1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
/* mmmatrix.hpp
* Part of Mathematical library built (ab)using Modern C++ 17 abstractions.
*
* This library is not intended to be _performant_, it does not contain
* hand written SMID / SSE / AVX optimizations. It is instead an example
* of highly inefficient (but abstract!) code, where matrices can contain any
* data type.
*
* Naoki Pross <naopross@thearcway.org>
* 2018 ~ 2019
*/
#pragma once
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cassert>
#include <initializer_list>
#include <array>
namespace mm {
template<typename T, std::size_t Rows, std::size_t Cols>
class basic_matrix;
// TODO, not sure it's a good idea
//template<typename T, std::size_t Rows, std::size_t Cols>
//class transposed_matrix;
/* specialization of basic_matrx for Cols = 1 */
template<typename T, std::size_t Rows>
class row_vec;
/* specialization of basic_matrx for Rows = 1 */
template<typename T, std::size_t Cols>
class col_vec;
/* shorter name for basic_matrix */
template<typename T, std::size_t Rows, std::size_t Cols>
class matrix;
/* specialization of basic_matrix for Rows == Cols */
template<typename T, std::size_t N>
class square_matrix;
template<typename T, std::size_t N>
class diagonal_matrix;
/*
* Iterators
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class vector_iterator;
template<typename T, std::size_t N>
class diag_iterator;
template<typename T, std::size_t Rows, std::size_t Cols>
class const_vector_iterator;
template<typename T, std::size_t N>
class const_diag_iterator;
}
/* Non-const Iterators */
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::vector_iterator
{
std::size_t index; // variable index
mm::basic_matrix<T, Rows, Cols>& M;
const std::size_t position; // fixed index
const bool direction; // true = row, false = column
public:
template<typename U, std::size_t ORows, std::size_t OCols>
friend class vector_iterator;
vector_iterator(mm::basic_matrix<T, Rows, Cols>& M, std::size_t position, bool direction);
mm::vector_iterator<T, Rows, Cols> operator++()
{
vector_iterator<T, Rows, Cols> it = *this;
++index;
return it;
}
mm::vector_iterator<T, Rows, Cols> operator--()
{
vector_iterator<T, Rows, Cols> it = *this;
--index;
return it;
}
mm::vector_iterator<T, Rows, Cols>& operator++(int)
{
++index;
return *this;
}
mm::vector_iterator<T, Rows, Cols>& operator--(int)
{
--index;
return *this;
}
bool operator==(const mm::vector_iterator<T, Rows, Cols>& other) const
{
return index == other.index;
}
bool operator=!(const mm::vector_iterator<T, Rows, Cols>& other) const
{
return index != other.index;
}
T& operator*() const;
T& operator[](std::size_t);
};
template<typename T, std::size_t N>
class diag_iterator
{
std::size_t index; // variable index
mm::square_matrix<T, N>& M;
const int position; // fixed diagonal index
public:
template<typename U, std::size_t ON>
friend class diag_iterator;
diag_iterator(mm::square_matrix<T, N>& M, std::size_t position, bool direction);
mm::diag_iterator<T, N> operator++()
{
diag_iterator<T, N> it = *this;
++index;
return it;
}
mm::diag_iterator<T, N> operator--()
{
diag_iterator<T, N> it = *this;
--index;
return it;
}
mm::diag_iterator<T, N>& operator++(int)
{
++index;
return *this;
}
mm::diag_iterator<T, N>& operator--(int)
{
--index;
return *this;
}
bool operator==(const mm::diag_iterator<T, N>& other) const
{
return index == other.index;
}
bool operator=!(const mm::diag_iterator<T, N>& other) const
{
return index != other.index;
}
T& operator*() const;
};
/* Const Iterators */
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::const_vector_iterator
{
std::size_t index; // variable index
const mm::basic_matrix<T, Rows, Cols>& M;
const std::size_t position; // fixed index
const bool direction; // true = row, false = column
public:
const_vector_iterator(mm::basic_matrix<T, Rows, Cols>& M, std::size_t position, bool direction);
mm::const_vector_iterator<T, Rows, Cols> operator++()
{
vector_iterator<T, Rows, Cols> it = *this;
++index;
return it;
}
mm::const_vector_iterator<T, Rows, Cols> operator--()
{
vector_iterator<T, Rows, Cols> it = *this;
--index;
return it;
}
mm::const_vector_iterator<T, Rows, Cols>& operator++(int)
{
++index;
return *this;
}
mm::const_vector_iterator<T, Rows, Cols>& operator--(int)
{
--index;
return *this;
}
