegraphics{chapters/110-elliptisch/images/unvollstaendig.pdf}
\caption{Unvollständige elliptische Integrale $F(x,k)$ und $E(x,k)$
für verschiedene Werte des Parameters $k$.
Für $k=0$ stimmen die Integrale erster und zweiter Art überein,
$F(x,0)=E(x,0)$.
\label{buch:elliptisch:fig:unvollstaendigeintegrale}}
\end{figure}
Wegen $k<1$ sind alle drei Integranden als reelle Funktionen nicht
mehr definiert, wenn $|x|>1$ ist.
Die Abbildung~\ref{buch:elliptisch:fig:unvollstaendigeintegrale}
zeigt Graphen der unvollständigen elliptischen Integrale für verschiedene
Werte des Parameters.

\subsubsection{Symmetrieeigenschaften}
Die Integranden aller drei unvollständigen elliptischen Integrale
sind gerade Funktionen der reellen Variablen $t$.
Die Funktionen $F(x,k)$, $E(x,k)$ und $\Pi(n,x,k)$ sind daher
ungeraden Funktionen von $x$.

\subsubsection{Elliptische Integrale als komplexe Funktionen}
Die unvollständigen elliptischen Integrale $F(x,k)$, $F(x,k)$ und $\Pi(n,x,k)$
in Jacobi-Form lassen sich auch für komplexe Argumente interpretieren.
Dazu muss für die Berechnung des Integrals ein Pfad in der komplexen
Ebene gewählt werden, der die Singulariätten des Integranden vermeidet.

Die Faktoren, die in den Integranden der unvollständigen elliptischen
Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und
$\pm 1/\sqrt{n}$

XXX Additionstheoreme \\
XXX Parameterkonventionen \\
XXX Wertebereich (Rechtecke) \\
XXX Komplementäre Integrale \\

\begin{figure}
\centering
\includegraphics{chapters/110-elliptisch/images/rechteck.pdf}
\caption{Der Wertebereich der Funktion $F(k,z)$ ist ein Rechteck
der Breite $2K(k)$ und $2K(k')$.
Die obere Halbebene wird in das rote Rechteck abgebildet, die unter
in das blaue.
\label{buch:elliptisch:fig:rechteck}}
\end{figure}

\subsection{Potenzreihe}
XXX Potenzreihen \\
XXX Als hypergeometrische Funktionen \\
XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation