diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/EigenUnsupported/src/SpecialFunctions | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/EigenUnsupported/src/SpecialFunctions')
20 files changed, 6239 insertions, 0 deletions
diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsArrayAPI.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsArrayAPI.h new file mode 100644 index 0000000..41d2bf6 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsArrayAPI.h @@ -0,0 +1,286 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_BESSELFUNCTIONS_ARRAYAPI_H +#define EIGEN_BESSELFUNCTIONS_ARRAYAPI_H + +namespace Eigen { + +/** \returns an expression of the coefficient-wise i0(\a x) to the given + * arrays. + * + * It returns the modified Bessel function of the first kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of i0(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_i0() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>, const Derived> +bessel_i0(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise i0e(\a x) to the given + * arrays. + * + * It returns the exponentially scaled modified Bessel + * function of the first kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of i0e(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_i0e() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>, const Derived> +bessel_i0e(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise i1(\a x) to the given + * arrays. + * + * It returns the modified Bessel function of the first kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of i1(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_i1() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>, const Derived> +bessel_i1(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise i1e(\a x) to the given + * arrays. + * + * It returns the exponentially scaled modified Bessel + * function of the first kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of i1e(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_i1e() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>, const Derived> +bessel_i1e(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise k0(\a x) to the given + * arrays. + * + * It returns the modified Bessel function of the second kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of k0(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_k0() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>, const Derived> +bessel_k0(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise k0e(\a x) to the given + * arrays. + * + * It returns the exponentially scaled modified Bessel + * function of the second kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of k0e(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_k0e() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>, const Derived> +bessel_k0e(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise k1(\a x) to the given + * arrays. + * + * It returns the modified Bessel function of the second kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of k1(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_k1() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>, const Derived> +bessel_k1(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise k1e(\a x) to the given + * arrays. + * + * It returns the exponentially scaled modified Bessel + * function of the second kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of k1e(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_k1e() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>, const Derived> +bessel_k1e(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise j0(\a x) to the given + * arrays. + * + * It returns the Bessel function of the first kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of j0(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_j0() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>, const Derived> +bessel_j0(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise y0(\a x) to the given + * arrays. + * + * It returns the Bessel function of the second kind of order zero. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of y0(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_y0() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>, const Derived> +bessel_y0(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise j1(\a x) to the given + * arrays. + * + * It returns the modified Bessel function of the first kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of j1(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_j1() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>, const Derived> +bessel_j1(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +/** \returns an expression of the coefficient-wise y1(\a x) to the given + * arrays. + * + * It returns the Bessel function of the second kind of order one. + * + * \param x is the argument + * + * \note This function supports only float and double scalar types. To support + * other scalar types, the user has to provide implementations of y1(T) for + * any scalar type T to be supported. + * + * \sa ArrayBase::bessel_y1() + */ +template <typename Derived> +EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>, const Derived> +bessel_y1(const Eigen::ArrayBase<Derived>& x) { + return Eigen::CwiseUnaryOp< + Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>, + const Derived>(x.derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_BESSELFUNCTIONS_ARRAYAPI_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsBFloat16.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsBFloat16.h new file mode 100644 index 0000000..6049cc2 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsBFloat16.h @@ -0,0 +1,68 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BESSELFUNCTIONS_BFLOAT16_H +#define EIGEN_BESSELFUNCTIONS_BFLOAT16_H + +namespace Eigen { +namespace numext { + +#if EIGEN_HAS_C99_MATH +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_i0(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_i0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_i0e(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_i0e(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_i1(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_i1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_i1e(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_i1e(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_j0(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_j0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_j1(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_j1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_y0(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_y0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_y1(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_y1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_k0(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_k0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_k0e(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_k0e(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_k1(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_k1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bessel_k1e(const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::bessel_k1e(static_cast<float>(x))); +} +#endif + +} // end namespace numext +} // end namespace Eigen + +#endif // EIGEN_BESSELFUNCTIONS_BFLOAT16_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsFunctors.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsFunctors.h new file mode 100644 index 0000000..8606a9f --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsFunctors.h @@ -0,0 +1,357 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com> +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BESSELFUNCTIONS_FUNCTORS_H +#define EIGEN_BESSELFUNCTIONS_FUNCTORS_H + +namespace Eigen { + +namespace internal { + +/** \internal + * \brief Template functor to compute the modified Bessel function of the first + * kind of order zero. + * \sa class CwiseUnaryOp, Cwise::bessel_i0() + */ +template <typename Scalar> +struct scalar_bessel_i0_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_i0; + return bessel_i0(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_i0(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_i0_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=20 is computed. + // The cost is N multiplications and 2N additions. We also add + // the cost of an additional exp over i0e. + Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the exponentially scaled modified Bessel + * function of the first kind of order zero + * \sa class CwiseUnaryOp, Cwise::bessel_i0e() + */ +template <typename Scalar> +struct scalar_bessel_i0e_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0e_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_i0e; + return bessel_i0e(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_i0e(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_i0e_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=20 is computed. + // The cost is N multiplications and 2N additions. + Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the modified Bessel function of the first + * kind of order one + * \sa class CwiseUnaryOp, Cwise::bessel_i1() + */ +template <typename Scalar> +struct scalar_bessel_i1_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_i1; + return bessel_i1(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_i1(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_i1_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=20 is computed. + // The cost is N multiplications and 2N additions. We also add + // the cost of an additional exp over i1e. + Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the