bool operator==(const mm::const_vector_iterator<T, Rows, Cols>& other) const
{
return index == other;
}
bool operator=!(const mm::const_vector_iterator<T, Rows, Cols>& other) const
{
return index != other;
}
const T& operator*() const;
const T& operator[](std::size_t) const;
};
template<typename T>
class const_diag_iterator
{
std::size_t index; // variable index
const mm::square_matrix<T, N>& M;
const int position; // fixed diagonal index
public:
template<typename U, std::size_t ON>
friend class const_diag_iterator;
const_diag_iterator(const mm::square_matrix<T, N>& M, std::size_t position, bool direction);
mm::const_diag_iterator<T, N> operator++()
{
const_diag_iterator<T, N> it = *this;
++index;
return it;
}
mm::const_diag_iterator<T, N> operator--()
{
const_diag_iterator<T, N> it = *this;
--index;
return it;
}
mm::const_diag_iterator<T, N>& operator++(int)
{
++index;
return *this;
}
mm::const_diag_iterator<T, N>& operator--(int)
{
--index;
return *this;
}
bool operator==(const mm::const_diag_iterator<T, N>& other) const
{
return index == other.index;
}
bool operator=!(const mm::const_diag_iterator<T, N>& other) const
{
return index != other.index;
}
const T& operator*() const;
};
/*
* Matrix class
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::basic_matrix {
public:
using type = T;
template<typename U, std::size_t ORows, std::size_t OCols>
friend class mm::basic_matrix;
template<typename U, std::size_t ORows, std::size_t OCols>
friend class mm::vector_iterator;
static constexpr std::size_t rows = Rows;
static constexpr std::size_t cols = Cols;
basic_matrix();
// from initializer_list
basic_matrix(std::initializer_list<std::initializer_list<T>> l);
// copyable and movable
basic_matrix(const basic_matrix<T, Rows, Cols>& other);
basic_matrix(basic_matrix<T, Rows, Cols>&& other);
// copy from another matrix
template<std::size_t ORows, std::size_t OCols>
basic_matrix(const basic_matrix<T, ORows, OCols>& other);
// access data
virtual T& at(std::size_t row, std::size_t col);
virtual const T& at(std::size_t row, std::size_t col) const;
// allows to access a matrix M at row j col k with M[j][k]
virtual auto operator[](std::size_t index);
void swap_rows(std::size_t x, std::size_t y);
void swap_cols(std::size_t x, std::size_t y);
// mathematical operations
// TODO, simply switch iteration mode
virtual basic_matrix<T, Cols, Rows> transposed() const;
inline basic_matrix<T, Cols, Rows> td() const { return transposed(); }
/// downcast to square matrix
static inline constexpr bool is_square() { return (Rows == Cols); }
inline constexpr square_matrix<T, Rows> to_square() const {
static_assert(is_square());
return static_cast<square_matrix<T, Rows>>(*this);
}
/// downcast to row_vector
static inline constexpr bool is_row_vec() { return (Cols == 1); }
inline constexpr row_vec<T, Rows> to_row_vec() const {
static_assert(is_row_vec());
return static_cast<row_vec<T, Rows>>(*this);
}
/// downcast to col_vector
static inline constexpr bool is_col_vec() { return (Rows == 1); }
inline constexpr col_vec<T, Cols> to_col_vec() const {
static_assert(is_col_vec());
return static_cast<col_vec<T, Cols>>(*this);
}
protected:
template<typename ConstIterator>
basic_matrix(ConstIterator begin, ConstIterator end);
private:
std::array<T, Rows * Cols> data;
};
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix() {
std::fill(data.begin(), data.end(), 0);
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
std::initializer_list<std::initializer_list<T>> l
) {
assert(l.size() == Rows);
auto data_it = data.begin();
for (auto&& row : l) {
data_it = std::copy(row.begin(), row.end(), data_it);
}
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
const mm::basic_matrix<T, Rows, Cols>& other
) : data(other.data) {}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
mm::basic_matrix<T, Rows, Cols>&& other
) : data(std::forward<decltype(other.data)>(other.data)) {}
template<typename T, std::size_t Rows, std::size_t Cols>
template<std::size_t ORows, std::size_t OCols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
const mm::basic_matrix<T, ORows, OCols>& other
) {
static_assert((ORows <= Rows),
"cannot copy a taller matrix into a smaller one"
);
static_assert((OCols <= Cols),
"cannot copy a larger matrix into a smaller one"
);
std::fill(data.begin(), data.end(), 0);
