1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
|
/* mmmatrix.hpp
* Part of Mathematical library built (ab)using Modern C++ 17 abstractions.
*
* This library is not intended to be _performant_, it does not contain
* hand written SMID / SSE / AVX optimizations. It is instead an example
* of highly inefficient (but abstract!) code, where matrices can contain any
* data type.
*
* Naoki Pross <naopross@thearcway.org>
* 2018 ~ 2019
*/
#pragma once
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cassert>
#include <initializer_list>
#include <array>
namespace mm {
template<typename T, std::size_t Rows, std::size_t Cols>
class basic_matrix;
template<typename T, std::size_t Rows, std::size_t Cols>
class transposed_matrix;
/* specialization of basic_matrx for Cols = 1 */
template<typename T, std::size_t Rows>
class row_vec;
/* specialization of basic_matrx for Rows = 1 */
template<typename T, std::size_t Cols>
class col_vec;
/* shorter name for basic_matrix */
template<typename T, std::size_t Rows, std::size_t Cols>
class matrix;
/* specialization of basic_matrix for Rows == Cols */
template<typename T, std::size_t N>
class square_matrix;
template<typename T, std::size_t N, int K = 0>
class diagonal_matrix;
/*
* Iterators
*/
/*
* Most abstract type of iterator
* IterType = Row, Col, Diag
* Grid = constness of mm::basic_matrix
*/
template<typename T, std::size_t Rows, std::size_t Cols, int IterType, template <typename, std::size_t, std::size_t> class Grid>
class vector_iterator;
}
#define MM_ROW_ITER 0
#define MM_COL_ITER 1
#define MM_DIAG_ITER 2
template<typename T, std::size_t Rows, std::size_t Cols, int IterType, template <typename, std::size_t, std::size_t> class Grid>
class mm::vector_iterator
{
std::size_t index; // variable index
Grid<T, Rows, Cols>& M;
const int position; // fixed index, negative too for diagonal iterator
public:
template<typename U, std::size_t ORows, std::size_t OCols, class OIterType, template <typename, std::size_t, std::size_t> class OGrid>
friend class vector_iterator;
vector_iterator(Grid<T, Rows, Cols>& M, int position, std::size_t index = 0);
mm::vector_iterator<T, Rows, Cols, IterType, Grid> operator++()
{
vector_iterator<T, Rows, Cols, IterType, Grid> it = *this;
++index;
return it;
}
mm::vector_iterator<T, Rows, Cols, IterType, Grid> operator--()
{
vector_iterator<T, Rows, Cols, IterType, Grid> it = *this;
--index;
return it;
}
mm::vector_iterator<T, Rows, Cols, IterType, Grid>& operator++(int)
{
++index;
return *this;
}
mm::vector_iterator<T, Rows, Cols, IterType, Grid>& operator--(int)
{
--index;
return *this;
}
bool operator==(const mm::vector_iterator<T, Rows, Cols, IterType, Grid>& other) const
{
return index == other.index;
}
bool operator!=(const mm::vector_iterator<T, Rows, Cols, IterType, Grid>& other) const
{
return index != other.index;
}
bool ok() const
{
if constexpr(IterType == MM_ROW_ITER)
return index < Cols;
else
return index < Rows;
}
T& operator*() const;
T& operator[](std::size_t);
};
/* Row Iterators */
namespace mm {
template<typename T, std::size_t Rows, std::size_t Cols>
using row_iterator = vector_iterator<T, Rows, Cols, MM_ROW_ITER, mm::basic_matrix>;
template<typename T, std::size_t Rows, std::size_t Cols>
using col_iterator = vector_iterator<T, Rows, Cols, MM_COL_ITER, mm::basic_matrix>;
template<typename T, std::size_t Rows, std::size_t Cols>
using const_row_iterator = vector_iterator<T, Rows, Cols, MM_ROW_ITER, const mm::basic_matrix>;
template<typename T, std::size_t Rows, std::size_t Cols>
using const_col_iterator = vector_iterator<T, Rows, Cols, MM_COL_ITER, const mm::basic_matrix>;
template<typename T, std::size_t N>
using diag_iterator = vector_iterator<T, N, N, MM_DIAG_ITER, mm::basic_matrix>;
template<typename T, std::size_t N>
