summaryrefslogtreecommitdiffstats
path: root/uav_model.m
diff options
context:
space:
mode:
Diffstat (limited to 'uav_model.m')
-rw-r--r--uav_model.m147
1 files changed, 122 insertions, 25 deletions
diff --git a/uav_model.m b/uav_model.m
index 1f8f751..fda2745 100644
--- a/uav_model.m
+++ b/uav_model.m
@@ -9,7 +9,8 @@
% principles (equations of motion).
%
% * A linear model obtained by linearizing the the non linear plant model at
-% an operating point specified in the params struct argument.
+% an operating point specified in the params struct argument. And adding
+% models for the actuators.
%
% * A uncertain linear model with reference trcking built atop of the linear
% model using SIMULINK. The uncertain model contains the performance and
@@ -219,9 +220,22 @@ B = double(vpa(B));
C = eye(size(A));
D = zeros(12, 5);
-% Number of states, inputs and outputs
-[nx, nu] = size(B);
-[ny, ~] = size(C);
+% ------------------------------------------------------------------------
+% Model actuators
+
+% TODO: better model?
+w = params.actuators.ServoNominalAngularVelocity;
+zeta = 1;
+G_servo = tf(w^2, [1, 2 * zeta * w, w^2]);
+
+w = 60;
+zeta = 1;
+G_prop = tf(w^2, [1, 2 * zeta * w, w^2]);
+
+model.actuators = struct( ...
+ 'FlapServo', G_servo, ...
+ 'ThrustPropeller', G_prop, ...
+ 'StateSpace', blkdiag(eye(4) * G_servo, G_prop));
% ------------------------------------------------------------------------
% Scale inputs and outputs of linearized model
@@ -247,21 +261,31 @@ D = D * inv(S_actuators);
% Create state space object
T = params.measurements.SensorFusionDelay;
n = params.linearization.PadeApproxOrder;
-sys = minreal(pade(ss(A, B, C, D, 'OutputDelay', T), n), [], false); % slient
+sys = pade(ss(A, B, C, D, 'OutputDelay', T), n);
+
+% Add actuators
+sys = sys * model.actuators.StateSpace;
+
+% Remove unnecessary states
+sys = minreal(sys, [], false); % slient
+
+% Number of states, inputs and outputs
+[nx, nu] = size(sys.B);
+[ny, ~] = size(sys.C);
% Save linearized dynamics (numerical)
model.linear = struct(...
'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
'State', xi, 'Inputs', u, ... % state and input variables
'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
- 'StateSpace', sys, ... % state space object
+ 'StateSpace', sys, ... % state space objec
'InputScalingMatrix', S_actuators, 'OutputScalingMatrix', S_state ...
);
% ------------------------------------------------------------------------
% Check properties of linearized model
-eigvals = eig(A);
+eigvals = eig(sys.A);
% Check system controllability / stabilizability
Wc = ctrb(sys);
@@ -274,7 +298,7 @@ if rank(Wc) < nx
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
- W = [(A - eigvals(i) * eye(size(A))), B];
+ W = [(sys.A - eigvals(i) * eye(nx)), sys.B];
if rank(W) < nx
% fprintf(' State %d is not stabilizable\n', i);
unstabilizable = unstabilizable + 1;
@@ -299,7 +323,7 @@ if rank(Wo) < nx
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
- W = [C; (A - eigvals(i) * eye(size(A)))];
+ W = [sys.C; (sys.A - eigvals(i) * eye(nx))];
if rank(W) < nx
undetectable = undetectable + 1;
end
@@ -313,31 +337,37 @@ if rank(Wo) < nx
end
end
-% ------------------------------------------------------------------------
-% Compute absolute value of error caused by linearization around set point
+stable = 0;
+unstable = 0;
+for i = 1:nx
+ if real(eigvals(i)) < 0
+ stable = stable + 1;
+ else
+ unstable = unstable + 1;
+ end
+end
+fprintf(' - Linearized system has %d states:\n', nx);