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
this->at(row, col) = other.at(row, col);
}
/* protected construtor */
template<typename T, std::size_t Rows, std::size_t Cols>
template<typename ConstIterator>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
ConstIterator begin, ConstIterator end
) {
assert(static_cast<unsigned>(std::distance(begin, end)) >= ((Rows * Cols)));
std::copy(begin, end, data.begin());
}
/* member functions */
template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) {
assert(row < Rows); // "out of row bound"
assert(col < Cols); // "out of column bound"
return data[row * Cols + col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
const T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) const {
assert(row < Rows); // "out of row bound"
assert(col < Cols); // "out of column bound"
return data[row * Cols + col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
auto mm::basic_matrix<T, Rows, Cols>::operator[](std::size_t index) {
if constexpr (is_row_vec() || is_col_vec()) {
return data.at(index);
} else {
return row_vec<T, Rows>(
data.cbegin() + (index * Cols),
data.cbegin() + ((index + 1) * Cols) + 1
);
}
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_rows(std::size_t x, std::size_t y) {
if (x == y)
return;
for (unsigned col = 0; col < Cols; col++)
std::swap(this->at(x, col), this->at(y, col));
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_cols(std::size_t x, std::size_t y) {
if (x == y)
return;
for (unsigned row = 0; row < rows; row++)
std::swap(this->at(row, x), this->at(row, y));
}
template<typename T, std::size_t M, std::size_t N>
mm::basic_matrix<T, N, M> mm::basic_matrix<T, M, N>::transposed() const {
mm::basic_matrix<T, N, M> result;
for (unsigned row = 0; row < M; row++)
for (unsigned col = 0; col < N; col++)
result.at(col, row) = this->at(row, col);
return result;
}
/* operator overloading */
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator+(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
mm::basic_matrix<T, Rows, Cols> result;
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
result.at(row, col) = a.at(row, col) + b.at(row, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const mm::basic_matrix<T, Rows, Cols>& m,
const T& scalar
) {
mm::basic_matrix<T, Rows, Cols> result;
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
result.at(row, col) = m.at(row, col) * scalar;
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const T& scalar,
const mm::basic_matrix<T, Rows, Cols>& m
) {
return m * scalar;
}
template<typename T, std::size_t M, std::size_t P1, std::size_t P2, std::size_t N>
mm::basic_matrix<T, M, N> operator*(
const mm::basic_matrix<T, M, P1>& a,
const mm::basic_matrix<T, P2, N>& b
) {
static_assert(P1 == P2, "invalid matrix multiplication");
mm::basic_matrix<T, M, N> result;
// TODO: use a more efficient algorithm
for (unsigned row = 0; row < M; row++)
for (unsigned col = 0; col < N; col++)
for (unsigned k = 0; k < P1; k++)
result.at(row, col) = a.at(row, k) * b.at(k, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator-(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
return a + (static_cast<T>(-1) * b);
}
template<typename T, std::size_t Rows, std::size_t Cols, unsigned NumW = 3>
std::ostream& operator<<(std::ostream& os, const mm::basic_matrix<T, Rows, Cols>& m) {
for (unsigned row = 0; row < Rows; row++) {
os << "[ ";
for (unsigned col = 0; col < (Cols -1); col++) {
os << std::setw(NumW) << m.at(row, col) << ", ";
}
os << std::setw(NumW) << m.at(row, (Cols -1)) << " ]\n";
}
return os;
}
/*
* derivated classes
*/
/* row vector specialization */
template<typename T, std::size_t Rows>
class mm::row_vec : public mm::basic_matrix<T, Rows, 1> {
public:
using mm::basic_matrix<T, Rows, 1>::basic_matrix;
};
/* column vector specialization */
template<typename T, std::size_t Cols>
class mm::col_vec : public mm::basic_matrix<T, 1, Cols> {
public:
using mm::basic_matrix<T, 1, Cols>::basic_matrix;
};
/* general specialization (alias) */
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::matrix : public mm::basic_matrix<T, Rows, Cols> {
public:
using mm::basic_matrix<T, Rows, Cols>::basic_matrix;
};
/*
* transposed matrix format
* TODO: write this class, or put a bool flag into the original one
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::transposed_matrix : public mm::basic_matrix<T, Rows, Cols>