using const_diag_iterator = vector_iterator<T, N, N, MM_DIAG_ITER, const mm::basic_matrix>;
}
/*
* Matrix class
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::basic_matrix {
public:
using type = T;
template<typename U, std::size_t ORows, std::size_t OCols>
friend class mm::basic_matrix;
template<typename U, std::size_t ORows, std::size_t OCols>
friend class mm::vector_iterator;
static constexpr std::size_t rows = Rows;
static constexpr std::size_t cols = Cols;
basic_matrix();
// from initializer_list
basic_matrix(std::initializer_list<std::initializer_list<T>> l);
// copyable and movable
basic_matrix(const basic_matrix<T, Rows, Cols>& other);
basic_matrix(basic_matrix<T, Rows, Cols>&& other);
// copy from another matrix
template<std::size_t ORows, std::size_t OCols>
basic_matrix(const basic_matrix<T, ORows, OCols>& other);
// access data, basic definition
virtual T& at(std::size_t row, std::size_t col);
virtual const T& at(std::size_t row, std::size_t col) const;
// allows to access a matrix M at row j col k with M[j][k]
auto operator[](std::size_t index);
virtual auto row_begin(std::size_t index)
{
return mm::row_iterator<T, Rows, Cols>(*this, static_cast<int>(index));
}
void swap_rows(std::size_t x, std::size_t y);
void swap_cols(std::size_t x, std::size_t y);
// mathematical operations
// TODO, simply switch iteration mode
//virtual basic_matrix<T, Cols, Rows> transposed() const;
//inline basic_matrix<T, Cols, Rows> td() const { return transposed(); }
/// downcast to square matrix
static inline constexpr bool is_square() { return (Rows == Cols); }
inline constexpr square_matrix<T, Rows> to_square() const {
static_assert(is_square());
return static_cast<square_matrix<T, Rows>>(*this);
}
/// downcast to row_vector
static inline constexpr bool is_row_vec() { return (Cols == 1); }
inline constexpr row_vec<T, Rows> to_row_vec() const {
static_assert(is_row_vec());
return static_cast<row_vec<T, Rows>>(*this);
}
/// downcast to col_vector
static inline constexpr bool is_col_vec() { return (Rows == 1); }
inline constexpr col_vec<T, Cols> to_col_vec() const {
static_assert(is_col_vec());
return static_cast<col_vec<T, Cols>>(*this);
}
protected:
template<typename ConstIterator>
basic_matrix(ConstIterator begin, ConstIterator end);
private:
std::array<T, Rows * Cols> data;
};
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix() {
std::fill(data.begin(), data.end(), 0);
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
std::initializer_list<std::initializer_list<T>> l
) {
assert(l.size() == Rows);
auto data_it = data.begin();
for (auto&& row : l) {
data_it = std::copy(row.begin(), row.end(), data_it);
}
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
const mm::basic_matrix<T, Rows, Cols>& other
) : data(other.data) {}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
mm::basic_matrix<T, Rows, Cols>&& other
) : data(std::forward<decltype(other.data)>(other.data)) {}
template<typename T, std::size_t Rows, std::size_t Cols>
template<std::size_t ORows, std::size_t OCols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
const mm::basic_matrix<T, ORows, OCols>& other
) {
static_assert((ORows <= Rows),
"cannot copy a taller matrix into a smaller one"
);
static_assert((OCols <= Cols),
"cannot copy a larger matrix into a smaller one"
);
std::fill(data.begin(), data.end(), 0);
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
this->at(row, col) = other.at(row, col);
}
/* protected construtor */
template<typename T, std::size_t Rows, std::size_t Cols>
template<typename ConstIterator>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(
ConstIterator begin, ConstIterator end
) {
assert(static_cast<unsigned>(std::distance(begin, end)) >= ((Rows * Cols)));
std::copy(begin, end, data.begin());
}
/* member functions */
