1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#
# betadist.m
#
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
global N;
N = 201;
global n;
n = 11;
t = (0:n-1) / (n-1)
alpha = 1 + 4 * t.^2
#alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ];
beta = alpha;
names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight";
"nine"; "ten"; "eleven" ]
function retval = Beta(a, b, x)
retval = x^(a-1) * (1-x)^(b-1) / beta(a, b);
end
function plotbeta(fn, a, b, name)
global N;
fprintf(fn, "\\def\\beta%s{\n", name);
fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0));
for x = (1:N-1)/(N-1)
X = (1-cos(pi * x))/2;
fprintf(fn, "\n\t--({%.4f*\\dx},{%.4f*\\dy})",
X, Beta(a, b, X));
end
fprintf(fn, "\n}\n");
end
fn = fopen("betapaths.tex", "w");
for i = (1:n)
fprintf(fn, "\\def\\alpha%s{%f}\n", names(i,:), alpha(i));
fprintf(fn, "\\def\\beta%s{%f}\n", names(i,:), beta(i));
end
for i = (1:n)
for j = (1:n)
printf("working on %d,%d:\n", i, j);
plotbeta(fn, alpha(i), beta(j),
char(['a' + i - 1, 'a' + j - 1]));
end
end
fclose(fn);
|