summaryrefslogtreecommitdiffstats
path: root/uav_sim_step_lqr.m
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-04-13 02:23:11 +0200
committerNao Pross <np@0hm.ch>2024-04-13 02:23:11 +0200
commit8db5083a8cfe1b9e322e7433d99919cbe4e4f9da (patch)
tree3a6b3c8b6d75518cac35378844bf4f5cc2b520ed /uav_sim_step_lqr.m
parentReplace LQR with H-infinity design (diff)
downloaduav-8db5083a8cfe1b9e322e7433d99919cbe4e4f9da.tar.gz
uav-8db5083a8cfe1b9e322e7433d99919cbe4e4f9da.zip
Improve H-infinity, system parameters, add simulations and plots
Diffstat (limited to '')
-rw-r--r--uav_sim_step_lqr.m211
1 files changed, 211 insertions, 0 deletions
diff --git a/uav_sim_step_lqr.m b/uav_sim_step_lqr.m
new file mode 100644
index 0000000..e672d35
--- /dev/null
+++ b/uav_sim_step_lqr.m
@@ -0,0 +1,211 @@
+% Simulate a step responses of ducted-fan VTOL micro-UAV.
+%
+% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
+% This work is distributed under a permissive license, see LICENSE.txt
+
+function [simout] = uav_sim_step_lqr(params, model, ctrl, nsamp, do_plots)
+
+% TODO: Close loop
+
+% Create step inputs (normalized)
+noise = zeros(7, nsamp); % no noise
+ref_step = ones(1, nsamp); % 1d step function
+
+in_step_x = [ noise; ref_step; zeros(2, nsamp) ];
+in_step_y = [ noise; zeros(1, nsamp); ref_step; zeros(1, nsamp) ];
+in_step_z = [ noise; zeros(2, nsamp); ref_step ];
+
+% Simulation time
+n_settle_times = 10;
+T_final_horiz = n_settle_times * params.performance.HorizontalSettleTime;
+T_final_vert = n_settle_times * params.performance.VerticalSettleTime;
+
+t_xy = linspace(0, T_final_horiz, nsamp);
+t_z = linspace(0, T_final_vert, nsamp);
+
+% Simulate step responses
+out_step_x = lsim(P_nom_clp, in_step_x, t_xy);
+out_step_y = lsim(P_nom_clp, in_step_y, t_xy);
+out_step_z = lsim(P_nom_clp, in_step_z, t_z);
+
+if do_plots
+ % Conversion factors
+ to_deg = 180 / pi; % radians to degrees
+ to_rpm = pi / 30; % rad / s to RPM
+
+ % Figure for flaps and Euler angles
+ figure;
+ sgtitle(sprintf(...
+ '\\bfseries Step Response of Flap and Euler Angles (%s)', ...
+ ctrl.Name), 'Interpreter', 'latex');
+
+ % Plot limits
+ ref_value = params.performance.ReferencePosMaxDistance;
+ alpha_max_deg = params.actuators.ServoAbsMaxAngle * to_deg;
+ euler_lim_deg = 1.5; % params.performance.AngleMaxPitchRoll * to_deg;
+ omega_max_rpm = (params.actuators.PropellerMaxAngularVelocity ...
+ - params.linearization.Inputs(5)) * to_rpm;
+ omega_min_rpm = -params.linearization.Inputs(5) * to_rpm;
+
+ % Plot step response from x to alpha
+ subplot(2, 3, 1);
+ hold on;
+ plot(t_xy, out_step_x(:, Ialpha(1)) * to_deg);
+ plot(t_xy, out_step_x(:, Ialpha(2)) * to_deg);
+ plot(t_xy, out_step_x(:, Ialpha(3)) * to_deg);
+ plot(t_xy, out_step_x(:, Ialpha(4)) * to_deg);
+ plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
+ plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
+ grid on;
+ xlim([0, T_final_horiz]);
+ ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
+ title('Horizontal $x$ to Flaps', 'Interpreter', 'latex');
+ ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from y to alpha
+ subplot(2, 3, 2); hold on;
+ plot(t_xy, out_step_y(:, Ialpha(1)) * to_deg);
+ plot(t_xy, out_step_y(:, Ialpha(2)) * to_deg);
+ plot(t_xy, out_step_y(:, Ialpha(3)) * to_deg);
+ plot(t_xy, out_step_y(:, Ialpha(4)) * to_deg);
+ plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
+ plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
+ grid on;
+ xlim([0, T_final_horiz]);
+ ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
+ title('Horizontal $y$ to Flaps', 'Interpreter', 'latex');
+ ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from z to alpha
+ subplot(2, 3, 3); hold on;
+ plot(t_z, out_step_z(:, Ialpha(1)) * to_deg);
+ plot(t_z, out_step_z(:, Ialpha(2)) * to_deg);
+ plot(t_z, out_step_z(:, Ialpha(3)) * to_deg);
+ plot(t_z, out_step_z(:, Ialpha(4)) * to_deg);