+fprintf(' %d controllable modes, %d observable modes.\n', rank(Wc), rank(Wo));
+fprintf(' %d stable modes, %d unstable modes.\n', stable, unstable);
-% ------------------------------------------------------------------------
-% Model actuators
-
-% TODO: better model, this was tuned "by looking"
-w = 2 * params.actuators.ServoNominalAngularVelocity;
-zeta = .7;
-G_servo = tf(w^2, [1, 2 * zeta * w, w^2]);
+if rank(Wc) < 12
+ error('Uncertain model has less than 12 controllable modes');
+end
-w = 6e3;
-zeta = 1;
-G_prop = tf(w^2, [1, 2 * zeta * w, w^2]);
+% ------------------------------------------------------------------------
+% Compute absolute value of error caused by linearization around set point
-model.actuators = struct('FlapServo', G_servo, 'ThrustPropeller', G_prop);
+% TODO
% ------------------------------------------------------------------------
% Add uncertainties using SIMULINK model
% Load simulink model with uncertainties and pass in parameters
h = load_system('uav_model_uncertain');
-hws = get_param('uav_model_uncertain', 'modelworkspace');
+set_param('uav_model_uncertain', SimulationMode='Normal');
+hws = get_param('uav_model_uncertain', 'modelworkspace');
hws.assignin('params', params);
hws.assignin('model', model);
hws.assignin('perf', perf);
@@ -375,8 +405,8 @@ S_uncert_out = blkdiag(...
S_state(1:9, 1:9));
% Save uncertain model
-model.uncertain = struct(...
- 'Simulink', ulmod, ...
+model.uncertain = struct(...
+ ... % 'Simulink', ulmod, ...
'BlockStructure', blk_stab, ...
'BlockStructurePerf', blk_perf, ...
'StateSpace', usys ...
@@ -425,6 +455,73 @@ model.uncertain.Ny = max(size(idx.OutputNominal));
% ------------------------------------------------------------------------
% Check properties of uncertain model
+eigvals = eig(usys.A);
+nx = size(usys.A, 1);
+
+% Check system controllability / stabilizability
+Wc = ctrb(usys);
+if rank(Wc) < nx
+ fprintf(' - Uncertain system has %d uncontrollable states!\n', ...
+ (nx - rank(Wc)));
+
+ % Is the system at least stabilizable?
+ unstabilizable = 0;
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [(usys.A - eigvals(i) * eye(nx)), usys.B];
+ if rank(W) < nx
+ % fprintf(' State %d is not stabilizable\n', i);
+ unstabilizable = unstabilizable + 1;
+ end
+ end
+ end
+ if unstabilizable > 0
+ fprintf(' - Uncertain system has %d unstabilizable modes!\n', ...
+ unstabilizable);
+ else
+ fprintf(' However, it is stabilizable.\n');
+ end
+end
+
+% Check system observability / detectability
+Wo = obsv(usys);
+if rank(Wo) < nx
+ fprintf(' - Uncertain system has %d unobservable states!\n', ...
+ (nx - rank(Wo)));
+ % is the system at least detectable?
+ undetectable = 0;
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [usys.C; (usys.A - eigvals(i) * eye(nx))];
+ if rank(W) < nx
+ undetectable = undetectable + 1;
+ end
+ end
+ end
+ if undetectable > 0
+ fprintf(' - Uncertain system has %d undetectable modes!\n', ...
+ undetectable);
+ else
+ fprintf(' However, it is detectable.\n')
+ end
+end
+
+stable = 0;
+unstable = 0;
+for i = 1:nx
+ if real(eigvals(i)) < 0
+ stable = stable + 1;
+ else
+ unstable = unstable + 1;
+ end
+end
+
+fprintf(' - Uncertain system has %d states:\n', nx);
+fprintf(' %d controllable modes, %d observable modes.\n', rank(Wc), rank(Wo));
+fprintf(' %d stable modes, %d unstable modes.\n', stable, unstable);
+
% % Check that (A, B_u, C_y) is stabilizable and detectable
% A = model.uncertain.StateSpace(...
% model.uncertain.index.OutputUncertain, ...