summaryrefslogtreecommitdiffstats
path: root/Submission files/cprnd.m
diff options
context:
space:
mode:
authorYuan Xu <yuanxu@student.ethz.ch>2023-05-24 17:35:46 +0200
committerYuan Xu <yuanxu@student.ethz.ch>2023-05-24 17:35:46 +0200
commita23ba49056a36aff221d0c23e228b981222c3576 (patch)
tree742c18cbe13c1603909b55ee82188ce6360e8fa0 /Submission files/cprnd.m
parentADD: declaration of originality (diff)
downloadmpc_pe-a23ba49056a36aff221d0c23e228b981222c3576.tar.gz
mpc_pe-a23ba49056a36aff221d0c23e228b981222c3576.zip
add submission zipsubmission
Diffstat (limited to 'Submission files/cprnd.m')
-rw-r--r--Submission files/cprnd.m296
1 files changed, 296 insertions, 0 deletions
diff --git a/Submission files/cprnd.m b/Submission files/cprnd.m
new file mode 100644
index 0000000..4183ac3
--- /dev/null
+++ b/Submission files/cprnd.m
@@ -0,0 +1,296 @@
+function [X S] = cprnd(N,A,b,options)
+%CPRND Draw from the uniform distribution over a convex polytope.
+% X = cprnd(N,A,b) Returns an N-by-P matrix of random vectors drawn
+% from the uniform distribution over the interior of the polytope
+% defined by Ax <= b. A is a M-by-P matrix of constraint equation
+% coefficients. b is a M-by-1 vector of constraint equation
+% constants.
+%
+% cprnd(N,A,b,options) allows various options to be specified.
+
+% 'method' Specifies the algorithm. One of the strings 'gibbs',
+% 'hitandrun' (the default), and 'achr'. The default
+% algorithm 'hitandrun' is a vanilla hit-and-run sampler
+% [1]. 'gibbs' specifies a Gibbs sampler, 'achr' is the
+% Adaptive Centering Hit-and-Run algorithm of [2].
+%
+% 'x0' Vector x0 is a starting point which should be interior
+% to the polytope. If x0 is not supplied CPRND uses the
+% Chebyshev center as the initial point.
+%
+% 'isotropic' Perform an adaptive istropic transformation of the
+% polytope. The values 0, 1 and 2 respectively turn
+% off the transformation, construct it during a runup
+% period only, or continuously update the
+% tranformation throughout sample production. The
+% transformation makes sense only for the Gibbs and
+% Hit-and-run samplers (ACHR is invariant under
+% linear transformations).
+%
+% 'discard' Number of initial samples (post-runup) to discard.
+%
+% 'runup' When the method is gibbs or hitandrun and the
+% isotropic transformation is used, this is the
+% number of initial iterations of the algorithm in
+% the untransformed space. That is a sample of size
+% runup is generated and its covariance used as the
+% basis of a transformation.
+% When the method is achr runup is the number of
+% conventional hitandrun iterations. See [2].
+%
+% 'ortho' Zero/one flag. If turned on direction vectors for
+% the hitandrun algorithm are generated in random
+% orthonormal blocks rather than one by
+% one. Experimental and of dubious utility.
+%
+% 'quasi' Allows the user to specify a quasirandom number generator
+% (such as 'halton' or 'sobol'). Experimental and of
+% dubious utility.
+%
+%
+
+% By default CPRND employs the hit-and-run sampler which may
+% exhibit marked serial correlation and very long convergence times.
+%
+% References
+% [1] Kroese, D.P. and Taimre, T. and Botev, Z.I., "Handbook of Monte
+% Carlo Methods" (2011), pp. 240-244.
+% [2] Kaufman, David E. and Smith, Robert L., "Direction Choice for
+% Accelerated Convergence in Hit-and-Run Sampling", Op. Res. 46,
+% pp. 84-95.
+%
+% Copyright (c) 2011-2012 Tim J. Benham, School of Mathematics and Physics,
+% University of Queensland.
+
+ function y = stdize(z)
+ y = z/norm(z);
+ end
+
+ p = size(A,2); % dimension
+ m = size(A,1); % num constraint ineqs
+ x0 = [];
+ runup = []; % runup necessary to method
+ discard = []; % num initial pts discarded
+ quasi = 0;
+ method = 'achr';
+ orthogonal = 0;
+ isotropic = [];
+
+ % gendir generates a random unit (direction) vector.
+ gendir = @() stdize(randn(p,1));
+
+ % Alternative function ogendir forces directions to come in
+ % orthogonal bunches.
+ Ucache = {};
+ function u = ogendir()
+ if length(Ucache) == 0
+ u = stdize(randn(p,1));
+ m = null(u'); % orthonormal basis for nullspace
+ Ucache = mat2cell(m',ones(1,p-1));
+ else
+ u = Ucache{end}';
+ Ucache(end) = [];
+ end
+ end
+
+ % Check input arguments
+
+ if m < p+1
+ % obv a prob here
+ error('cprnd:obvprob',['At least ',num2str(p+1),' inequalities ' ...