{
public:
using mm::basic_matrix<T, Rows, Cols>::basic_matrix;
virtual T& at(std::size_t row, std::size_t col) override
{
return mm::basic_matrix<T, Rows, Cols>::at(col, row);
}
virtual const T& at(std::size_t row, std::size_t col) const override
{
return mm::basic_matrix<T, Rows, Cols>::at(col, row);
}
// allows to access a matrix M at row j col k with M[j][k]
virtual auto operator[](std::size_t index) override
{
// TODO, return other direction iterator
}
}
/* square matrix specialization */
template<typename T, std::size_t N>
class mm::square_matrix : public mm::basic_matrix<T, N, N> {
public:
using mm::basic_matrix<T, N, N>::basic_matrix;
/// in place transpose
void transpose();
inline void t() { transpose(); }
T trace();
inline T tr() { return trace(); }
/// in place inverse
// TODO, det != 0
// TODO, use gauss jordan for invertible ones
void invert();
// TODO, downcast to K-diagonal, user defined cast
template<int K>
operator mm::diagonal_matrix<T, N, K>() const
{
// it's always possible to do it bidirectionally,
// without loosing information
return dynamic_cast<mm::diagonal_matrix<T, N, K>>(*this);
}
// get the identity of size N
static inline constexpr square_matrix<T, N> identity() {
square_matrix<T, N> i;
for (unsigned row = 0; row < N; row++)
for (unsigned col = 0; col < N; col++)
i.at(row, col) = (row == col) ? 1 : 0;
return i;
}
};
/*
* K-diagonal square matrix format
* K is bounded between ]-N, N[
*/
template<typename T, std::size_t N, int K>
class mm::diagonal_matrix : public mm::square_matrix
{
public:
using mm::square_matrix<T, N>::square_matrix;
// TODO, redefine at, operator[]
// TODO, matrix multiplication
};
template<typename T, std::size_t N>
void mm::square_matrix<T, N>::transpose() {
for (unsigned row = 0; row < N; row++)
for (unsigned col = 0; col < row; col++)
std::swap(this->at(row, col), this->at(col, row));
}
template<typename T, std::size_t N>
T mm::square_matrix<T, N>::trace() {
T sum = 0;
for (unsigned i = 0; i < N; i++)
sum += this->at(i, i);
return sum;
}
/* Iterators implementations */
template<typename T, std::size_t Rows, std::size_t Cols>
mm::vector_iterator<T, Rows, Cols>::vector_iterator(mm::basic_matrix<T, Rows, Cols>& _M, std::size_t pos, bool dir)
index(0), M(_M), position(pos), direction(dir)
{
assert((dir && pos < Cols) || (!dir && pos < Rows))
}
template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::vector_iterator<T, Rows, Cols>::operator*() const
{
return (direction) ?
M.data[position * Cols + index] :
M.data[index * Cols + position];
}
template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::vector_iterator<T, Rows, Cols>::operator[](std::size_t i)
{
return (direction) ?
M.data[position * Cols + i] :
M.data[i * Cols + position];
}
template<typename T, std::size_t N>
mm::diag_iterator<T, N>::diag_iterator(mm::square_matrix<T, N>& _M, int pos)
index(0), M(_M), position(pos)
{
assert(abs(pos) < N) // pos bounded between ]-N, N[
}
template<typename T, std::size_t N>
T& mm::diag_iterator<T, N>::operator*() const
{
return (k > 0) ?
M.data[(index + position) * Cols + index] :
M.data[index * Cols + (index - position)];
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::const_vector_iterator<T, Rows, Cols>::const_vector_iterator(const mm::basic_matrix<T, Rows, Cols>& _M, std::size_t pos, bool dir)
index(0), M(_M), position(pos), direction(dir)
{
assert((dir && pos < Cols) || (!dir && pos < Rows))
}
template<typename T, std::size_t Rows, std::size_t Cols>
const T& mm::const_vector_iterator<T, Rows, Cols>::operator*() const
{
return (direction) ?
M.data[position * Cols + index] :
M.data[index * Cols + position];
}
template<typename T, std::size_t Rows, std::size_t Cols>
const T& mm::const_vector_iterator<T, Rows, Cols>::operator[](std::size_t i) const
{
return (direction) ?
M.data[position * Cols + i] :
M.data[i * Cols + position];
}
template<typename T, std::size_t N>
mm::const_diag_iterator<T, N>::const_diag_iterator(const mm::square_matrix<T, N>& _M, int pos)
index(0), M(_M), position(pos)
{
assert(abs(pos) < N) // pos bounded between ]-N, N[
}
template<typename T, std::size_t N>
T& mm::const_diag_iterator<T, N>::operator*() const
{
return (k > 0) ?
M.data[(index + position) * Cols + index] :
M.data[index * Cols + (index - position)];
}
|