diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/Eigen/src/PaStiXSupport | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/Eigen/src/PaStiXSupport')
-rw-r--r-- | src/Eigen/src/PaStiXSupport/PaStiXSupport.h | 678 |
1 files changed, 678 insertions, 0 deletions
diff --git a/src/Eigen/src/PaStiXSupport/PaStiXSupport.h b/src/Eigen/src/PaStiXSupport/PaStiXSupport.h new file mode 100644 index 0000000..3742687 --- /dev/null +++ b/src/Eigen/src/PaStiXSupport/PaStiXSupport.h @@ -0,0 +1,678 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PASTIXSUPPORT_H +#define EIGEN_PASTIXSUPPORT_H + +namespace Eigen { + +#if defined(DCOMPLEX) + #define PASTIX_COMPLEX COMPLEX + #define PASTIX_DCOMPLEX DCOMPLEX +#else + #define PASTIX_COMPLEX std::complex<float> + #define PASTIX_DCOMPLEX std::complex<double> +#endif + +/** \ingroup PaStiXSupport_Module + * \brief Interface to the PaStix solver + * + * This class is used to solve the linear systems A.X = B via the PaStix library. + * The matrix can be either real or complex, symmetric or not. + * + * \sa TutorialSparseDirectSolvers + */ +template<typename _MatrixType, bool IsStrSym = false> class PastixLU; +template<typename _MatrixType, int Options> class PastixLLT; +template<typename _MatrixType, int Options> class PastixLDLT; + +namespace internal +{ + + template<class Pastix> struct pastix_traits; + + template<typename _MatrixType> + struct pastix_traits< PastixLU<_MatrixType> > + { + typedef _MatrixType MatrixType; + typedef typename _MatrixType::Scalar Scalar; + typedef typename _MatrixType::RealScalar RealScalar; + typedef typename _MatrixType::StorageIndex StorageIndex; + }; + + template<typename _MatrixType, int Options> + struct pastix_traits< PastixLLT<_MatrixType,Options> > + { + typedef _MatrixType MatrixType; + typedef typename _MatrixType::Scalar Scalar; + typedef typename _MatrixType::RealScalar RealScalar; + typedef typename _MatrixType::StorageIndex StorageIndex; + }; + + template<typename _MatrixType, int Options> + struct pastix_traits< PastixLDLT<_MatrixType,Options> > + { + typedef _MatrixType MatrixType; + typedef typename _MatrixType::Scalar Scalar; + typedef typename _MatrixType::RealScalar RealScalar; + typedef typename _MatrixType::StorageIndex StorageIndex; + }; + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm); + } + + inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm) + { + if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } + if (nbrhs == 0) {x = NULL; nbrhs=1;} + z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm); + } + + // Convert the matrix to Fortran-style Numbering + template <typename MatrixType> + void c_to_fortran_numbering (MatrixType& mat) + { + if ( !(mat.outerIndexPtr()[0]) ) + { + int i; + for(i = 0; i <= mat.rows(); ++i) + ++mat.outerIndexPtr()[i]; + for(i = 0; i < mat.nonZeros(); ++i) + ++mat.innerIndexPtr()[i]; + } + } + + // Convert to C-style Numbering + template <typename MatrixType> + void fortran_to_c_numbering (MatrixType& mat) + { + // Check the Numbering + if ( mat.outerIndexPtr()[0] == 1 ) + { // Convert to C-style numbering + int i; + for(i = 0; i <= mat.rows(); ++i) + --mat.outerIndexPtr()[i]; + for(i = 0; i < mat.nonZeros(); ++i) + --mat.innerIndexPtr()[i]; + } + } +} + +// This is the base class to interface with PaStiX functions. +// Users should not used this class directly. +template <class Derived> +class PastixBase : public SparseSolverBase<Derived> +{ + protected: + typedef SparseSolverBase<Derived> Base; + using Base::derived; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + + typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType; + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix<Scalar,Dynamic,1> Vector; + typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix; + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + + PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) + { + init(); + } + + ~PastixBase() + { + clean(); + } + + template<typename Rhs,typename Dest> + bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const; + + /** Returns a reference to the integer vector IPARM of PaStiX parameters + * to modify the default parameters. + * The statistics related to the different phases of factorization and solve are saved here as well + * \sa analyzePattern() factorize() + */ + Array<StorageIndex,IPARM_SIZE,1>& iparm() + { + return m_iparm; + } + + /** Return a reference to a particular index parameter of the IPARM vector + * \sa iparm() + */ + + int& iparm(int idxparam) + { + return m_iparm(idxparam); + } + + /** Returns a reference to the double vector DPARM of PaStiX parameters + * The statistics related to the different phases of factorization and solve are saved here as well + * \sa analyzePattern() factorize() + */ + Array<double,DPARM_SIZE,1>& dparm() + { + return m_dparm; + } + + + /** Return a reference to a particular index parameter of the DPARM vector + * \sa dparm() + */ + double& dparm(int idxparam) + { + return m_dparm(idxparam); + } + + inline Index cols() const { return m_size; } + inline Index rows() const { return m_size; } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the PaStiX reports a problem + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + protected: + + // Initialize the Pastix data structure, check the matrix + void init(); + + // Compute the ordering and the symbolic factorization + void analyzePattern(ColSpMatrix& mat); + + // Compute the numerical factorization + void factorize(ColSpMatrix& mat); + + // Free all the data allocated by Pastix + void clean() + { + eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); + m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; + m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, + m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + } + + void compute(ColSpMatrix& mat); + + int m_initisOk; + int m_analysisIsOk; + int m_factorizationIsOk; + mutable ComputationInfo m_info; + mutable pastix_data_t *m_pastixdata; // Data structure for pastix + mutable int m_comm; // The MPI communicator identifier + mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters + mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters + mutable Matrix<StorageIndex,Dynamic,1> m_perm; // Permutation vector + mutable Matrix<StorageIndex,Dynamic,1> m_invp; // Inverse permutation vector + mutable int m_size; // Size of the matrix +}; + + /** Initialize the PaStiX data structure. + *A first call to this function fills iparm and dparm with the default PaStiX parameters + * \sa iparm() dparm() + */ +template <class Derived> +void PastixBase<Derived>::init() +{ + m_size = 0; + m_iparm.setZero(IPARM_SIZE); + m_dparm.setZero(DPARM_SIZE); + + m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; + pastix(&m_pastixdata, MPI_COMM_WORLD, + 0, 0, 0, 0, + 0, 0, 0, 1, m_iparm.data(), m_dparm.data()); + + m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; + m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT; + m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH; + m_iparm[IPARM_INCOMPLETE] = API_NO; + m_iparm[IPARM_OOC_LIMIT] = 2000; + m_iparm[IPARM_RHS_MAKING] = API_RHS_B; + m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; + + m_iparm(IPARM_START_TASK) = API_TASK_INIT; + m_iparm(IPARM_END_TASK) = API_TASK_INIT; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, + 0, 0, 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) { + m_info = InvalidInput; + m_initisOk = false; + } + else { + m_info = Success; + m_initisOk = true; + } +} + +template <class Derived> +void PastixBase<Derived>::compute(ColSpMatrix& mat) +{ + eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); + + analyzePattern(mat); + factorize(mat); + + m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; +} + + +template <class Derived> +void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat) +{ + eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); + + // clean previous calls + if(m_size>0) + clean(); + + m_size = internal::convert_index<int>(mat.rows()); + m_perm.resize(m_size); + m_invp.resize(m_size); + + m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; + m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), + mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) + { + m_info = NumericalIssue; + m_analysisIsOk = false; + } + else + { + m_info = Success; + m_analysisIsOk = true; + } +} + +template <class Derived> +void PastixBase<Derived>::factorize(ColSpMatrix& mat) +{ +// if(&m_cpyMat != &mat) m_cpyMat = mat; + eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); + m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; + m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; + m_size = internal::convert_index<int>(mat.rows()); + + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), + mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); + + // Check the returned error + if(m_iparm(IPARM_ERROR_NUMBER)) + { + m_info = NumericalIssue; + m_factorizationIsOk = false; + m_isInitialized = false; + } + else + { + m_info = Success; + m_factorizationIsOk = true; + m_isInitialized = true; + } +} + +/* Solve the system */ +template<typename Base> +template<typename Rhs,typename Dest> +bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const +{ + eigen_assert(m_isInitialized && "The matrix should be factorized first"); + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, + THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + int rhs = 1; + + x = b; /* on return, x is overwritten by the computed solution */ + + for (int i = 0; i < b.cols(); i++){ + m_iparm[IPARM_START_TASK] = API_TASK_SOLVE; + m_iparm[IPARM_END_TASK] = API_TASK_REFINE; + + internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0, + m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); + } + + // Check the returned error + m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue; + + return m_iparm(IPARM_ERROR_NUMBER)==0; +} + +/** \ingroup PaStiXSupport_Module + * \class PastixLU + * \brief Sparse direct LU solver based on PaStiX library + * + * This class is used to solve the linear systems A.X = B with a supernodal LU + * factorization in the PaStiX library. The matrix A should be squared and nonsingular + * PaStiX requires that the matrix A has a symmetric structural pattern. + * This interface can symmetrize the input matrix otherwise. + * The vectors or matrices X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false + * NOTE : Note that if the analysis and factorization phase are called separately, + * the input matrix will be symmetrized at each call, hence it is advised to + * symmetrize the matrix in a end-user program and set \p IsStrSym to true + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SparseLU + * + */ +template<typename _MatrixType, bool IsStrSym> +class PastixLU : public PastixBase< PastixLU<_MatrixType> > +{ + public: + typedef _MatrixType MatrixType; + typedef PastixBase<PastixLU<MatrixType> > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + typedef typename MatrixType::StorageIndex StorageIndex; + + public: + PastixLU() : Base() + { + init(); + } + + explicit PastixLU(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + /** Compute the LU supernodal factorization of \p matrix. + * iparm and dparm can be used to tune the PaStiX parameters. + * see the PaStiX user's manual + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + m_structureIsUptodate = false; + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. + * Several ordering methods can be used at this step. See the PaStiX user's manual. + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + m_structureIsUptodate = false; + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + + /** Compute the LU supernodal factorization of \p matrix + * WARNING The matrix \p matrix should have the same structural pattern + * as the same used in the analysis phase. + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + protected: + + void init() + { + m_structureIsUptodate = false; + m_iparm(IPARM_SYM) = API_SYM_NO; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + if(IsStrSym) + out = matrix; + else + { + if(!m_structureIsUptodate) + { + // update the transposed structure + m_transposedStructure = matrix.transpose(); + + // Set the elements of the matrix to zero + for (Index j=0; j<m_transposedStructure.outerSize(); ++j) + for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it) + it.valueRef() = 0.0; + + m_structureIsUptodate = true; + } + + out = m_transposedStructure + matrix; + } + internal::c_to_fortran_numbering(out); + } + + using Base::m_iparm; + using Base::m_dparm; + + ColSpMatrix m_transposedStructure; + bool m_structureIsUptodate; +}; + +/** \ingroup PaStiXSupport_Module + * \class PastixLLT + * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library + * + * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization + * available in the PaStiX library. The matrix A should be symmetric and positive definite + * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX + * The vectors or matrices X and B can be either dense or sparse + * + * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT + */ +template<typename _MatrixType, int _UpLo> +class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> > +{ + public: + typedef _MatrixType MatrixType; + typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + + public: + enum { UpLo = _UpLo }; + PastixLLT() : Base() + { + init(); + } + + explicit PastixLLT(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + + /** Compute the L factor of the LL^T supernodal factorization of \p matrix + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + + /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + /** Compute the LL^T supernodal numerical factorization of \p matrix + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + protected: + using Base::m_iparm; + + void init() + { + m_iparm(IPARM_SYM) = API_SYM_YES; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + out.resize(matrix.rows(), matrix.cols()); + // Pastix supports only lower, column-major matrices + out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); + internal::c_to_fortran_numbering(out); + } +}; + +/** \ingroup PaStiXSupport_Module + * \class PastixLDLT + * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library + * + * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization + * available in the PaStiX library. The matrix A should be symmetric and positive definite + * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX + * The vectors or matrices X and B can be either dense or sparse + * + * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX + * + * \implsparsesolverconcept + * + * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT + */ +template<typename _MatrixType, int _UpLo> +class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> > +{ + public: + typedef _MatrixType MatrixType; + typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base; + typedef typename Base::ColSpMatrix ColSpMatrix; + + public: + enum { UpLo = _UpLo }; + PastixLDLT():Base() + { + init(); + } + + explicit PastixLDLT(const MatrixType& matrix):Base() + { + init(); + compute(matrix); + } + + /** Compute the L and D factors of the LDL^T factorization of \p matrix + * \sa analyzePattern() factorize() + */ + void compute (const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::compute(temp); + } + + /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern + * The result of this operation can be used with successive matrices having the same pattern as \p matrix + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::analyzePattern(temp); + } + /** Compute the LDL^T supernodal numerical factorization of \p matrix + * + */ + void factorize(const MatrixType& matrix) + { + ColSpMatrix temp; + grabMatrix(matrix, temp); + Base::factorize(temp); + } + + protected: + using Base::m_iparm; + + void init() + { + m_iparm(IPARM_SYM) = API_SYM_YES; + m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; + } + + void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) + { + // Pastix supports only lower, column-major matrices + out.resize(matrix.rows(), matrix.cols()); + out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); + internal::c_to_fortran_numbering(out); + } +}; + +} // end namespace Eigen + +#endif |