exponentially scaled modified Bessel + * function of the first kind of order zero + * \sa class CwiseUnaryOp, Cwise::bessel_i1e() + */ +template <typename Scalar> +struct scalar_bessel_i1e_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1e_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_i1e; + return bessel_i1e(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_i1e(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_i1e_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=20 is computed. + // The cost is N multiplications and 2N additions. + Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the Bessel function of the second kind of + * order zero + * \sa class CwiseUnaryOp, Cwise::bessel_j0() + */ +template <typename Scalar> +struct scalar_bessel_j0_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j0_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_j0; + return bessel_j0(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_j0(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_j0_op<Scalar> > { + enum { + // 6 polynomial of order ~N=8 is computed. + // The cost is N multiplications and N additions each, along with a + // sine, cosine and rsqrt cost. + Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the Bessel function of the second kind of + * order zero + * \sa class CwiseUnaryOp, Cwise::bessel_y0() + */ +template <typename Scalar> +struct scalar_bessel_y0_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y0_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_y0; + return bessel_y0(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_y0(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_y0_op<Scalar> > { + enum { + // 6 polynomial of order ~N=8 is computed. + // The cost is N multiplications and N additions each, along with a + // sine, cosine, rsqrt and j0 cost. + Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the Bessel function of the first kind of + * order one + * \sa class CwiseUnaryOp, Cwise::bessel_j1() + */ +template <typename Scalar> +struct scalar_bessel_j1_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j1_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_j1; + return bessel_j1(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_j1(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_j1_op<Scalar> > { + enum { + // 6 polynomial of order ~N=8 is computed. + // The cost is N multiplications and N additions each, along with a + // sine, cosine and rsqrt cost. + Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the Bessel function of the second kind of + * order one + * \sa class CwiseUnaryOp, Cwise::bessel_j1e() + */ +template <typename Scalar> +struct scalar_bessel_y1_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y1_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_y1; + return bessel_y1(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_y1(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_y1_op<Scalar> > { + enum { + // 6 polynomial of order ~N=8 is computed. + // The cost is N multiplications and N additions each, along with a + // sine, cosine, rsqrt and j1 cost. + Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the modified Bessel function of the second + * kind of order zero + * \sa class CwiseUnaryOp, Cwise::bessel_k0() + */ +template <typename Scalar> +struct scalar_bessel_k0_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_k0; + return bessel_k0(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_k0(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_k0_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=10 is computed. + // The cost is N multiplications and 2N additions. In addition we compute + // i0, a log, exp and prsqrt and sin and cos. + Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the exponentially scaled modified Bessel + * function of the second kind of order zero + * \sa class CwiseUnaryOp, Cwise::bessel_k0e() + */ +template <typename Scalar> +struct scalar_bessel_k0e_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0e_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_k0e; + return bessel_k0e(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_k0e(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_k0e_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=10 is computed. + // The cost is N multiplications and 2N additions. In addition we compute + // i0, a log, exp and prsqrt and sin and cos. + Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the modified Bessel function of the + * second kind of order one + * \sa class CwiseUnaryOp, Cwise::bessel_k1() + */ +template <typename Scalar> +struct scalar_bessel_k1_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_k1; + return bessel_k1(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_k1(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_k1_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=10 is computed. + // The cost is N multiplications and 2N additions. In addition we compute + // i1, a log, exp and prsqrt and sin and cos. + Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + +/** \internal + * \brief Template functor to compute the exponentially scaled modified Bessel + * function of the second kind of order one + * \sa class CwiseUnaryOp, Cwise::bessel_k1e() + */ +template <typename Scalar> +struct scalar_bessel_k1e_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1e_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const { + using numext::bessel_k1e; + return bessel_k1e(x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return internal::pbessel_k1e(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_bessel_k1e_op<Scalar> > { + enum { + // On average, a Chebyshev polynomial of order N=10 is computed. + // The cost is N multiplications and 2N additions. In addition we compute + // i1, a log, exp and prsqrt and sin and cos. + Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBessel + }; +}; + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BESSELFUNCTIONS_FUNCTORS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsHalf.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsHalf.h new file mode 100644 index 0000000..8930d1a --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsHalf.h @@ -0,0 +1,66 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BESSELFUNCTIONS_HALF_H +#define EIGEN_BESSELFUNCTIONS_HALF_H + +namespace Eigen { +namespace numext { + +#if EIGEN_HAS_C99_MATH +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_i0(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_i0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_i0e(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_i0e(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_i1(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_i1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_i1e(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_i1e(static_cast<float>(x))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_j0(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_j0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_j1(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_j1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_y0(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_y0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_y1(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_y1(static_cast<float>(x))); +} +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_k0(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_k0(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_k0e(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_k0e(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_k1(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_k1(static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bessel_k1e(const Eigen::half& x) { + return Eigen::half(Eigen::numext::bessel_k1e(static_cast<float>(x))); +} +#endif + +} // end namespace numext +} // end namespace Eigen + +#endif // EIGEN_BESSELFUNCTIONS_HALF_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsImpl.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsImpl.h new file mode 100644 index 0000000..24812be --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsImpl.h @@ -0,0 +1,1959 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BESSEL_FUNCTIONS_H +#define EIGEN_BESSEL_FUNCTIONS_H + +namespace Eigen { +namespace internal { + +// Parts of this code are based on the Cephes Math Library. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier +// +// Permission has been kindly provided by the original author +// to incorporate the Cephes software into the Eigen codebase: +// +// From: Stephen Moshier +// To: Eugene Brevdo +// Subject: Re: Permission to wrap several cephes functions in Eigen +// +// Hello Eugene, +// +// Thank you for writing. +// +// If your licensing is similar to BSD, the formal way that has been +// handled is simply to add a statement to the effect that you are incorporating +// the Cephes software by permission of the author. +// +// Good luck with your project, +// Steve + + +/**************************************************************************** + * Implementation of Bessel function, based on Cephes * + ****************************************************************************/ + +template <typename Scalar> +struct bessel_i0e_retval { + typedef Scalar type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_i0e { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_i0e<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* i0ef.c + * + * Modified Bessel function of order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, i0ef(); + * + * y = i0ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order zero of the argument. + * + * The function is defined as i0e(x) = exp(-|x|) j0( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 100000 3.7e-7 7.0e-8 + * See i0f(). + * + */ + + const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f, + -2.67079385394061173391E-7f, 1.11738753912010371815E-6f, + -4.41673835845875056359E-6f, 1.64484480707288970893E-5f, + -5.75419501008210370398E-5f, 1.88502885095841655729E-4f, + -5.76375574538582365885E-4f, 1.63947561694133579842E-3f, + -4.32430999505057594430E-3f, 1.05464603945949983183E-2f, + -2.37374148058994688156E-2f, 4.93052842396707084878E-2f, + -9.49010970480476444210E-2f, 1.71620901522208775349E-1f, + -3.04682672343198398683E-1f, 6.76795274409476084995E-1f}; + + const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f, + 2.04891858946906374183E-7f, 2.89137052083475648297E-6f, + 6.88975834691682398426E-5f, 3.36911647825569408990E-3f, + 8.04490411014108831608E-1f}; + T y = pabs(x); + T y_le_eight = internal::pchebevl<T, 18>::run( + pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A); + T y_gt_eight = pmul( + internal::pchebevl<T, 7>::run( + psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B), + prsqrt(y)); + // TODO: Perhaps instead check whether all packet elements are in + // [-8, 8] and evaluate a branch based off of that. It's possible + // in practice most elements are in this region. + return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight); + } +}; + +template <typename T> +struct generic_i0e<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* i0e.c + * + * Modified Bessel function of order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, i0e(); + * + * y = i0e( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order zero of the argument. + * + * The function is defined as i0e(x) = exp(-|x|) j0( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 30000 5.4e-16 1.2e-16 + * See i0(). + * + */ + + const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17, + -2.43127984654795469359E-16, 1.71539128555513303061E-15, + -1.16853328779934516808E-14, 7.67618549860493561688E-14, + -4.85644678311192946090E-13, 2.95505266312963983461E-12, + -1.72682629144155570723E-11, 9.67580903537323691224E-11, + -5.18979560163526290666E-10, 2.65982372468238665035E-9, + -1.30002500998624804212E-8, 6.04699502254191894932E-8, + -2.67079385394061173391E-7, 1.11738753912010371815E-6, + -4.41673835845875056359E-6, 1.64484480707288970893E-5, + -5.75419501008210370398E-5, 1.88502885095841655729E-4, + -5.76375574538582365885E-4, 1.63947561694133579842E-3, + -4.32430999505057594430E-3, 1.05464603945949983183E-2, + -2.37374148058994688156E-2, 4.93052842396707084878E-2, + -9.49010970480476444210E-2, 1.71620901522208775349E-1, + -3.04682672343198398683E-1, 6.76795274409476084995E-1}; + const double B[] = { + -7.23318048787475395456E-18, -4.83050448594418207126E-18, + 4.46562142029675999901E-17, 3.46122286769746109310E-17, + -2.82762398051658348494E-16, -3.42548561967721913462E-16, + 1.77256013305652638360E-15, 3.81168066935262242075E-15, + -9.55484669882830764870E-15, -4.15056934728722208663E-14, + 1.54008621752140982691E-14, 3.85277838274214270114E-13, + 7.18012445138366623367E-13, -1.79417853150680611778E-12, + -1.32158118404477131188E-11, -3.14991652796324136454E-11, + 1.18891471078464383424E-11, 4.94060238822496958910E-10, + 3.39623202570838634515E-9, 2.26666899049817806459E-8, + 2.04891858946906374183E-7, 2.89137052083475648297E-6, + 6.88975834691682398426E-5, 3.36911647825569408990E-3, + 8.04490411014108831608E-1}; + T y = pabs(x); + T y_le_eight = internal::pchebevl<T, 30>::run( + pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A); + T y_gt_eight = pmul( + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B), + prsqrt(y)); + // TODO: Perhaps instead check whether all packet elements are in + // [-8, 8] and evaluate a branch based off of that. It's possible + // in practice most elements are in this region. + return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight); + } +}; + +template <typename T> +struct bessel_i0e_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_i0e<T>::run(x); + } +}; + +template <typename Scalar> +struct bessel_i0_retval { + typedef Scalar type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_i0 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + return pmul( + pexp(pabs(x)), + generic_i0e<T, ScalarType>::run(x)); + } +}; + +template <typename T> +struct bessel_i0_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_i0<T>::run(x); + } +}; + +template <typename Scalar> +struct bessel_i1e_retval { + typedef Scalar type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type > +struct generic_i1e { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_i1e<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* i1ef.c + * + * Modified Bessel function of order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, i1ef(); + * + * y = i1ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order one of the argument. + * + * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 1.5e-6 1.5e-7 + * See i1(). + * + */ + const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f, + 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, + 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, + 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, + 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, + 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, + 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, + 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, + 2.52587186443633654823E-1f}; + + const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f, + -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, + -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, + 7.78576235018280120474E-1f}; + + + T y = pabs(x); + T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run( + pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A)); + T y_gt_eight = pmul( + internal::pchebevl<T, 7>::run( + psub(pdiv(pset1<T>(32.0f), y), + pset1<T>(2.0f)), B), + prsqrt(y)); + // TODO: Perhaps instead check whether all packet elements are in + // [-8, 8] and evaluate a branch based off of that. It's possible + // in practice most elements are in this region. + y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight); + return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y); + } +}; + +template <typename T> +struct generic_i1e<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* i1e.c + * + * Modified Bessel function of order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, i1e(); + * + * y = i1e( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order one of the argument. + * + * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 2.0e-15 2.0e-16 + * See i1(). + * + */ + const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17, + 1.55363195773620046921E-16, -1.10559694773538630805E-15, + 7.60068429473540693410E-15, -5.04218550472791168711E-14, + 3.22379336594557470981E-13, -1.98397439776494371520E-12, + 1.17361862988909016308E-11, -6.66348972350202774223E-11, + 3.62559028155211703701E-10, -1.88724975172282928790E-9, + 9.38153738649577178388E-9, -4.44505912879632808065E-8, + 2.00329475355213526229E-7, -8.56872026469545474066E-7, + 3.47025130813767847674E-6, -1.32731636560394358279E-5, + 4.78156510755005422638E-5, -1.61760815825896745588E-4, + 5.12285956168575772895E-4, -1.51357245063125314899E-3, + 4.15642294431288815669E-3, -1.05640848946261981558E-2, + 2.47264490306265168283E-2, -5.29459812080949914269E-2, + 1.02643658689847095384E-1, -1.76416518357834055153E-1, + 2.52587186443633654823E-1}; + const double B[] = { + 7.51729631084210481353E-18, 4.41434832307170791151E-18, + -4.65030536848935832153E-17, -3.20952592199342395980E-17, + 2.96262899764595013876E-16, 3.30820231092092828324E-16, + -1.88035477551078244854E-15, -3.81440307243700780478E-15, + 1.04202769841288027642E-14, 4.27244001671195135429E-14, + -2.10154184277266431302E-14, -4.08355111109219731823E-13, + -7.19855177624590851209E-13, 2.03562854414708950722E-12, + 1.41258074366137813316E-11, 3.25260358301548823856E-11, + -1.89749581235054123450E-11, -5.58974346219658380687E-10, + -3.83538038596423702205E-9, -2.63146884688951950684E-8, + -2.51223623787020892529E-7, -3.88256480887769039346E-6, + -1.10588938762623716291E-4, -9.76109749136146840777E-3, + 7.78576235018280120474E-1}; + T y = pabs(x); + T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run( + pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A)); + T y_gt_eight = pmul( + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(32.0), y), + pset1<T>(2.0)), B), + prsqrt(y)); + // TODO: Perhaps instead check whether all packet elements are in + // [-8, 8] and evaluate a branch based off of that. It's possible + // in practice most elements are in this region. + y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight); + return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y); + } +}; + +template <typename T> +struct bessel_i1e_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_i1e<T>::run(x); + } +}; + +template <typename T> +struct bessel_i1_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_i1 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + return pmul( + pexp(pabs(x)), + generic_i1e<T, ScalarType>::run(x)); + } +}; + +template <typename T> +struct bessel_i1_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_i1<T>::run(x); + } +}; + +template <typename T> +struct bessel_k0e_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_k0e { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_k0e<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k0ef.c + * Modified Bessel function, third kind, order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, k0ef(); + * + * y = k0ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order zero of the argument. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 8.1e-7 7.8e-8 + * See k0(). + * + */ + + const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f, + 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, + 3.59799365153615016266E-2f, 3.44289899924628486886E-1f, + -5.35327393233902768720E-1f}; + + const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f, + -4.66048989768794782956E-8f, 2.76681363944501510342E-7f, + -1.83175552271911948767E-6f, 1.39498137188764993662E-5f, + -1.28495495816278026384E-4f, 1.56988388573005337491E-3f, + -3.14481013119645005427E-2f, 2.44030308206595545468E0f}; + const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = internal::pchebevl<T, 7>::run( + pmadd(x, x, pset1<T>(-2.0)), A); + x_le_two = pmadd( + generic_i0<T, float>::run(x), pnegate( + plog(pmul(pset1<T>(0.5), x))), x_le_two); + x_le_two = pmul(pexp(x), x_le_two); + T x_gt_two = pmul( + internal::pchebevl<T, 10>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x)); + return pselect( + pcmp_le(x, pset1<T>(0.0)), + MAXNUM, + pselect(pcmp_le(x, two), x_le_two, x_gt_two)); + } +}; + +template <typename T> +struct generic_k0e<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k0e.c + * Modified Bessel function, third kind, order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, k0e(); + * + * y = k0e( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order zero of the argument. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 1.4e-15 1.4e-16 + * See k0(). + * + */ + + const double A[] = { + 1.37446543561352307156E-16, + 4.25981614279661018399E-14, + 1.03496952576338420167E-11, + 1.90451637722020886025E-9, + 2.53479107902614945675E-7, + 2.28621210311945178607E-5, + 1.26461541144692592338E-3, + 3.59799365153615016266E-2, + 3.44289899924628486886E-1, + -5.35327393233902768720E-1}; + const double B[] = { + 5.30043377268626276149E-18, -1.64758043015242134646E-17, + 5.21039150503902756861E-17, -1.67823109680541210385E-16, + 5.51205597852431940784E-16, -1.84859337734377901440E-15, + 6.34007647740507060557E-15, -2.22751332699166985548E-14, + 8.03289077536357521100E-14, -2.98009692317273043925E-13, + 1.14034058820847496303E-12, -4.51459788337394416547E-12, + 1.85594911495471785253E-11, -7.95748924447710747776E-11, + 3.57739728140030116597E-10, -1.69753450938905987466E-9, + 8.57403401741422608519E-9, -4.66048989768794782956E-8, + 2.76681363944501510342E-7, -1.83175552271911948767E-6, + 1.39498137188764993662E-5, -1.28495495816278026384E-4, + 1.56988388573005337491E-3, -3.14481013119645005427E-2, + 2.44030308206595545468E0 + }; + const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = internal::pchebevl<T, 10>::run( + pmadd(x, x, pset1<T>(-2.0)), A); + x_le_two = pmadd( + generic_i0<T, double>::run(x), pmul( + pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two); + x_le_two = pmul(pexp(x), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x)); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct bessel_k0e_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_k0e<T>::run(x); + } +}; + +template <typename T> +struct bessel_k0_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_k0 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_k0<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k0f.c + * Modified Bessel function, third kind, order zero + * + * + * + * SYNOPSIS: + * + * float x, y, k0f(); + * + * y = k0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns modified Bessel function of the third kind + * of order zero of the argument. + * + * The range is partitioned into the two intervals [0,8] and + * (8, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Tested at 2000 random points between 0 and 8. Peak absolute + * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 7.8e-7 8.5e-8 + * + * ERROR MESSAGES: + * + * message condition value returned + * K0 domain x <= 0 MAXNUM + * + */ + + const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f, + 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, + 3.59799365153615016266E-2f, 3.44289899924628486886E-1f, + -5.35327393233902768720E-1f}; + + const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f, + -4.66048989768794782956E-8f, 2.76681363944501510342E-7f, + -1.83175552271911948767E-6f, 1.39498137188764993662E-5f, + -1.28495495816278026384E-4f, 1.56988388573005337491E-3f, + -3.14481013119645005427E-2f, 2.44030308206595545468E0f}; + const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = internal::pchebevl<T, 7>::run( + pmadd(x, x, pset1<T>(-2.0)), A); + x_le_two = pmadd( + generic_i0<T, float>::run(x), pnegate( + plog(pmul(pset1<T>(0.5), x))), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + pmul( + pexp(pnegate(x)), + internal::pchebevl<T, 10>::run( + psub(pdiv(pset1<T>(8.0), x), two), B)), + prsqrt(x)); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct generic_k0<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* + * + * Modified Bessel function, third kind, order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, k0(); + * + * y = k0( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order zero of the argument. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 1.4e-15 1.4e-16 + * See k0(). + * + */ + const double A[] = { + 1.37446543561352307156E-16, + 4.25981614279661018399E-14, + 1.03496952576338420167E-11, + 1.90451637722020886025E-9, + 2.53479107902614945675E-7, + 2.28621210311945178607E-5, + 1.26461541144692592338E-3, + 3.59799365153615016266E-2, + 3.44289899924628486886E-1, + -5.35327393233902768720E-1}; + const double B[] = { + 5.30043377268626276149E-18, -1.64758043015242134646E-17, + 5.21039150503902756861E-17, -1.67823109680541210385E-16, + 5.51205597852431940784E-16, -1.84859337734377901440E-15, + 6.34007647740507060557E-15, -2.22751332699166985548E-14, + 8.03289077536357521100E-14, -2.98009692317273043925E-13, + 1.14034058820847496303E-12, -4.51459788337394416547E-12, + 1.85594911495471785253E-11, -7.95748924447710747776E-11, + 3.57739728140030116597E-10, -1.69753450938905987466E-9, + 8.57403401741422608519E-9, -4.66048989768794782956E-8, + 2.76681363944501510342E-7, -1.83175552271911948767E-6, + 1.39498137188764993662E-5, -1.28495495816278026384E-4, + 1.56988388573005337491E-3, -3.14481013119645005427E-2, + 2.44030308206595545468E0 + }; + const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = internal::pchebevl<T, 10>::run( + pmadd(x, x, pset1<T>(-2.0)), A); + x_le_two = pmadd( + generic_i0<T, double>::run(x), pnegate( + plog(pmul(pset1<T>(0.5), x))), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + pmul( + pexp(-x), + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(8.0), x), two), B)), + prsqrt(x)); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct bessel_k0_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_k0<T>::run(x); + } +}; + +template <typename T> +struct bessel_k1e_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_k1e { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_k1e<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k1ef.c + * + * Modified Bessel function, third kind, order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, k1ef(); + * + * y = k1ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order one of the argument: + * + * k1e(x) = exp(x) * k1(x). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 4.9e-7 6.7e-8 + * See k1(). + * + */ + + const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f, + -1.73028895751305206302E-4f, -6.97572385963986435018E-3f, + -1.22611180822657148235E-1f, -3.53155960776544875667E-1f, + 1.52530022733894777053E0f}; + const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f, + 5.74108412545004946722E-8f, -3.50196060308781257119E-7f, + 2.40648494783721712015E-6f, -1.93619797416608296024E-5f, + 1.95215518471351631108E-4f, -2.85781685962277938680E-3f, + 1.03923736576817238437E-1f, 2.72062619048444266945E0f}; + const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = pdiv(internal::pchebevl<T, 7>::run( + pmadd(x, x, pset1<T>(-2.0)), A), x); + x_le_two = pmadd( + generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); + x_le_two = pmul(x_le_two, pexp(x)); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + internal::pchebevl<T, 10>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x)); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct generic_k1e<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k1e.c + * + * Modified Bessel function, third kind, order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, k1e(); + * + * y = k1e( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order one of the argument: + * + * k1e(x) = exp(x) * k1(x). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 7.8e-16 1.2e-16 + * See k1(). + * + */ + const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15, + -6.66690169419932900609E-13, -1.41148839263352776110E-10, + -2.21338763073472585583E-8, -2.43340614156596823496E-6, + -1.73028895751305206302E-4, -6.97572385963986435018E-3, + -1.22611180822657148235E-1, -3.53155960776544875667E-1, + 1.52530022733894777053E0}; + const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17, + -5.68946255844285935196E-17, 1.83809354436663880070E-16, + -6.05704724837331885336E-16, 2.03870316562433424052E-15, + -7.01983709041831346144E-15, 2.47715442448130437068E-14, + -8.97670518232499435011E-14, 3.34841966607842919884E-13, + -1.28917396095102890680E-12, 5.13963967348173025100E-12, + -2.12996783842756842877E-11, 9.21831518760500529508E-11, + -4.19035475934189648750E-10, 2.01504975519703286596E-9, + -1.03457624656780970260E-8, 5.74108412545004946722E-8, + -3.50196060308781257119E-7, 2.40648494783721712015E-6, + -1.93619797416608296024E-5, 1.95215518471351631108E-4, + -2.85781685962277938680E-3, 1.03923736576817238437E-1, + 2.72062619048444266945E0}; + const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = pdiv(internal::pchebevl<T, 11>::run( + pmadd(x, x, pset1<T>(-2.0)), A), x); + x_le_two = pmadd( + generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); + x_le_two = pmul(x_le_two, pexp(x)); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x)); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct bessel_k1e_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_k1e<T>::run(x); + } +}; + +template <typename T> +struct bessel_k1_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_k1 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_k1<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k1f.c + * Modified Bessel function, third kind, order one + * + * + * + * SYNOPSIS: + * + * float x, y, k1f(); + * + * y = k1f( x ); + * + * + * + * DESCRIPTION: + * + * Computes the modified Bessel function of the third kind + * of order one of the argument. + * + * The range is partitioned into the two intervals [0,2] and + * (2, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 4.6e-7 7.6e-8 + * + * ERROR MESSAGES: + * + * message condition value returned + * k1 domain x <= 0 MAXNUM + * + */ + + const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f, + -1.73028895751305206302E-4f, -6.97572385963986435018E-3f, + -1.22611180822657148235E-1f, -3.53155960776544875667E-1f, + 1.52530022733894777053E0f}; + const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f, + 5.74108412545004946722E-8f, -3.50196060308781257119E-7f, + 2.40648494783721712015E-6f, -1.93619797416608296024E-5f, + 1.95215518471351631108E-4f, -2.85781685962277938680E-3f, + 1.03923736576817238437E-1f, 2.72062619048444266945E0f}; + const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = pdiv(internal::pchebevl<T, 7>::run( + pmadd(x, x, pset1<T>(-2.0)), A), x); + x_le_two = pmadd( + generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + pexp(pnegate(x)), + pmul( + internal::pchebevl<T, 10>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x))); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct generic_k1<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* k1.c + * Modified Bessel function, third kind, order one + * + * + * + * SYNOPSIS: + * + * float x, y, k1f(); + * + * y = k1f( x ); + * + * + * + * DESCRIPTION: + * + * Computes the modified Bessel function of the third kind + * of order one of the argument. + * + * The range is partitioned into the two intervals [0,2] and + * (2, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 4.6e-7 7.6e-8 + * + * ERROR MESSAGES: + * + * message condition value returned + * k1 domain x <= 0 MAXNUM + * + */ + const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15, + -6.66690169419932900609E-13, -1.41148839263352776110E-10, + -2.21338763073472585583E-8, -2.43340614156596823496E-6, + -1.73028895751305206302E-4, -6.97572385963986435018E-3, + -1.22611180822657148235E-1, -3.53155960776544875667E-1, + 1.52530022733894777053E0}; + const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17, + -5.68946255844285935196E-17, 1.83809354436663880070E-16, + -6.05704724837331885336E-16, 2.03870316562433424052E-15, + -7.01983709041831346144E-15, 2.47715442448130437068E-14, + -8.97670518232499435011E-14, 3.34841966607842919884E-13, + -1.28917396095102890680E-12, 5.13963967348173025100E-12, + -2.12996783842756842877E-11, 9.21831518760500529508E-11, + -4.19035475934189648750E-10, 2.01504975519703286596E-9, + -1.03457624656780970260E-8, 5.74108412545004946722E-8, + -3.50196060308781257119E-7, 2.40648494783721712015E-6, + -1.93619797416608296024E-5, 1.95215518471351631108E-4, + -2.85781685962277938680E-3, 1.03923736576817238437E-1, + 2.72062619048444266945E0}; + const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); + const T two = pset1<T>(2.0); + T x_le_two = pdiv(internal::pchebevl<T, 11>::run( + pmadd(x, x, pset1<T>(-2.0)), A), x); + x_le_two = pmadd( + generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); + T x_gt_two = pmul( + pexp(-x), + pmul( + internal::pchebevl<T, 25>::run( + psub(pdiv(pset1<T>(8.0), x), two), B), + prsqrt(x))); + return pselect(pcmp_le(x, two), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct bessel_k1_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_k1<T>::run(x); + } +}; + +template <typename T> +struct bessel_j0_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_j0 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_j0<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j0f.c + * Bessel function of order zero + * + * + * + * SYNOPSIS: + * + * float x, y, j0f(); + * + * y = j0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order zero of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval the following polynomial + * approximation is used: + * + * + * 2 2 2 + * (w - r ) (w - r ) (w - r ) P(w) + * 1 2 3 + * + * 2 + * where w = x and the three r's are zeros of the function. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is + * + * j0(x) = Modulus(x) cos( Phase(x) ). + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 1.3e-7 3.6e-8 + * IEEE 2, 32 100000 1.9e-7 5.4e-8 + * + */ + + const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f, + -3.969646342510940E-004f, 1.332913422519003E-002f, + -1.729150680240724E-001f}; + const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f, + -2.145007480346739E-001f, 1.197549369473540E-001f, + -3.560281861530129E-003f, -4.969382655296620E-002f, + -3.355424622293709E-006f, 7.978845717621440E-001f}; + const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f, + 1.756221482109099E+001f, -4.974978466280903E+000f, + 1.001973420681837E+000f, -1.939906941791308E-001f, + 6.490598792654666E-002f, -1.249992184872738E-001f}; + const T DR1 = pset1<T>(5.78318596294678452118f); + const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */ + T y = pabs(x); + T z = pmul(y, y); + T y_le_two = pselect( + pcmp_lt(y, pset1<T>(1.0e-3f)), + pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)), + pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP))); + T q = pdiv(pset1<T>(1.0f), y); + T w = prsqrt(y); + T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO)); + w = pmul(q, q); + T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F); + T y_gt_two = pmul(p, pcos(padd(yn, y))); + return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two); + } +}; + +template <typename T> +struct generic_j0<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j0.c + * Bessel function of order zero + * + * + * + * SYNOPSIS: + * + * double x, y, j0(); + * + * y = j0( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order zero of the argument. + * + * The domain is divided into the intervals [0, 5] and + * (5, infinity). In the first interval the following rational + * approximation is used: + * + * + * 2 2 + * (w - r ) (w - r ) P (w) / Q (w) + * 1 2 3 8 + * + * 2 + * where w = x and the two r's are zeros of the function. + * + * In the second interval, the Hankel asymptotic expansion + * is employed with two rational functions of degree 6/6 + * and 7/7. + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * DEC 0, 30 10000 4.4e-17 6.3e-18 + * IEEE 0, 30 60000 4.2e-16 1.1e-16 + * + */ + const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2, + 1.23953371646414299388E0, 5.44725003058768775090E0, + 8.74716500199817011941E0, 5.30324038235394892183E0, + 9.99999999999999997821E-1}; + const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2, + 1.25352743901058953537E0, 5.47097740330417105182E0, + 8.76190883237069594232E0, 5.30605288235394617618E0, + 1.00000000000000000218E0}; + const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0, + -1.95539544257735972385E1, -9.32060152123768231369E1, + -1.77681167980488050595E2, -1.47077505154951170175E2, + -5.14105326766599330220E1, -6.05014350600728481186E0}; + const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1, + 8.56430025976980587198E2, 3.88240183605401609683E3, + 7.24046774195652478189E3, 5.93072701187316984827E3, + 2.06209331660327847417E3, 2.42005740240291393179E2}; + const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12, + -2.49248344360967716204E14, 9.70862251047306323952E15}; + const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2, + 1.73785401676374683123E5, 4.84409658339962045305E7, + 1.11855537045356834862E10, 2.11277520115489217587E12, + 3.10518229857422583814E14, 3.18121955943204943306E16, + 1.71086294081043136091E18}; + const T DR1 = pset1<T>(5.78318596294678452118E0); + const T DR2 = pset1<T>(3.04712623436620863991E1); + const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ + const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */ + + T y = pabs(x); + T z = pmul(y, y); + T y_le_five = pselect( + pcmp_lt(y, pset1<T>(1.0e-5)), + pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)), + pmul(pmul(psub(z, DR1), psub(z, DR2)), + pdiv(internal::ppolevl<T, 3>::run(z, RP), + internal::ppolevl<T, 8>::run(z, RQ)))); + T s = pdiv(pset1<T>(25.0), z); + T p = pdiv( + internal::ppolevl<T, 6>::run(s, PP), + internal::ppolevl<T, 6>::run(s, PQ)); + T q = pdiv( + internal::ppolevl<T, 7>::run(s, QP), + internal::ppolevl<T, 7>::run(s, QQ)); + T yn = padd(y, NEG_PIO4); + T w = pdiv(pset1<T>(-5.0), y); + p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn)))); + T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y))); + return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five); + } +}; + +template <typename T> +struct bessel_j0_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_j0<T>::run(x); + } +}; + +template <typename T> +struct bessel_y0_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_y0 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_y0<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j0f.c + * Bessel function of the second kind, order zero + * + * + * + * SYNOPSIS: + * + * float x, y, y0f(); + * + * y = y0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of the second kind, of order + * zero, of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval a rational approximation + * R(x) is employed to compute + * + * 2 2 2 + * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x). + * 1 2 3 + * + * Thus a call to j0() is required. The three zeros are removed + * from R(x) to improve its numerical stability. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is + * + * y0(x) = Modulus(x) sin( Phase(x) ). + * + * + * + * + * ACCURACY: + * + * Absolute error, when y0(x) < 1; else relative error: + * + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 2.4e-7 3.4e-8 + * IEEE 2, 32 100000 1.8e-7 5.3e-8 + * + */ + + const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f, + 5.344486707214273E-004f, -1.584289289821316E-002f, + 1.707584643733568E-001f}; + const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f, + -2.145007480346739E-001f, 1.197549369473540E-001f, + -3.560281861530129E-003f, -4.969382655296620E-002f, + -3.355424622293709E-006f, 7.978845717621440E-001f}; + const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f, + 1.756221482109099E+001f, -4.974978466280903E+000f, + 1.001973420681837E+000f, -1.939906941791308E-001f, + 6.490598792654666E-002f, -1.249992184872738E-001f}; + const T YZ1 = pset1<T>(0.43221455686510834878f); + const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */ + const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */ + const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity()); + T z = pmul(x, x); + T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x))); + x_le_two = pmadd( + psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two); + x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two); + T q = pdiv(pset1<T>(1.0), x); + T w = prsqrt(x); + T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO)); + T u = pmul(q, q); + T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F); + T x_gt_two = pmul(p, psin(padd(xn, x))); + return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct generic_y0<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j0.c + * Bessel function of the second kind, order zero + * + * + * + * SYNOPSIS: + * + * double x, y, y0(); + * + * y = y0( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of the second kind, of order + * zero, of the argument. + * + * The domain is divided into the intervals [0, 5] and + * (5, infinity). In the first interval a rational approximation + * R(x) is employed to compute + * y0(x) = R(x) + 2 * log(x) * j0(x) / PI. + * Thus a call to j0() is required. + * + * In the second interval, the Hankel asymptotic expansion + * is employed with two rational functions of degree 6/6 + * and 7/7. + * + * + * + * ACCURACY: + * + * Absolute error, when y0(x) < 1; else relative error: + * + * arithmetic domain # trials peak rms + * DEC 0, 30 9400 7.0e-17 7.9e-18 + * IEEE 0, 30 30000 1.3e-15 1.6e-16 + * + */ + const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2, + 1.23953371646414299388E0, 5.44725003058768775090E0, + 8.74716500199817011941E0, 5.30324038235394892183E0, + 9.99999999999999997821E-1}; + const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2, + 1.25352743901058953537E0, 5.47097740330417105182E0, + 8.76190883237069594232E0, 5.30605288235394617618E0, + 1.00000000000000000218E0}; + const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0, + -1.95539544257735972385E1, -9.32060152123768231369E1, + -1.77681167980488050595E2, -1.47077505154951170175E2, + -5.14105326766599330220E1, -6.05014350600728481186E0}; + const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1, + 8.56430025976980587198E2, 3.88240183605401609683E3, + 7.24046774195652478189E3, 5.93072701187316984827E3, + 2.06209331660327847417E3, 2.42005740240291393179E2}; + const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7, + 5.43526477051876500413E9, -9.82136065717911466409E11, + 8.75906394395366999549E13, -3.46628303384729719441E15, + 4.42733268572569800351E16, -1.84950800436986690637E16}; + const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3, + 6.26107330137134956842E5, 2.68919633393814121987E8, + 8.64002487103935000337E10, 2.02979612750105546709E13, + 3.17157752842975028269E15, 2.50596256172653059228E17}; + const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ + const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */ + const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */ + const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity()); + + T z = pmul(x, x); + T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP), + internal::ppolevl<T, 7>::run(z, YQ)); + x_le_five = pmadd( + pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five); + x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five); + T s = pdiv(pset1<T>(25.0), z); + T p = pdiv( + internal::ppolevl<T, 6>::run(s, PP), + internal::ppolevl<T, 6>::run(s, PQ)); + T q = pdiv( + internal::ppolevl<T, 7>::run(s, QP), + internal::ppolevl<T, 7>::run(s, QQ)); + T xn = padd(x, NEG_PIO4); + T w = pdiv(pset1<T>(5.0), x); + p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn)))); + T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x))); + return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five); + } +}; + +template <typename T> +struct bessel_y0_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_y0<T>::run(x); + } +}; + +template <typename T> +struct bessel_j1_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_j1 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_j1<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j1f.c + * Bessel function of order one + * + * + * + * SYNOPSIS: + * + * float x, y, j1f(); + * + * y = j1f( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order one of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval a polynomial approximation + * 2 + * (w - r ) x P(w) + * 1 + * 2 + * is used, where w = x and r is the first zero of the function. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is + * + * j0(x) = Modulus(x) cos( Phase(x) ). + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 1.2e-7 2.5e-8 + * IEEE 2, 32 100000 2.0e-7 5.3e-8 + * + * + */ + + const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f, + -4.541343896997497E-005f, 1.937383947804541E-003f, + -3.405537384615824E-002f}; + const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f, + 3.138238455499697E-001f, -2.102302420403875E-001f, + 5.435364690523026E-003f, 1.493389585089498E-001f, + 4.976029650847191E-006f, 7.978845453073848E-001f}; + const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f, + -2.485774108720340E+001f, 7.222973196770240E+000f, + -1.544842782180211E+000f, 3.503787691653334E-001f, + -1.637986776941202E-001f, 3.749989509080821E-001f}; + const T Z1 = pset1<T>(1.46819706421238932572E1f); + const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */ + + T y = pabs(x); + T z = pmul(y, y); + T y_le_two = pmul( + psub(z, Z1), + pmul(x, internal::ppolevl<T, 4>::run(z, JP))); + T q = pdiv(pset1<T>(1.0f), y); + T w = prsqrt(y); + T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1)); + w = pmul(q, q); + T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F); + T y_gt_two = pmul(p, pcos(padd(yn, y))); + // j1 is an odd function. This implementation differs from cephes to + // take this fact in to account. Cephes returns -j1(x) for y > 2 range. + y_gt_two = pselect( + pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two); + return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two); + } +}; + +template <typename T> +struct generic_j1<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j1.c + * Bessel function of order one + * + * + * + * SYNOPSIS: + * + * double x, y, j1(); + * + * y = j1( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order one of the argument. + * + * The domain is divided into the intervals [0, 8] and + * (8, infinity). In the first interval a 24 term Chebyshev + * expansion is used. In the second, the asymptotic + * trigonometric representation is employed using two + * rational functions of degree 5/5. + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * DEC 0, 30 10000 4.0e-17 1.1e-17 + * IEEE 0, 30 30000 2.6e-16 1.1e-16 + * + */ + const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2, + 1.12719608129684925192E0, 5.11207951146807644818E0, + 8.42404590141772420927E0, 5.21451598682361504063E0, + 1.00000000000000000254E0}; + const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2, + 1.10514232634061696926E0, 5.07386386128601488557E0, + 8.39985554327604159757E0, 5.20982848682361821619E0, + 9.99999999999999997461E-1}; + const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0, + 7.58238284132545283818E1, 3.66779609360150777800E2, + 7.10856304998926107277E2, 5.97489612400613639965E2, + 2.11688757100572135698E2, 2.52070205858023719784E1}; + const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1, + 1.05644886038262816351E3, 4.98641058337653607651E3, + 9.56231892404756170795E3, 7.99704160447350683650E3, + 2.82619278517639096600E3, 3.36093607810698293419E2}; + const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11, + -7.27494245221818276015E13, 3.68295732863852883286E15}; + const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2, + 2.56987256757748830383E5, 8.35146791431949253037E7, + 2.21511595479792499675E10, 4.74914122079991414898E12, + 7.84369607876235854894E14, 8.95222336184627338078E16, + 