diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-03 18:51:36 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-03 18:51:36 +0200 |
commit | 680e1e763b8d899b3601b5ab0cf6f1fc2a114e1d (patch) | |
tree | aff901d861b84c62e8eb2b7ff9981ae13a3f5baa | |
parent | add slides (diff) | |
download | SeminarMatrizen-680e1e763b8d899b3601b5ab0cf6f1fc2a114e1d.tar.gz SeminarMatrizen-680e1e763b8d899b3601b5ab0cf6f1fc2a114e1d.zip |
phases
-rw-r--r-- | vorlesungen/14_msehilbertraum/slides.tex | 12 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/adjungiert.tex | 34 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/basis.tex | 22 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/definition.tex | 22 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/energie.tex | 17 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/l2.tex | 24 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/l2beispiel.tex | 34 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/laplace.tex | 30 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/plancherel.tex | 60 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/qm.tex | 50 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/riesz.tex | 32 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex | 27 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/sobolev.tex | 23 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/spektral.tex | 62 | ||||
-rw-r--r-- | vorlesungen/slides/2/hilbertraum/sturm.tex | 20 |
15 files changed, 263 insertions, 206 deletions
diff --git a/vorlesungen/14_msehilbertraum/slides.tex b/vorlesungen/14_msehilbertraum/slides.tex index e27c42e..22da2de 100644 --- a/vorlesungen/14_msehilbertraum/slides.tex +++ b/vorlesungen/14_msehilbertraum/slides.tex @@ -5,38 +5,26 @@ % \section{Hilbertraum} -% XXX Definition \folie{2/hilbertraum/definition.tex} -% XXX Norm und Konvergenz -% XXX \folie{2/hilbertraum/norm.tex} -% XXX Hilbert-Basis \folie{2/hilbertraum/l2beispiel.tex} \folie{2/hilbertraum/basis.tex} \folie{2/hilbertraum/plancherel.tex} \section{Beispiele} -% XXX Endlichdimensionale euklidische Räume -% XXX \folie{2/hilbertraum/endlichdimensional.tex} -% XXX Fourier-Theorie und L^2 \folie{2/hilbertraum/l2.tex} \section{Riesz-Darstellungssatz} -% XXX Was sagt der Satz \folie{2/hilbertraum/riesz.tex} \folie{2/hilbertraum/rieszbeispiel.tex} % XXX Beweisidee % XXX \folie{2/hilbertraum/rieszbeweis.tex} \section{$A^*$} -% XXX Definition als Anwendung des Satzes von Riesz \folie{2/hilbertraum/adjungiert.tex} -% XXX Spektraltheorie \folie{2/hilbertraum/spektral.tex} \section{PDE und Hilbertraum} -% XXX Der Operator D^2 + p(x) auf [0,1] \folie{2/hilbertraum/sturm.tex} -% XXX Laplace-Operator und L^2 \folie{2/hilbertraum/laplace.tex} \folie{2/hilbertraum/qm.tex} \folie{2/hilbertraum/energie.tex} diff --git a/vorlesungen/slides/2/hilbertraum/adjungiert.tex b/vorlesungen/slides/2/hilbertraum/adjungiert.tex index afafab8..da41576 100644 --- a/vorlesungen/slides/2/hilbertraum/adjungiert.tex +++ b/vorlesungen/slides/2/hilbertraum/adjungiert.tex @@ -13,16 +13,16 @@ \begin{column}{0.48\textwidth} \begin{block}{Definition} \begin{itemize} -\item +\item<2-> $A\colon H\to L$ lineare Abbildung zwischen Hilberträumen, $y\in L$ -\item +\item<3-> \[ H\to\mathbb{C} : x\mapsto \langle y, Ax\rangle_L \] ist eine lineare Abbildung $H\to\mathbb{C}$ -\item +\item<4-> Nach dem Darstellungssatz gibt es $v\in H$ mit \[ \langle y,Ax\rangle_L = \langle v,x\rangle_H @@ -30,22 +30,25 @@ Nach dem Darstellungssatz gibt es $v\in H$ mit \forall