template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) {
assert(row < Rows); // "out of row bound"
assert(col < Cols); // "out of column bound"
return data[row * Cols + col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
const T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) const {
assert(row < Rows); // "out of row bound"
assert(col < Cols); // "out of column bound"
return data[row * Cols + col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
auto mm::basic_matrix<T, Rows, Cols>::operator[](std::size_t index) {
if constexpr (is_row_vec() || is_col_vec()) {
return data.at(index);
} else {
return row_begin(index);
/*return row_vec<T, Rows>(
data.cbegin() + (index * Cols),
data.cbegin() + ((index + 1) * Cols) + 1
);*/
}
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_rows(std::size_t x, std::size_t y) {
if (x == y)
return;
for (unsigned col = 0; col < Cols; col++)
std::swap(this->at(x, col), this->at(y, col));
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_cols(std::size_t x, std::size_t y) {
if (x == y)
return;
for (unsigned row = 0; row < rows; row++)
std::swap(this->at(row, x), this->at(row, y));
}
/*template<typename T, std::size_t M, std::size_t N>
mm::basic_matrix<T, N, M> mm::basic_matrix<T, M, N>::transposed() const {
mm::basic_matrix<T, N, M> result;
for (unsigned row = 0; row < M; row++)
for (unsigned col = 0; col < N; col++)
result.at(col, row) = this->at(row, col);
return result;
}*/
/* operator overloading */
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator+(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
mm::basic_matrix<T, Rows, Cols> result;
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
result.at(row, col) = a.at(row, col) + b.at(row, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const mm::basic_matrix<T, Rows, Cols>& m,
const T& scalar
) {
mm::basic_matrix<T, Rows, Cols> result;
for (unsigned row = 0; row < Rows; row++)
for (unsigned col = 0; col < Cols; col++)
result.at(row, col) = m.at(row, col) * scalar;
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const T& scalar,
const mm::basic_matrix<T, Rows, Cols>& m
) {
return m * scalar;
}
template<typename T, std::size_t M, std::size_t P1, std::size_t P2, std::size_t N>
mm::basic_matrix<T, M, N> operator*(
const mm::basic_matrix<T, M, P1>& a,
const mm::basic_matrix<T, P2, N>& b
) {
static_assert(P1 == P2, "invalid matrix multiplication");
mm::basic_matrix<T, M, N> result;
// TODO: use a more efficient algorithm
for (unsigned row = 0; row < M; row++)
for (unsigned col = 0; col < N; col++)
for (unsigned k = 0; k < P1; k++)
result.at(row, col) = a.at(row, k) * b.at(k, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator-(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
return a + (static_cast<T>(-1) * b);
}
template<typename T, std::size_t Rows, std::size_t Cols, unsigned NumW = 3>
std::ostream& operator<<(std::ostream& os, const mm::basic_matrix<T, Rows, Cols>& m) {
for (unsigned row = 0; row < Rows; row++) {
os << "[ ";
for (unsigned col = 0; col < (Cols -1); col++) {
os << std::setw(NumW) << m.at(row, col) << ", ";
}
os << std::setw(NumW) << m.at(row, (Cols -1)) << " ]\n";
}
return os;
}
/*
* derivated classes
*/
/* row vector specialization */
template<typename T, std::size_t Rows>
class mm::row_vec : public mm::basic_matrix<T, Rows, 1> {
public:
using mm::basic_matrix<T, Rows, 1>::basic_matrix;
};
/* column vector specialization */
template<typename T, std::size_t Cols>
class mm::col_vec : public mm::basic_matrix<T, 1, Cols> {
public:
using mm::basic_matrix<T, 1, Cols>::basic_matrix;
};
/* general specialization (alias) */
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::matrix : public mm::basic_matrix<T, Rows, Cols> {
public:
using mm::basic_matrix<T, Rows, Cols>::basic_matrix;