5.32278620332680085395E18}; + const T Z1 = pset1<T>(1.46819706421238932572E1); + const T Z2 = pset1<T>(4.92184563216946036703E1); + const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */ + const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ + T y = pabs(x); + T z = pmul(y, y); + T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP), + internal::ppolevl<T, 8>::run(z, RQ)); + y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2)); + T s = pdiv(pset1<T>(25.0), z); + T p = pdiv( + internal::ppolevl<T, 6>::run(s, PP), + internal::ppolevl<T, 6>::run(s, PQ)); + T q = pdiv( + internal::ppolevl<T, 7>::run(s, QP), + internal::ppolevl<T, 7>::run(s, QQ)); + T yn = padd(y, NEG_THPIO4); + T w = pdiv(pset1<T>(-5.0), y); + p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn)))); + T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y))); + // j1 is an odd function. This implementation differs from cephes to + // take this fact in to account. Cephes returns -j1(x) for y > 5 range. + y_gt_five = pselect( + pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five); + return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five); + } +}; + +template <typename T> +struct bessel_j1_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_j1<T>::run(x); + } +}; + +template <typename T> +struct bessel_y1_retval { + typedef T type; +}; + +template <typename T, typename ScalarType = typename unpacket_traits<T>::type> +struct generic_y1 { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T&) { + EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return ScalarType(0); + } +}; + +template <typename T> +struct generic_y1<T, float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j1f.c + * Bessel function of second kind of order one + * + * + * + * SYNOPSIS: + * + * double x, y, y1(); + * + * y = y1( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of the second kind of order one + * of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval a rational approximation + * R(x) is employed to compute + * + * 2 + * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) . + * 1 + * + * Thus a call to j1() is required. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is + * + * y0(x) = Modulus(x) sin( Phase(x) ). + * + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 2.2e-7 4.6e-8 + * IEEE 2, 32 100000 1.9e-7 5.3e-8 + * + * (error criterion relative when |y1| > 1). + * + */ + + const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f, + 6.719543806674249E-005f, -2.641785726447862E-003f, + 4.202369946500099E-002f}; + const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f, + 3.138238455499697E-001f, -2.102302420403875E-001f, + 5.435364690523026E-003f, 1.493389585089498E-001f, + 4.976029650847191E-006f, 7.978845453073848E-001f}; + const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f, + -2.485774108720340E+001f, 7.222973196770240E+000f, + -1.544842782180211E+000f, 3.503787691653334E-001f, + -1.637986776941202E-001f, 3.749989509080821E-001f}; + const T YO1 = pset1<T>(4.66539330185668857532f); + const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */ + const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */ + const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity()); + + T z = pmul(x, x); + T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP)); + x_le_two = pmadd( + x_le_two, x, + pmul(TWOOPI, pmadd( + generic_j1<T, float>::run(x), plog(x), + pdiv(pset1<T>(-1.0f), x)))); + x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two); + + T q = pdiv(pset1<T>(1.0), x); + T w = prsqrt(x); + T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1)); + w = pmul(q, q); + T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F); + T x_gt_two = pmul(p, psin(padd(xn, x))); + return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two); + } +}; + +template <typename T> +struct generic_y1<T, double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + /* j1.c + * Bessel function of second kind of order one + * + * + * + * SYNOPSIS: + * + * double x, y, y1(); + * + * y = y1( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of the second kind of order one + * of the argument. + * + * The domain is divided into the intervals [0, 8] and + * (8, infinity). In the first interval a 25 term Chebyshev + * expansion is used, and a call to j1() is required. + * In the second, the asymptotic trigonometric representation + * is employed using two rational functions of degree 5/5. + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * DEC 0, 30 10000 8.6e-17 1.3e-17 + * IEEE 0, 30 30000 1.0e-15 1.3e-16 + * + * (error criterion relative when |y1| > 1). + * + */ + const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2, + 1.12719608129684925192E0, 5.11207951146807644818E0, + 8.42404590141772420927E0, 5.21451598682361504063E0, + 1.00000000000000000254E0}; + const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2, + 1.10514232634061696926E0, 5.07386386128601488557E0, + 8.39985554327604159757E0, 5.20982848682361821619E0, + 9.99999999999999997461E-1}; + const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0, + 7.58238284132545283818E1, 3.66779609360150777800E2, + 7.10856304998926107277E2, 5.97489612400613639965E2, + 2.11688757100572135698E2, 2.52070205858023719784E1}; + const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1, + 1.05644886038262816351E3, 4.98641058337653607651E3, + 9.56231892404756170795E3, 7.99704160447350683650E3, + 2.82619278517639096600E3, 3.36093607810698293419E2}; + const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11, + 1.14509511541823727583E14, -8.12770255501325109621E15, + 2.02439475713594898196E17, -7.78877196265950026825E17}; + const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2, + 2.35564092943068577943E5, 7.34811944459721705660E7, + 1.87601316108706159478E10, 3.88231277496238566008E12, + 6.20557727146953693363E14, 6.87141087355300489866E16, + 3.97270608116560655612E18}; + const T SQ2OPI = pset1<T>(.79788456080286535588); + const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */ + const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */ + const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity()); + + T z = pmul(x, x); + T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP), + internal::ppolevl<T, 8>::run(z, YQ)); + x_le_five = pmadd( + x_le_five, x, pmul( + TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x), + pdiv(pset1<T>(-1.0), x)))); + + x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five); + T s = pdiv(pset1<T>(25.0), z); + T p = pdiv( + internal::ppolevl<T, 6>::run(s, PP), + internal::ppolevl<T, 6>::run(s, PQ)); + T q = pdiv( + internal::ppolevl<T, 7>::run(s, QP), + internal::ppolevl<T, 7>::run(s, QQ)); + T xn = padd(x, NEG_THPIO4); + T w = pdiv(pset1<T>(5.0), x); + p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn)))); + T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x))); + return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five); + } +}; + +template <typename T> +struct bessel_y1_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T x) { + return generic_y1<T>::run(x); + } +}; + +} // end namespace internal + +namespace numext { + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar) + bessel_i0(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar) + bessel_i0e(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar) + bessel_i1(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar) + bessel_i1e(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar) + bessel_k0(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar) + bessel_k0e(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar) + bessel_k1(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar) + bessel_k1e(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar) + bessel_j0(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar) + bessel_y0(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar) + bessel_j1(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar) + bessel_y1(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x); +} + +} // end namespace numext + +} // end namespace Eigen + +#endif // EIGEN_BESSEL_FUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsPacketMath.h b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsPacketMath.h new file mode 100644 index 0000000..943d10f --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/BesselFunctionsPacketMath.h @@ -0,0 +1,118 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BESSELFUNCTIONS_PACKETMATH_H +#define EIGEN_BESSELFUNCTIONS_PACKETMATH_H + +namespace Eigen { + +namespace internal { + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero i0(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_i0(const Packet& x) { + return numext::bessel_i0(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero i0e(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_i0e(const Packet& x) { + return numext::bessel_i0e(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one i1(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_i1(const Packet& x) { + return numext::bessel_i1(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one i1e(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_i1e(const Packet& x) { + return numext::bessel_i1e(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero j0(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_j0(const Packet& x) { + return numext::bessel_j0(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero j1(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_j1(const Packet& x) { + return numext::bessel_j1(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one y0(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_y0(const