diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-05 11:24:46 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-06-05 11:24:46 +0200 |
commit | 374bb4a4dbc16598329cb777600c531c8c848330 (patch) | |
tree | d73f328c0648e1a33481f869095781977c39e773 | |
parent | phases (diff) | |
download | SeminarSpezielleFunktionen-374bb4a4dbc16598329cb777600c531c8c848330.tar.gz SeminarSpezielleFunktionen-374bb4a4dbc16598329cb777600c531c8c848330.zip |
fix trigo definition graph
-rw-r--r-- | buch/chapters/030-geometrie/chapter.tex | 3 | ||||
-rw-r--r-- | buch/chapters/030-geometrie/images/einheitskreis.pdf | bin | 19706 -> 20005 bytes | |||
-rw-r--r-- | buch/chapters/030-geometrie/images/einheitskreis.tex | 4 | ||||
-rw-r--r-- | buch/chapters/030-geometrie/uebungsaufgaben/3.tex | 169 |
4 files changed, 175 insertions, 1 deletions
diff --git a/buch/chapters/030-geometrie/chapter.tex b/buch/chapters/030-geometrie/chapter.tex index f3f1d39..0b2842b 100644 --- a/buch/chapters/030-geometrie/chapter.tex +++ b/buch/chapters/030-geometrie/chapter.tex @@ -42,7 +42,7 @@ wie die Berechnung der Länge von Ellipsen- oder Hyperbelbögen auf die Notwendigkeit führt, neue spezielle Funktionen zu definieren. \input{chapters/030-geometrie/trigonometrisch.tex} -\input{chapters/030-geometrie/sphaerisch.tex} +%\input{chapters/030-geometrie/sphaerisch.tex} \input{chapters/030-geometrie/hyperbolisch.tex} \input{chapters/030-geometrie/laenge.tex} \input{chapters/030-geometrie/flaeche.tex} @@ -54,5 +54,6 @@ die Notwendigkeit führt, neue spezielle Funktionen zu definieren. %\uebungsaufgabe{0} \uebungsaufgabe{1} \uebungsaufgabe{2} +\uebungsaufgabe{3} \end{uebungsaufgaben} diff --git a/buch/chapters/030-geometrie/images/einheitskreis.pdf b/buch/chapters/030-geometrie/images/einheitskreis.pdf Binary files differindex 0b514eb..d708377 100644 --- a/buch/chapters/030-geometrie/images/einheitskreis.pdf +++ b/buch/chapters/030-geometrie/images/einheitskreis.pdf diff --git a/buch/chapters/030-geometrie/images/einheitskreis.tex b/buch/chapters/030-geometrie/images/einheitskreis.tex index c38dc19..a194190 100644 --- a/buch/chapters/030-geometrie/images/einheitskreis.tex +++ b/buch/chapters/030-geometrie/images/einheitskreis.tex @@ -41,6 +41,7 @@ \fill[color=blue] (\a:\r) circle[radius=0.05]; \draw[color=blue,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\a)}); +\fill[color=blue] (\r,{\r*tan(\a)}) circle[radius=1.0pt]; \node[color=blue] at (\r,{0.5*\r*tan(\a)}) [right] {$\tan\alpha$}; \draw[color=blue,line width=0.4pt] ({\r*cos(\a)},0) -- (\a:\r); @@ -53,6 +54,7 @@ \draw[color=blue] (-0.1,{\r*sin(\a)}) -- (0.1,{\r*sin(\a)}); \draw[color=blue,line width=1.4pt] (0,\r) -- ({\r/tan(\a)},\r); +\fill[color=blue] ({\r/tan(\a)},\r) circle[radius=1.0pt]; \node[color=blue] at ({0.5*\r/tan(\a)},\r) [above] {$\cot\alpha$}; \draw[color=darkgreen,line width=1pt] (0,0) -- (\b:\r); @@ -61,9 +63,11 @@ \fill[color=darkgreen] (\b:\r) circle[radius=0.05]; \draw[color=darkgreen,line width=1.4pt] (0,\r) -- ({\r/tan(\b)},\r); +\fill[color=darkgreen] ({\r/tan(\b)},\r) circle[radius=1.0pt]; \node[color=darkgreen] at ({0.5*\r/tan(\b)},\r) [above] {$\cot\beta$}; \draw[color=darkgreen,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\b)}); +\fill[color=darkgreen] (\r,{\r*tan(\b)}) circle[radius=1.0pt]; \node[color=darkgreen] at (\r,{0.5*\r*tan(\b)}) [right] {$\tan\beta$}; \draw[color=darkgreen,line width=0.4pt] (\b:\r) -- (0,{\r*sin(\b)}); diff --git a/buch/chapters/030-geometrie/uebungsaufgaben/3.tex