};
/*
* transposed matrix format
*/
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::transposed_matrix : public mm::basic_matrix<T, Rows, Cols>
{
public:
using mm::basic_matrix<T, Rows, Cols>::basic_matrix;
virtual T& at(std::size_t row, std::size_t col) override
{
return mm::basic_matrix<T, Rows, Cols>::at(col, row);
}
virtual const T& at(std::size_t row, std::size_t col) const override
{
return mm::basic_matrix<T, Rows, Cols>::at(col, row);
}
// allows to access a matrix M at row j col k with M[j][k]
virtual auto row_begin(std::size_t index) override
{
return mm::col_iterator<T, Rows, Cols>(*this, static_cast<int>(index));
}
};
/* square matrix specialization */
template<typename T, std::size_t N>
class mm::square_matrix : public mm::basic_matrix<T, N, N> {
public:
using mm::basic_matrix<T, N, N>::basic_matrix;
/// in place transpose
//void transpose();
//inline void t() { transpose(); }
T trace();
inline T tr() { return trace(); }
/// in place inverse
// TODO, det != 0
// TODO, use gauss jordan for invertible ones
void invert();
// TODO, downcast to K-diagonal, user defined cast
/*template<int K>
operator mm::diagonal_matrix<T, N, K>() const
{
// it's always possible to do it bidirectionally,
// without loosing information
return reinterpret_cast<mm::diagonal_matrix<T, N, K>>(*this);
}*/
// get the identity of size N
static inline constexpr square_matrix<T, N> identity() {
square_matrix<T, N> i;
for (unsigned row = 0; row < N; row++)
for (unsigned col = 0; col < N; col++)
i.at(row, col) = (row == col) ? 1 : 0;
return i;
}
};
/*
* K-diagonal square matrix format
* K is bounded between ]-N, N[
*/
template<typename T, std::size_t N, int K>
class mm::diagonal_matrix : public mm::square_matrix<T, N>
{
public:
using mm::square_matrix<T, N>::square_matrix;
// TODO, redefine at, operator[]
// TODO, matrix multiplication
};
/*template<typename T, std::size_t N>
void mm::square_matrix<T, N>::transpose() {
for (unsigned row = 0; row < N; row++)
for (unsigned col = 0; col < row; col++)
std::swap(this->at(row, col), this->at(col, row));
}*/
template<typename T, std::size_t N>
T mm::square_matrix<T, N>::trace() {
T sum = 0;
for (mm::diag_iterator<T, N> it(*this, 0); it.ok(); ++it)
sum += *it;
return sum;
}
/* Iterators implementation */
template<typename T, std::size_t Rows, std::size_t Cols, int IterType, template <typename, std::size_t, std::size_t> class Grid>
mm::vector_iterator<T, Rows, Cols, IterType, Grid>::vector_iterator(Grid<T, Rows, Cols>& _M, int pos, std::size_t i)
: index(i), M(_M), position(pos)
{
if constexpr (IterType == MM_ROW_ITER) {
assert(pos < Cols);
} else if constexpr (IterType == MM_COL_ITER) {
assert(pos < Rows);
} else if constexpr (IterType == MM_DIAG_ITER) {
assert(abs(pos) < Rows);
}
}
template<typename T, std::size_t Rows, std::size_t Cols, int IterType, template <typename, std::size_t, std::size_t> class Grid>
T& mm::vector_iterator<T, Rows, Cols, IterType, Grid>::operator*() const
{
if constexpr (IterType == MM_ROW_ITER)
return M.data[position * Cols + index];
else if constexpr (IterType == MM_COL_ITER)
return M.data[index * Cols + position];
else if constexpr (IterType == MM_DIAG_ITER)
return (k > 0) ?
M.data[(index + position) * Cols + index] :
M.data[index * Cols + (index - position)];
}
template<typename T, std::size_t Rows, std::size_t Cols, int IterType, template <typename, std::size_t, std::size_t> class Grid>
T& mm::vector_iterator<T, Rows, Cols, IterType, Grid>::operator[](std::size_t i)
{
if constexpr (IterType == MM_ROW_ITER)
return M.data[position * Cols + i];
else if constexpr (IterType == MM_COL_ITER)
return M.data[i * Cols + position];
else if constexpr (IterType == MM_DIAG_ITER)
return (k > 0) ?
M.data[(i + position) * Cols + i] :
M.data[i * Cols + (i - position)];
}
|