+ 'required']);
+ end
+
+ if nargin == 4
+ if isstruct(options)
+
+ if isfield(options,'method')
+ method = lower(options.method);
+ switch method
+ case 'gibbs'
+ case 'hitandrun'
+ case 'achr'
+ otherwise
+ error('cprnd:badopt',...
+ ['The method option takes only the ' ...
+ 'values "gibbs", "hitandrun", and "ACHR".']);
+ end
+ end
+
+ if isfield(options,'isotropic')
+ % Controls application of isotropic transformation,
+ % which seems to help a lot.
+ isotropic = options.isotropic;
+ end
+
+ if isfield(options,'discard')
+ % num. of samples to discard
+ discard = options.discard;
+ end
+
+ if isfield(options,'quasi')
+ % Use quasi random numbers, which doesn't seem to
+ % help much.
+ quasi = options.quasi;
+ if quasi && ~ischar(quasi), quasi='halton'; end
+ if ~strcmp(quasi,'none')
+ qstr = qrandstream(quasi,p,'Skip',1);
+ gendir = @() stdize(norminv(qrand(qstr,1),0,1)');
+ end
+ end
+
+ if isfield(options,'x0')
+ % initial interior point
+ x0 = options.x0;
+ end
+
+ if isfield(options,'runup')
+ % number of points to generate before first output point
+ runup = options.runup;
+ end
+
+ if isfield(options,'ortho')
+ % Generate direction vectors in orthogonal
+ % groups. Seems to help a little.
+ orthogonal = options.ortho;
+ end
+
+ else
+ x0 = options; % legacy support
+ end
+ end
+
+ % Default and apply options
+
+ if isempty(isotropic)
+ if ~strcmp(method,'achr')
+ isotropic = 2;
+ else
+ isotropic = 0;
+ end
+ end
+
+ if orthogonal
+ gendir = @() ogendir();
+ end
+
+ % Choose a starting point x0 if user did not provide one.
+ if isempty(x0)
+ x0 = chebycenter(A,b); % prob. if p==1?
+ end
+
+ % Default the runup to something arbitrary.
+ if isempty(runup)
+ if strcmp(method,'achr')
+ runup = 10*(p+1);
+ elseif isotropic > 0
+ runup = 10*p*(p+1);
+ else
+ runup = 0;
+ end
+ end
+
+ % Default the discard to something arbitrary
+ if isempty(discard)
+ if strcmp(method,'achr')
+ discard = 25*(p+1);
+ else
+ discard = runup;
+ end
+ end
+
+ X = zeros(N+runup+discard,p);
+
+ n = 0; % num generated so far
+ x = x0;
+
+ % Initialize variables for keeping track of sample mean, covariance
+ % and isotropic transform.
+ M = zeros(p,1); % Incremental mean.
+ S2 = zeros(p,p); % Incremental sum of
+ % outer prodcts.
+ S = eye(p); T = eye(p); W = A;
+
+ while n < N+runup+discard
+ y = x;
+
+ % compute approximate stochastic transformation
+ if isotropic>0
+ if n == runup || (isotropic > 1 && n > runup)
+ T = chol(S,'lower');
+ W = A*T;
+ end
+ y = T\y;
+ end
+
+ switch method
+
+ case 'gibbs'
+ % choose p new components
+ for i = 1:p
+ % Find points where the line with the (p-1) components x_i
+ % fixed intersects the bounding polytope.
+ e = circshift(eye(p,1),i-1);
+ z = W*e;
+ c = (b - W*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % choose a point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*e;
+ end
+
+ case 'hitandrun'
+ % choose a direction
+ u = gendir();
+ % determine intersections of x + ut with the polytope
+ z = W*u;
+ c = (b - W*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % choose a point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*u;
+
+ case 'achr'
+ % test whether in runup or not
+ if n < runup
+ % same as hitandrun
+ u = gendir();
+ else
+ % choose a previous point at random
+ v = X(randi(n),:)';
+ % line sampling direction is from v to sample mean
+ u = (v-M)/norm(v-M);
+ end
+ % proceed as in hit and run
+ z = A*u;
+ c = (b - A*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % Choose a random point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*u;
+ end
+
+ if isotropic>0
+ x = T*y;
+ else
+ x = y;
+ end
+
+ X(n+1,:)=x';
+ n = n + 1;
+
+ % Incremental mean and covariance updates
+ delta0 = x - M; % delta new point wrt old mean
+ M = M + delta0/n; % sample mean
+ delta1 = x - M; % delta new point wrt new mean
+ if n > 1
+ S2 = S2 + (n-1)/(n*n)*delta0*delta0'...
+ + delta1*delta1';
+ S0 = S;
+ S = S2/(n-1); % sample covariance
+ else
+ S = eye(p);
+ end
+
+ end
+
+ X = X((discard+runup+1):(N+discard+runup),:);
+
+end