b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex new file mode 100644 index 0000000..6a501fb --- /dev/null +++ b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex @@ -0,0 +1,169 @@ +\def\cas{\operatorname{cas}} +Die Funktion $\cas$ definiert durch +$\cas x = \cos x + \sin x$ hat einige interessante Eigenschaften. +Wie die gewöhnlichen trigonometrischen Funktionen $\sin x$ und $\cos x$ +ist $\cas x$ $2\pi$-periodisch. +Die Ableitung und das Additionstheorem benötigen bei den gewöhnlichen +trigonometrischen Funktionen aber beide Funktionen, im Gegensatz zu den +im folgenden hergeleiteten Formeln, die nur die Funktion $\cas x$ brauchen. +\begin{teilaufgaben} +\item +Drücken Sie die Ableitung von $\cas x$ allein durch Werte der +$\cas$-Funktion aus. +\item +Zeigen Sie, dass +\[ +\cas x += +\sqrt{2} \sin\biggl(x+\frac{\pi}4\biggr) += +\sqrt{2} \cos\biggl(x-\frac{\pi}4\biggr). +\] +\item +Beweisen Sie das Additionstheorem für die $\cas$-Funktion +\begin{equation} +\cas(x+y) += +\frac12\bigl( +\cas(x)\cas(y) + \cas x\cas (-y) + \cas(-x)\cas(y) -\cas(-x)\cas(-y) +\bigr) +\label{buch:geometrie:uebung3:eqn:addition} +\end{equation} +\end{teilaufgaben} +Youtuber Dr Barker hat die Funktion $\cas$ im Video +{\small\url{https://www.youtube.com/watch?v=bn38o3u0lDc}} vorgestellt. + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Ableitung ist +\[ +\frac{d}{dx}\cas x += +\frac{d}{dx}(\cos x + \sin x) += +-\sin x + \cos x += +\sin(-x) + \cos(-x) += +\cas(x). +\] +\item +Die Additionstheoreme angewendet auf die trigonometrischen Funktionen +auf der rechten Seite ergibt +\begin{align*} +\sin\biggl(x+\frac{\pi}4\biggr) +&= +\sin x \cos\frac{\pi}4 + \cos x \sin\frac{\pi}4 +&&& +\cos\biggl(x-\frac{\pi}4\biggr) +&= +\cos(x)\cos\frac{\pi}4 -\sin x \sin\biggl(-\frac{\pi}4\biggr) +\\ +&= +\frac{1}{\sqrt{2}} \sin x ++ +\frac{1}{\sqrt{2}} \cos x +&&& +&= +\frac{1}{\sqrt{2}} \cos x ++ +\frac{1}{\sqrt{2}} \sin x +\\ +&=\frac{1}{\sqrt{2}} \cas x +&&& +&= +\frac{1}{\sqrt{2}} \cas x. +\end{align*} +Multiplikation mit $\sqrt{2}$ ergibt die behaupteten Relationen. +\item +Substituiert man die Definition von $\cas(x)$ auf der rechten Seite von +\eqref{buch:geometrie:uebung3:eqn:addition} und multipliziert aus, +erhält man +\begin{align*} +\eqref{buch:geometrie:uebung3:eqn:addition} +&= +{\textstyle\frac12}\bigl( +(\cos x + \sin x) +(\cos y + \sin y) ++ +(\cos x + \sin x) +(\cos y - \sin y) +\\ +&\qquad ++ +(\cos x - \sin x) +(\cos y + \sin y) +- +(\cos x - \sin x) +(\cos y - \sin y) +\bigr) +\\ +&= +\phantom{-\mathstrut} +{\textstyle\frac12}\bigl( +\cos x\cos y ++ +\cos x\sin y ++ +\sin x\cos y ++ +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y +- +\cos x\sin y ++ +\sin x\cos y +- +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y ++ +\cos x\sin y +- +\sin x\cos y +- +\sin x\sin y +\bigr) +\\ +& +\phantom{=} +-\mathstrut{\textstyle\frac12}\bigl( +\cos x\cos y +- +\cos x\sin y +- +\sin x\cos y ++ +\sin x\sin y +\bigr) +\\ +&= \cos x \cos y ++ +\cos x \sin y ++ +\sin x \cos y +- +\sin x \sin y. +\intertext{Die äussersten zwei Terme passen zum Additionstheorem für den +Kosinus, die beiden inneren Terme dagegen zum Sinus. +Fasst man sie zusammen, erhält man} +&= +(\sin x\cos y + \cos x \sin y) ++ +(\cos x\cos y - \sin x \sin y) +\\ +&= +\sin (x+y) + \cos(x+y) += +\cas(x+y). +\end{align*} +Damit ist das Additionstheorem für die Funktion $\cas$ bewiesen. +\qedhere +\end{teilaufgaben} +\end{loesung} |