x\in H \] \end{itemize} +\uncover<5->{% Die Abbildung \[ L\to H : y\mapsto v =: A^*y \] -heisst {\em adjungierte Abbildung} +heisst {\em adjungierte Abbildung}} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<6->{% \begin{block}{Endlichdimensional (Matrizen)} \[ A^* = \overline{A}^t \] -\end{block} +\end{block}} \vspace{-8pt} +\uncover<7->{% \begin{block}{Selbstabbildungen} Für Operatoren $A\colon H\to H$ ist $A^*\colon H\to H$ \[ @@ -55,24 +58,25 @@ Für Operatoren $A\colon H\to H$ ist $A^*\colon H\to H$ \quad \forall x,y\in H \] -\end{block} +\end{block}} \vspace{-8pt} +\uncover<9->{% \begin{block}{Selbstadjungierte Operatoren} \[ A=A^* -\;\Leftrightarrow\; +\uncover<10->{\;\Leftrightarrow\; \langle x,Ay \rangle = -\langle A^*x,y \rangle -= -\langle Ax,y \rangle +\langle A^*x,y \rangle} +\uncover<11->{= +\langle Ax,y \rangle} \] -Matrizen: +\uncover<12->{Matrizen: \begin{itemize} -\item hermitesch -\item für reelle Hilberträume: symmetrisch -\end{itemize} -\end{block} +\item<13-> hermitesch +\item<14-> für reelle Hilberträume: symmetrisch +\end{itemize}} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/basis.tex b/vorlesungen/slides/2/hilbertraum/basis.tex index 46c2320..022fa07 100644 --- a/vorlesungen/slides/2/hilbertraum/basis.tex +++ b/vorlesungen/slides/2/hilbertraum/basis.tex @@ -14,24 +14,27 @@ \begin{block}{Definition} Eine Menge $\mathcal{B}=\{b_k|k>0\}$ ist eine Hilbertbasis, wenn \begin{itemize} -\item $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$ -\item Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist +\item<2-> $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$ +\item<3-> Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist dicht: Jeder Vektor von $H$ kann beliebig genau durch Linearkombinationen von $b_k$ approximiert werden. \end{itemize} -Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel} +\uncover<4->{% +Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel}} \end{block} +\uncover<5->{% \begin{block}{Endlichdimensional} Der Algorithmus bricht nach endlich vielen Schritten ab. -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<6->{% \begin{block}{Konstruktion} Iterativ: $\mathcal{B}_0=\emptyset$ \begin{enumerate} -\item $V_k = \langle \mathcal{B}_k \rangle$ -\item Wenn $V_k\ne H$, wähle einen Vektor +\item<7-> $V_k = \langle \mathcal{B}_k \rangle$ +\item<8-> Wenn $V_k\ne H$, wähle einen Vektor \begin{align*} x\in V_k^{\perp} &= @@ -44,17 +47,18 @@ x\in H\;|\; x\perp V_k x\perp y\;\forall y\in V_k \} \end{align*} -\item $b_{k+1} = x/\|x\|$ +\item<9-> $b_{k+1} = x/\|x\|$ \[ \mathcal{B}_{k+1} = \mathcal{B}_k\cup \{b_{k+1}\} \] \end{enumerate} +\uncover<10->{% Wenn $H$ separabel ist, dann ist \[ \mathcal{B} = \bigcup_{k} \mathcal{B}_k \] -eine Hilbertbasis für $H$ -\end{block} +eine Hilbertbasis für $H$} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/definition.tex b/vorlesungen/slides/2/hilbertraum/definition.tex index ed0ab13..d101637 100644 --- a/vorlesungen/slides/2/hilbertraum/definition.tex +++ b/vorlesungen/slides/2/hilbertraum/definition.tex @@ -13,8 +13,8 @@ \begin{column}{0.48\textwidth} \begin{block}{$\mathbb{C}$-Hilbertraum $H$} \begin{enumerate} -\item $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein -\item Sesquilineares Skalarprodukt +\item<2-> $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein +\item<3-> Sesquilineares Skalarprodukt \[ \langle \cdot,\cdot\rangle \colon H \to \mathbb{C}: (x,y) \mapsto \langle x,y\rangle @@ -23,36 +23,40 @@ Dazugehörige Norm: \[ \|x\| = \sqrt{\langle x,x\rangle} \] -\item Vollständigkeit: jede Cauchy-Folge konvergiert +\item<4-> Vollständigkeit: jede Cauchy-Folge konvergiert \end{enumerate} -Ohne Vollständigkeit: {\em Prähilbertraum} +\uncover<5->{% +Ohne Vollständigkeit: {\em Prähilbertraum}} \end{block} +\uncover<6->{% \begin{block}{$\mathbb{R}$-Hilbertraum} Vollständiger $\mathbb{R}$-Vektorraum mit bilinearem Skalarprodukt -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<7->{% \begin{block}{Vollständigkeit} \begin{itemize} -\item $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge: +\item<8-> $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge: Für alle $\varepsilon>0$ gibt es $N>0$ derart, dass \[ \| x_n-x_m\| < \varepsilon\quad\forall n,m>N \] -\item Grenzwert existiert: $\exists x\in H$ derart, dass es für alle +\item<9-> Grenzwert existiert: $\exists x\in H$ derart, dass es für alle $\varepsilon >0$ ein $N>0$ gibt derart, dass \[ \|x_n-x\|<\varepsilon\quad\forall n>N \] \end{itemize} -\end{block} +\end{block}} +\uncover<10->{% \begin{block}{Cauchy-Schwarz-Ungleichung} \[ |\langle x,y\rangle| \le \|x\| \cdot \|y\| \] Gleichheit für linear abhängige $x$ und $y$ -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/energie.tex b/vorlesungen/slides/2/hilbertraum/energie.tex index 7868cb4..202a7c5 100644 --- a/vorlesungen/slides/2/hilbertraum/energie.tex +++ b/vorlesungen/slides/2/hilbertraum/energie.tex @@ -11,6 +11,7 @@ \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.30\textwidth} +\uncover<2->{% \begin{block}{Totale Energie} Hamilton-Funktion \begin{align*} @@ -21,7 +22,8 @@ H &= \frac{p^2}{2m} + V(x) \end{align*} -\end{block} +\end{block}} +\uncover<3->{% \begin{block}{Quantisierungsregel} \begin{align*} \text{Variable}&\to \text{Operator} @@ -30,22 +32,25 @@ x_k & \to x_k \\ p_k & \to \frac{\hbar}{i} \frac{\partial}{\partial x_k} \end{align*} -\end{block} +\end{block}} \end{column} \begin{column}{0.66\textwidth} +\uncover<4->{% \begin{block}{Energie-Operator} \[ H = -\frac{\hbar^2}{2m}\Delta + V(x) \] -\end{block} +\end{block}} +\uncover<5->{% \begin{block}{Eigenwertgleichung} \[ -\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) = E\psi(x,t) \] Zeitunabhängige Schrödingergleichung -\end{block} +\end{block}} +\uncover<6->{% \begin{block}{Zeitabhängigkeit = Schrödingergleichung} \[ -\frac{\hbar}{i} @@ -54,8 +59,8 @@ Zeitunabhängige Schrödingergleichung = -\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) \] -Eigenwertgleichung durch Separation von $t$ -\end{block} +\uncover<7->{Eigenwertgleichung durch Separation von $t$} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/l2.tex b/vorlesungen/slides/2/hilbertraum/l2.tex index e2f2262..bd744ab 100644 --- a/vorlesungen/slides/2/hilbertraum/l2.tex +++ b/vorlesungen/slides/2/hilbertraum/l2.tex @@ -13,46 +13,48 @@ \begin{column}{0.48\textwidth} \begin{block}{Definition} \begin{itemize} -\item +\item<2-> Vektorraum: Funktionen \[ f\colon [a,b] \to \mathbb{C} \] -\item +\item<3-> Sesquilineares Skalarprodukt \[ \langle f,g\rangle = \int_a^b \overline{f(x)}\, g(x) \,dx \] -\item +\item<4-> Norm: \[ \|f\|^2 = \int_a^b |f(x)|^2\,dx \] -\item Vollständigkeit? -$\rightarrow$ -Lebesgue Konvergenz-Satz +\item<5-> +Vollständigkeit? +\uncover<6->{$\rightarrow$ +Lebesgue Konvergenz-Satz} \end{itemize} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<7->{% \begin{block}{Vollständigkeit} \begin{itemize} \item Funktioniert nicht für Riemann-Integral -\item +\item<8-> Erweiterung des Integrals auf das sogenannte Lebesgue-Integral (nach Henri Lebesgue) -\item +\item<9-> Abzählbare Mengen spielen keine Rolle $\rightarrow$ Nullmengen -\item +\item<10-> Funktionen $\rightarrow$ Klassen von Funktionen, die sich auf einer Nullmenge unterscheiden -\item +\item<11-> Konvergenz-Satz von Lebesgue $\rightarrow$ es funktioniert \end{itemize} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/l2beispiel.tex b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex index c030eb7..3ae44af 100644 --- a/vorlesungen/slides/2/hilbertraum/l2beispiel.tex +++ b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex @@ -13,7 +13,7 @@ \begin{column}{0.48\textwidth} \begin{block}{Definition} \begin{itemize} -\item Quadratsummierbare Folgen von komplexen Zahlen +\item<2-> Quadratsummierbare Folgen von komplexen Zahlen \[ l^2 = @@ -21,15 +21,15 @@ l^2 (x_k)_{k\in\mathbb{N}}\,\bigg|\, \sum_{k=0}^\infty |x_k|^2 < \infty \biggr\} \] -\item Skalarprodukt: +\item<3-> Skalarprodukt: \begin{align*} \langle x,y\rangle &= \sum_{k=0}^\infty \overline{x}_ky_k, & -\|x\|^2 = \sum_{k=0}^\infty |x_k|^2 +\uncover<4->{\|x\|^2 = \sum_{k=0}^\infty |x_k|^2} \end{align*} -\item Vollständigkeit, +\item<5-> Vollständigkeit, Konvergenz: Cauchy-Schwarz-Ungleichung \[ \biggl| @@ -43,37 +43,39 @@ Konvergenz: Cauchy-Schwarz-Ungleichung \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<6->{% \begin{block}{Standardbasisvektoren} \begin{align*} e_i &= (0,\dots,0,\underset{\underset{\textstyle i}{\textstyle\uparrow}}{1},0,\dots) \\ -(e_i)_k &= \delta_{ik} +\uncover<7->{(e_i)_k &= \delta_{ik}} \end{align*} -sind orthonormiert: +\uncover<8->{sind orthonormiert: \begin{align*} \langle e_i,e_j\rangle &= \sum_k \overline{\delta}_{ik}\delta_{jk} -= -\delta_{ij} -\end{align*} -\end{block} +\uncover<9->{= +\delta_{ij}} +\end{align*}} +\end{block}} \vspace{-16pt} +\uncover<10->{% \begin{block}{Analyse} $x_k$ kann mit Skalarprodukten gefunden werden: \begin{align*} \hat{x}_i = \langle e_i,x\rangle -&= -\sum_{k=0}^\infty \overline{\delta}_{ik} x_k -= -x_i +&\uncover<11->{= +\sum_{k=0}^\infty \overline{\delta}_{ik} x_k} +\uncover<12->{= +x_i} \end{align*} -(Fourier-Koeffizienten) -\end{block} +\uncover<13->{(Fourier-Koeffizienten)} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/laplace.tex b/vorlesungen/slides/2/hilbertraum/laplace.tex index 5e0bba9..8f6b196 100644 --- a/vorlesungen/slides/2/hilbertraum/laplace.tex +++ b/vorlesungen/slides/2/hilbertraum/laplace.tex @@ -16,46 +16,50 @@ Gegeben: $\Omega\subset\mathbb{R}^n$ ein Gebiet \\ Gesucht: Lösungen von $\Delta u=0$ mit $u_{|\partial\Omega}=0$ \end{block} +\uncover<2->{% \begin{block}{Funktionen} Hilbertraum $H$ der Funktionen $f:\overline{\Omega}\to\mathbb{C}$ mit $f_{|\partial\Omega}=0$ -\end{block} +\end{block}} +\uncover<3->{% \begin{block}{Skalarprodukt} \[ \langle f,g\rangle = \int_{\Omega} \overline{f}(x) g(x)\,d\mu(x) \] -\end{block} +\end{block}} +\uncover<4->{% \begin{block}{Laplace-Operator} \[ \Delta \psi = \operatorname{div}\operatorname{grad}\psi \] -\end{block} +\end{block}} \end{column} \begin{column}{0.52\textwidth} +\uncover<5->{% \begin{block}{Selbstadjungiert} \begin{align*} \langle f,\Delta g\rangle -&= -\int_{\Omega} \overline{f}(x)\operatorname{div}\operatorname{grad}g(x)\,d\mu(x) +&\uncover<6->{= +\int_{\Omega} \overline{f}(x)\operatorname{div}\operatorname{grad}g(x)\,d\mu(x)} \\ -&= +&\uncover<7->{= \int_{\partial\Omega} -\underbrace{\overline{f}(x)}_{\displaystyle=0}\operatorname{grad}g(x)\,d\nu(x) +\underbrace{\overline{f}(x)}_{\displaystyle=0}\operatorname{grad}g(x)\,d\nu(x)} \\ -&\qquad +&\uncover<7->{\qquad - \int_{\Omega} \operatorname{grad}\overline{f}(x)\cdot \operatorname{grad}g(x) -\,d\mu(x) +\,d\mu(x)} \\ -&=\int_{\Omega}\operatorname{div}\operatorname{grad}\overline{f}(x)g(x)\,d\mu(x) +&\uncover<8->{=\int_{\Omega}\operatorname{div}\operatorname{grad}\overline{f}(x)g(x)\,d\mu(x)} \\ -&= -\langle \Delta f,g\rangle +&\uncover<9->{= +\langle \Delta f,g\rangle} \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/plancherel.tex b/vorlesungen/slides/2/hilbertraum/plancherel.tex index eaf8aaa..73dd46b 100644 --- a/vorlesungen/slides/2/hilbertraum/plancherel.tex +++ b/vorlesungen/slides/2/hilbertraum/plancherel.tex @@ -15,24 +15,27 @@ $H$ Hilbertraum mit Hilbert-Basis $\mathcal{B}=\{b_k\;|\; k>0\}$, $x\in H$ \end{block} +\uncover<2->{% \begin{block}{Analyse: Fourier-Koeffizienten} \begin{align*} a_k = \hat{x}_k &=\langle b_k, x\rangle \\ -\hat{x}&=\mathcal{F}x +\uncover<3->{\hat{x}&=\mathcal{F}x} \end{align*} -\end{block} +\end{block}} \vspace{-10pt} +\uncover<4->{% \begin{block}{Synthese: Fourier-Reihe} \begin{align*} \tilde{x} &= \sum_k a_k b_k -= -\sum_k \langle x,b_k\rangle b_k +\uncover<5->{= +\sum_k \langle x,b_k\rangle b_k} \end{align*} -\end{block} +\end{block}} \vspace{-6pt} +\uncover<6->{% \begin{block}{Analyse von $\tilde{x}$} \begin{align*} \langle b_l,\tilde{x}\rangle @@ -40,18 +43,19 @@ a_k = \hat{x}_k &=\langle b_k, x\rangle \biggl\langle b_l,\sum_{k}\langle b_k,x\rangle b_k \biggr\rangle -= -\sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle -= -\sum_k \langle b_k,x\rangle\delta_{kl} -= -\langle b_l,x\rangle -= -\hat{x}_l +\uncover<7->{= +\sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle} +\uncover<8->{= +\sum_k \langle b_k,x\rangle\delta_{kl}} +\uncover<9->{= +\langle b_l,x\rangle} +\uncover<10->{= +\hat{x}_l} \end{align*} -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<11->{% \begin{block}{Plancherel-Gleichung} \begin{align*} \|\tilde{x}\|^2 @@ -63,21 +67,23 @@ b_l,\sum_{k}\langle b_k,x\rangle b_k \sum_l \hat{x}_lb_l \biggr\rangle \\ -&= -\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle -= -\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl} +&\uncover<12->{= +\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle} +\uncover<13->{= +\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl}} \\ +\uncover<14->{ \|\tilde{x}\|^2 &= -\sum_k |\hat{x}_k|^2 -= -\|\hat{x}\|_{l^2}^2 -= -\|\mathcal{F}x\|_{l^2}^2 +\sum_k |\hat{x}_k|^2} +\uncover<15->{= +\|\hat{x}\|_{l^2}^2} +\uncover<16->{= +\|\mathcal{F}x\|_{l^2}^2} \end{align*} -\end{block} +\end{block}} \vspace{-12pt} +\uncover<17->{% \begin{block}{Isometrie} \begin{align*} \mathcal{F} @@ -86,10 +92,10 @@ H \to l^2 \colon x\mapsto \hat{x} \end{align*} -Alle separablen Hilberträume sind isometrisch zu $l^2$ via +\uncover<18->{Alle separablen Hilberträume sind isometrisch zu $l^2$ via %Fourier-Transformation -$\mathcal{F}$ -\end{block} +$\mathcal{F}$} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/qm.tex b/vorlesungen/slides/2/hilbertraum/qm.tex index 1a2bbbc..a108121 100644 --- a/vorlesungen/slides/2/hilbertraum/qm.tex +++ b/vorlesungen/slides/2/hilbertraum/qm.tex @@ -18,6 +18,7 @@ $L^2$-Funktionen auf $\mathbb{R}^3$ \] \end{block} \vspace{-6pt} +\uncover<2->{% \begin{block}{Wahrscheinlichkeitsinterpretation} \[ |\psi(x)|^2 = \left\{ @@ -25,24 +26,27 @@ $L^2$-Funktionen auf $\mathbb{R}^3$ Wahrscheinlichkeitsdichte für Position $x$ des Teilchens \end{minipage}\right. \] -\end{block} +\end{block}} \vspace{-6pt} +\uncover<3->{% \begin{block}{Skalarprodukt} \[ \langle\psi,\psi\rangle = \int_{\mathbb{R}^3} |\psi(x)|^2\,dx = 1 \] -\end{block} +\end{block}} \vspace{-6pt} +\uncover<4->{% \begin{block}{Messgrösse $A$} Selbstadjungierter Operator $A$ \\ -$\rightarrow$ -Hilbertbasis $|i\rangle$ von EV von $A$ -\end{block} +\uncover<5->{$\rightarrow$ +Hilbertbasis $|i\rangle$ von EV von $A$} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<6->{% \begin{block}{Überlagerung} \begin{align*} |\psi\rangle @@ -50,32 +54,36 @@ Hilbertbasis $|i\rangle$ von EV von $A$ \sum_i w_i|i\rangle \\ -\langle \psi|\psi\rangle +\uncover<7->{\langle \psi|\psi\rangle &= -\sum_i |w_i|^2 \qquad\text{(Plancherel)} +\sum_i |w_i|^2 \qquad\text{(Plancherel)}} \end{align*} +\uncover<8->{% $|w_i|^2=|\langle \psi|i\rangle|^2$ Wahrscheinlichkeit für Zustand $|i\rangle$ -\end{block} +} +\end{block}} +\uncover<9->{% \begin{block}{Erwartungswert} \begin{align*} E(A) -&= -\sum_i |w_i|^2 \alpha_i -= -\sum_i \overline{w}_i\alpha_i w_i +&\uncover<10->{= +\sum_i |w_i|^2 \alpha_i} +\uncover<11->{= +\sum_i \overline{w}_i\alpha_i w_i } +\hspace{5cm} \\ -&= -\sum_{i,j} \overline{w}_j\alpha_i w_i \langle j|i\rangle -= -\sum_{i} \overline{w}_j\langle j| \sum_i \alpha_i w_i |i\rangle +&\only<12>{= +\sum_{i,j} \overline{w}_j\alpha_i w_i \langle j|i\rangle} +\uncover<13->{= +\sum_{i} \overline{w}_j\langle j| \sum_i \alpha_i w_i |i\rangle} \\ -&= +&\uncover<14->{= \sum_{i,j} \overline{w}_j w_i \langle j| -A|i\rangle -= -\langle \psi| A |\psi\rangle +A|i\rangle} +\uncover<15->{= +\langle \psi| A |\psi\rangle} \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/riesz.tex b/vorlesungen/slides/2/hilbertraum/riesz.tex index 88c456c..437fb3c 100644 --- a/vorlesungen/slides/2/hilbertraum/riesz.tex +++ b/vorlesungen/slides/2/hilbertraum/riesz.tex @@ -17,36 +17,44 @@ $V$ ein Vektorraum, $V^*$ der Raum aller Linearformen f\colon V\to \mathbb{C} \] \end{block} +\uncover<3->{% \begin{block}{Beispiel: $l^\infty$} $l^\infty=\text{beschränkte Folgen in $\mathbb{C}$}$, Linearformen: \begin{align*} +\uncover<4->{ f(x) &= -\sum_{i=0}^\infty f_ix_i +\sum_{i=0}^\infty f_ix_i} \\ +\uncover<5->{ \|f\| &= \sup_{\|x\|_{\infty}\le 1} -|f(x)| -= -\sum_{k\in\mathbb{N}} |f_k| +|f(x)|} +\uncover<6->{= +\sum_{k\in\mathbb{N}} |f_k|} \\ +\uncover<7->{ \Rightarrow l^{\infty*} &= -l^1 -\qquad(\ne l^2) +l^1} +\uncover<9->{\qquad(\ne l^2)} \\ +\uncover<8->{ &=\{\text{summierbare Folgen in $\mathbb{C}$}\} +} \end{align*} -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<2->{% \begin{block}{Beispiel: $\mathbb{C}^n$} ${\mathbb{C}^n}^* = \mathbb{C}^n$ -\end{block} +\end{block}} +\uncover<10->{% \begin{theorem}[Riesz] Zu einer stetigen Linearform $f\colon H\to\mathbb{C}$ gibt es $v\in H$ mit \[ @@ -54,12 +62,14 @@ f(x) = \langle v,x\rangle \quad\forall x\in H \] und $\|f\| = \|v\|$ -\end{theorem} +\end{theorem}} +\uncover<11->{% \begin{block}{Dualraum von $H$} $H^*=H$ -\end{block} +\end{block}}% +\uncover<12->{% Der Hilbertraum ist die ``intuitiv richtige, unendlichdimensionale'' -Verallgemeinerung von $\mathbb{C}^n$ +Verallgemeinerung von $\mathbb{C}^n$} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex index e2c26f5..de9383f 100644 --- a/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex +++ b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex @@ -19,30 +19,33 @@ f({\color{blue}x}) &= \begin{pmatrix}f_1&f_2&\dots&f_n\end{pmatrix} {\color{blue}x} \\ +\uncover<2->{ {\color{red}v}&= \rlap{$ \begin{pmatrix} \overline{f}_1&\overline{f}_2&\dots&\overline{f}_n \end{pmatrix}^t -\;\Rightarrow\; -f({\color{blue}x})=\langle {\color{red}v},{\color{blue}x}\rangle -$} +\uncover<3->{\;\Rightarrow\; +f({\color{blue}x})=\langle {\color{red}v},{\color{blue}x}\rangle} +$}} \end{align*} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<4->{% \begin{block}{Linearform auf $L^2([a,b])$} \begin{align*} {\color{red}x}&\in L^2([a,b]) \\ +\uncover<5->{ f&\colon L^2([a,b]) \to \mathbb{C} -: {\color{red}x} \mapsto f({\color{red}x}) -\intertext{Riesz-Darstellungssatz: $\exists {\color{blue}v}\in L^2([a,b])$} -f({\color{red}x}) +: {\color{red}x} \mapsto f({\color{red}x})} +\intertext{\uncover<6->{Riesz-Darstellungssatz: $\exists {\color{blue}v}\in L^2([a,b])$}} +\uncover<7->{f({\color{red}x}) &= -\int_a^b {\color{blue}\overline{v}(t)}{\color{red}x(t)}\,dt +\int_a^b {\color{blue}\overline{v}(t)}{\color{red}x(t)}\,dt} \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} \begin{center} @@ -50,10 +53,12 @@ f({\color{red}x}) \begin{scope}[xshift=-3.5cm] \def\s{0.058} \foreach \n in {0,...,5}{ +\uncover<3->{ \draw[color=red,line width=3pt] ({\n+\s},{1/(\n+0.5)}) -- ({\n+\s},0); \node[color=red] at ({\n},{-0.2+1/(\n+0.5)}) [above right] {$v_\n\mathstrut$}; +} \draw[color=blue,line width=3pt] ({\n-\s},{0.4+0.55*sin(200*\n)+0.25*\n}) -- ({\n-\s},0); \node[color=blue] at ({\n},{-0.2+0.4+0.55*sin(200*\n)+0.25*\n}) @@ -67,17 +72,22 @@ f({\color{red}x}) } \node at (5.6,0) [below] {$\cdots$\strut}; \end{scope} +\uncover<4->{ \begin{scope}[xshift=3.5cm] +\uncover<7->{ \fill[color=red!40,opacity=0.5] plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)}) -- (5,0) -- (0,0) -- cycle; +} \fill[color=blue!40,opacity=0.5] plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x}) -- (5,0) -- (0,0) -- cycle; +\uncover<7->{ \draw[color=red,line width=1.4pt] plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)}); \node[color=red] at (0,2) [right] {$x(t)$}; +} \draw[color=blue,line width=1.4pt] plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x}); @@ -90,6 +100,7 @@ f({\color{red}x}) \draw (5.0,-0.1) -- (5.0,0.1); \node at (5.0,0) [below] {$b$\strut}; \end{scope} +} \end{tikzpicture} \end{center} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/sobolev.tex b/vorlesungen/slides/2/hilbertraum/sobolev.tex index 425c263..828d34d 100644 --- a/vorlesungen/slides/2/hilbertraum/sobolev.tex +++ b/vorlesungen/slides/2/hilbertraum/sobolev.tex @@ -14,34 +14,37 @@ \begin{block}{Vektorrraum $W$} Funktionen $f\colon \Omega\to\mathbb{C}$ \begin{itemize} -\item +\item<2-> $f\in L^2(\Omega)$ -\item +\item<3-> $\nabla f\in L^2(\Omega)$ -\item +\item<4-> homogene Randbedingungen: $f_{|\partial \Omega}=0$ \end{itemize} \end{block} +\uncover<5->{% \begin{block}{Skalarprodukt} \begin{align*} \langle f,g\rangle_W -&= -\int_\Omega \overline{\nabla f}(x)\cdot\nabla g(x)\,d\mu(x) +&\uncover<6->{= +\int_\Omega \overline{\nabla f}(x)\cdot\nabla g(x)\,d\mu(x)} \\ -&\qquad + \int_{\Omega} \overline{f}(x)\,g(x)\,d\mu(x) +&\uncover<7->{\qquad + \int_{\Omega} \overline{f}(x)\,g(x)\,d\mu(x)} \\ -&=\langle f,-\Delta g + g\rangle_{L^2(\Omega)} +&\uncover<8->{=\langle f,-\Delta g + g\rangle_{L^2(\Omega)}} \end{align*} -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<9->{% \begin{block}{Vollständigkeit} \dots -\end{block} +\end{block}} +\uncover<10->{% \begin{block}{Anwendung} ``Ein Hilbertraum für jedes partielle Differentialgleichungsproblem'' -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/2/hilbertraum/spektral.tex b/vorlesungen/slides/2/hilbertraum/spektral.tex