+ plot([0, T_final_vert], [1, 1] * alpha_max_deg, 'r--');
+ plot([0, T_final_vert], [-1, -1] * alpha_max_deg, 'r--');
+ grid on;
+ xlim([0, T_final_vert]);
+ ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
+ title('Vertical $z$ to Flaps', 'Interpreter', 'latex');
+ ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from x to Theta
+ subplot(2, 3, 4); hold on;
+ plot(t_xy, out_step_x(:, ITheta(1)) * to_deg);
+ plot(t_xy, out_step_x(:, ITheta(2)) * to_deg);
+ plot(t_xy, out_step_x(:, ITheta(3)) * to_deg);
+ grid on;
+ xlim([0, T_final_horiz]);
+ ylim([-euler_lim_deg, euler_lim_deg]);
+ title('Horizontal $x$ to Euler Angles', 'Interpreter', 'latex');
+ ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from y to Theta
+ subplot(2, 3, 5); hold on;
+ plot(t_xy, out_step_y(:, ITheta(1)) * to_deg);
+ plot(t_xy, out_step_y(:, ITheta(2)) * to_deg);
+ plot(t_xy, out_step_y(:, ITheta(3)) * to_deg);
+ grid on;
+ xlim([0, T_final_horiz]);
+ ylim([-euler_lim_deg, euler_lim_deg]);
+ title('Horizontal $y$ to Euler Angles', 'Interpreter', 'latex');
+ ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from z to Theta
+ subplot(2, 3, 6); hold on;
+ plot(t_z, out_step_z(:, ITheta(1)) * to_deg);
+ plot(t_z, out_step_z(:, ITheta(2)) * to_deg);
+ plot(t_z, out_step_z(:, ITheta(3)) * to_deg);
+ grid on;
+ xlim([0, T_final_vert]);
+ ylim([-euler_lim_deg, euler_lim_deg]);
+ title('Vertical $z$ to Euler Angles', 'Interpreter', 'latex');
+ ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
+ 'Interpreter', 'latex');
+
+ % Plot step response from z to omega
+ figure;
+ sgtitle(sprintf(...
+ '\\bfseries Step Response to Propeller (%s)', ...
+ ctrl.Name), 'Interpreter', 'latex');
+
+ hold on;
+ step(P_nom_clp(Iomega, Ir(3)) * to_rpm, T_final_vert);
+ plot([0, T_final_vert], [1, 1] * omega_min_rpm, 'r--');
+ plot([0, T_final_vert], [1, 1] * omega_max_rpm, 'r--');
+ grid on;
+ ylim([omega_min_rpm - 1, omega_max_rpm + 1]);
+ title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex');
+ ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\omega(t)$', 'Interpreter', 'latex');
+
+ % Figure for position and velocity
+ figure;
+ sgtitle(sprintf(...
+ '\\bfseries Step Response of Position and Speed (%s)', ...
+ ctrl.Name), 'Interpreter', 'latex');
+
+ % Plot step response from horizontal reference to horizontal position
+ subplot(2, 2, 1); hold on;
+ plot(t_xy, out_step_x(:, IP(1)));
+ plot(t_xy, out_step_y(:, IP(2)));
+ % plot([0, T_final_horiz], [1, 1] * ref_value, 'r:');
+ % plot(t_xy, out_step_xydes, 'r--');
+ grid on;
+ title('Horizontal Position Error', 'Interpreter', 'latex');
+ ylabel('Error (meters)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$x(t)$', '$y(t)$', 'Interpreter', 'latex');
+
+ % Plot step response horizontal reference to horizontal speed
+ subplot(2, 2, 2); hold on;
+ plot(t_xy, out_step_x(:, IPdot(1)));
+ plot(t_xy, out_step_y(:, IPdot(2)));
+ grid on;
+ title('Horizontal Velocity', 'Interpreter', 'latex');
+ ylabel('Velocity (m / s)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\dot{x}(t)$', '$\dot{y}(t)$', 'Interpreter', 'latex');
+
+ % Plot step response from vertical reference to vertical position
+ subplot(2, 2, 3); hold on;
+ plot(t_z, out_step_z(:, IP(3)));
+ % plot([0, T_final_vert], [1, 1] * ref_value, 'r:');
+ % plot(t_z, out_step_zdes, 'r--');
+ grid on;
+ title('Vertical Position Error', 'Interpreter', 'latex');
+ ylabel('Error (meters)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$z(t)$', 'Interpreter', 'latex');
+
+ % Plot step response vertical reference to vertical speed
+ subplot(2, 2, 4); hold on;
+ plot(t_z, out_step_z(:, IPdot(3)));
+ grid on;
+ title('Vertical Velocity', 'Interpreter', 'latex');
+ ylabel('Velocity (m / s)', 'Interpreter', 'latex');
+ xlabel('Time (seconds)', 'Interpreter', 'latex');
+ legend('$\dot{z}(t)$', 'Interpreter', 'latex');
+end
+
+end
+% vim:ts=2 sw=2 et: