aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/laguerre/definition.tex
blob: 5f6d8bdacdc7eae1c5feec21489dee9b63f0c01c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
%
% definition.tex 
%
% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule
%
\section{Definition
\label{laguerre:section:definition}}
\rhead{Definition}

\begin{align}
    x y''(x) + (1 - x) y'(x) + n y(x)
    =
    0 
    \label{laguerre:dgl}
\end{align}

\begin{align}
    L_n(x)
    =
    \sum_{k=0}^{n} 
    \frac{(-1)^k}{k!}
    \begin{pmatrix}
        n \\
        k
    \end{pmatrix}
    x^k
    \label{laguerre:polynom}
\end{align}

\begin{align}
    x y''(x) + (\alpha + 1 - x) y'(x) + n y(x)
    =
    0 
    \label{laguerre:generell_dgl}
\end{align}

\begin{align}
    L_n^\alpha (x)
    =
    \sum_{k=0}^{n} 
    \frac{(-1)^k}{k!}
    \begin{pmatrix}
        n + \alpha \\
        n - k
    \end{pmatrix}
    x^k
    \label{laguerre:polynom}
\end{align}