index b7a44f8..b561b69 100644 --- a/vorlesungen/slides/2/hilbertraum/spektral.tex +++ b/vorlesungen/slides/2/hilbertraum/spektral.tex @@ -19,69 +19,73 @@ Hilbertraum $H$ $A\colon H\to H$ linear \end{itemize} \end{block} +\uncover<2->{% \begin{block}{Eigenwerte} $x\in H$ ein EV von $A$ zum EW $\lambda\ne 0$ \begin{align*} -\langle x,x\rangle +\uncover<3->{\langle x,x\rangle &= \frac1{\lambda} -\langle x,\lambda x\rangle -= +\langle x,\lambda x\rangle} +\uncover<3->{= \frac1{\lambda} -\langle x,Ax\rangle +\langle x,Ax\rangle} \\ -&= +&\uncover<4->{= \frac1{\lambda} -\langle Ax,x\rangle -= +\langle Ax,x\rangle} +\uncover<5->{= \frac{\overline{\lambda}}{\lambda} -\langle x,x\rangle +\langle x,x\rangle} \\ -\frac{\overline{\lambda}}{\lambda}&=1 -\quad\Rightarrow\quad -\overline{\lambda} = \lambda +\uncover<6->{\frac{\overline{\lambda}}{\lambda}&=1 \quad\Rightarrow\quad -\lambda\in\mathbb{R} +\overline{\lambda} = \lambda} +\uncover<7->{\quad\Rightarrow\quad +\lambda\in\mathbb{R}} \end{align*} -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<8->{% \begin{block}{Orthogonalität} $u,v$ EV zu EW $\mu,\lambda\in \mathbb{R}\setminus\{0\}$, $\overline{\mu}=\mu\ne\lambda$ \begin{align*} +\uncover<9->{ \langle u,v\rangle &= \frac{1}{\mu} -\langle \mu u,v\rangle -= +\langle \mu u,v\rangle} +\uncover<10->{= \frac{1}{\mu} -\langle Au,v\rangle +\langle Au,v\rangle} \\ -&= +&\uncover<11->{= \frac{1}{\mu} -\langle u,Av\rangle -= +\langle u,Av\rangle} +\uncover<12->{= \frac{1}{\mu} -\langle u,\lambda v\rangle -= +\langle u,\lambda v\rangle} +\uncover<13->{= \frac{\lambda}{\mu} -\langle u,v\rangle +\langle u,v\rangle} \\ -\Rightarrow +\uncover<14->{\Rightarrow \; 0 &= \underbrace{\biggl(\frac{\lambda}{\mu}-1\biggr)}_{\displaystyle \ne 0} -\langle u,v\rangle -\;\Rightarrow\; -\langle u,v\rangle = 0 +\langle u,v\rangle} +\uncover<15->{\;\Rightarrow\; +\langle u,v\rangle = 0} \end{align*} -EV zu verschiedenen EW sind orthogonal -\end{block} +\uncover<16->{EV zu verschiedenen EW sind orthogonal} +\end{block}} \end{column} \end{columns} +\uncover<17->{% \begin{block}{Spektralsatz} Es gibt eine Hilbertbasis von $H$ aus Eigenvektoren von $A$ -\end{block} +\end{block}} \end{frame} \egroup diff --git a/vorlesungen/slides/2/hilbertraum/sturm.tex b/vorlesungen/slides/2/hilbertraum/sturm.tex index 1d772d6..a6865ab 100644 --- a/vorlesungen/slides/2/hilbertraum/sturm.tex +++ b/vorlesungen/slides/2/hilbertraum/sturm.tex @@ -22,6 +22,7 @@ mit Randbedingungen $y(0)=y(1)=0$ \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<2->{% \begin{block}{Sturm-Liouville-Operator} \[ A=-\frac{d^2}{dt^2} + q(t) = -D^2 + p @@ -30,27 +31,28 @@ auf differenzierbaren Funktionen $\Omega=[0,1]\to\mathbb{C}$ mit Randwerten \[ f(0)=f(1)=0 \] -\end{block} +\end{block}} \end{column} \end{columns} +\uncover<3->{% \begin{block}{Selbstadjungiert} \begin{align*} \langle f,Ag \rangle -&= +&\uncover<4->{= \langle f,-D^2 g\rangle + \langle f,qg\rangle = - \int_0^1 \overline{f}(t) \frac{d^2}{dt^2}g(t)\,dt -+\langle f,qg\rangle ++\langle f,qg\rangle} \\ -&=-\underbrace{[\overline{f}(t)g'(t)]_0^1}_{\displaystyle=0} +&\uncover<5->{=-\underbrace{[\overline{f}(t)g'(t)]_0^1}_{\displaystyle=0} +\int_0^1 \overline{f}'(t)g'(t)\,dt -+\langle f,qg\rangle -=-\int_0^1 \overline{f}''(t)g(t)\,dt -+\langle qf,g\rangle ++\langle f,qg\rangle} +\uncover<6->{=-\int_0^1 \overline{f}''(t)g(t)\,dt ++\langle qf,g\rangle} \\ -&=\langle Af,g\rangle +&\uncover<7->{=\langle Af,g\rangle} \end{align*} -\end{block} +\end{block}} \end{frame} \egroup |