Packet& x) { + return numext::bessel_y0(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one y1(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_y1(const Packet& x) { + return numext::bessel_y1(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero k0(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_k0(const Packet& x) { + return numext::bessel_k0(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order zero k0e(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_k0e(const Packet& x) { + return numext::bessel_k0e(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one k1e(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_k1(const Packet& x) { + return numext::bessel_k1(x); +} + +/** \internal \returns the exponentially scaled modified Bessel function of + * order one k1e(\a a) (coeff-wise) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pbessel_k1e(const Packet& x) { + return numext::bessel_k1e(x); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BESSELFUNCTIONS_PACKETMATH_H + diff --git a/src/EigenUnsupported/src/SpecialFunctions/HipVectorCompatibility.h b/src/EigenUnsupported/src/SpecialFunctions/HipVectorCompatibility.h new file mode 100644 index 0000000..d7b231a --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/HipVectorCompatibility.h @@ -0,0 +1,67 @@ +#ifndef HIP_VECTOR_COMPATIBILITY_H +#define HIP_VECTOR_COMPATIBILITY_H + +namespace hip_impl { + template <typename, typename, unsigned int> struct Scalar_accessor; +} // end namespace hip_impl + +namespace Eigen { +namespace internal { + +#define HIP_SCALAR_ACCESSOR_BUILDER(NAME) \ +template <typename T, typename U, unsigned int n> \ +struct NAME <hip_impl::Scalar_accessor<T, U, n>> : NAME <T> {}; + +#define HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(NAME) \ +template <typename T, typename U, unsigned int n> \ +struct NAME##_impl <hip_impl::Scalar_accessor<T, U, n>> : NAME##_impl <T> {}; \ +template <typename T, typename U, unsigned int n> \ +struct NAME##_retval <hip_impl::Scalar_accessor<T, U, n>> : NAME##_retval <T> {}; + +#define HIP_SCALAR_ACCESSOR_BUILDER_IGAMMA(NAME) \ +template <typename T, typename U, unsigned int n, IgammaComputationMode mode> \ +struct NAME <hip_impl::Scalar_accessor<T, U, n>, mode> : NAME <T, mode> {}; + +#if EIGEN_HAS_C99_MATH +HIP_SCALAR_ACCESSOR_BUILDER(betainc_helper) +HIP_SCALAR_ACCESSOR_BUILDER(incbeta_cfe) + +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(erf) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(erfc) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(igammac) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(lgamma) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(ndtri) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(polygamma) + +HIP_SCALAR_ACCESSOR_BUILDER_IGAMMA(igamma_generic_impl) +#endif + +HIP_SCALAR_ACCESSOR_BUILDER(digamma_impl_maybe_poly) +HIP_SCALAR_ACCESSOR_BUILDER(zeta_impl_series) + +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_i0) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_i0e) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_i1) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_i1e) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_j0) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_j1) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_k0) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_k0e) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_k1) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_k1e) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_y0) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(bessel_y1) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(betainc) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(digamma) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(gamma_sample_der_alpha) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(igamma_der_a) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(igamma) +HIP_SCALAR_ACCESSOR_BUILDER_RETVAL(zeta) + +HIP_SCALAR_ACCESSOR_BUILDER_IGAMMA(igamma_series_impl) +HIP_SCALAR_ACCESSOR_BUILDER_IGAMMA(igammac_cf_impl) + +} // end namespace internal +} // end namespace Eigen + +#endif // HIP_VECTOR_COMPATIBILITY_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsArrayAPI.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsArrayAPI.h new file mode 100644 index 0000000..691ff4d --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsArrayAPI.h @@ -0,0 +1,167 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H +#define EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H + +namespace Eigen { + +/** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays. + * + * This function computes the coefficient-wise incomplete gamma function. + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::igammac(), Eigen::lgamma() + */ +template<typename Derived,typename ExponentDerived> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived> +igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) +{ + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>( + a.derived(), + x.derived() + ); +} + +/** \cpp11 \returns an expression of the coefficient-wise igamma_der_a(\a a, \a x) to the given arrays. + * + * This function computes the coefficient-wise derivative of the incomplete + * gamma function with respect to the parameter a. + * + * \note This function supports only float and double scalar types in c++11 + * mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations + * of igamma_der_a(T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::igamma(), Eigen::lgamma() + */ +template <typename Derived, typename ExponentDerived> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_der_a_op<typename Derived::Scalar>, const Derived, const ExponentDerived> +igamma_der_a(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) { + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_der_a_op<typename Derived::Scalar>, const Derived, const ExponentDerived>( + a.derived(), + x.derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise gamma_sample_der_alpha(\a alpha, \a sample) to the given arrays. + * + * This function computes the coefficient-wise derivative of the sample + * of a Gamma(alpha, 1) random variable with respect to the parameter alpha. + * + * \note This function supports only float and double scalar types in c++11 + * mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations + * of gamma_sample_der_alpha(T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::igamma(), Eigen::lgamma() + */ +template <typename AlphaDerived, typename SampleDerived> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_gamma_sample_der_alpha_op<typename AlphaDerived::Scalar>, const AlphaDerived, const SampleDerived> +gamma_sample_der_alpha(const Eigen::ArrayBase<AlphaDerived>& alpha, const Eigen::ArrayBase<SampleDerived>& sample) { + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_gamma_sample_der_alpha_op<typename AlphaDerived::Scalar>, const AlphaDerived, const SampleDerived>( + alpha.derived(), + sample.derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays. + * + * This function computes the coefficient-wise complementary incomplete gamma function. + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::igamma(), Eigen::lgamma() + */ +template<typename Derived,typename ExponentDerived> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived> +igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) +{ + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>( + a.derived(), + x.derived() + ); +} + +/** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays. + * + * It returns the \a n -th derivative of the digamma(psi) evaluated at \c x. + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::digamma() + */ +// * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) +// * \sa ArrayBase::polygamma() +template<typename DerivedN,typename DerivedX> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX> +polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x) +{ + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>( + n.derived(), + x.derived() + ); +} + +/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays. + * + * This function computes the regularized incomplete beta function (integral). + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar + * type T to be supported. + * + * \sa Eigen::betainc(), Eigen::lgamma() + */ +template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived> +EIGEN_STRONG_INLINE const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived> +betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x) +{ + return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>( + a.derived(), + b.derived(), + x.derived() + ); +} + + +/** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays. + * + * It returns the Riemann zeta function of two arguments \a x and \a q: + * + * \param x is the exponent, it must be > 1 + * \param q is the shift, it must be > 0 + * + * \note This function supports only float and double scalar types. To support other scalar types, the user has + * to provide implementations of zeta(T,T) for any scalar type T to be supported. + * + * \sa ArrayBase::zeta() + */ +template<typename DerivedX,typename DerivedQ> +EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ> +zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q) +{ + return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>( + x.derived(), + q.derived() + ); +} + + +} // end namespace Eigen + +#endif // EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsBFloat16.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsBFloat16.h new file mode 100644 index 0000000..2d94231 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsBFloat16.h @@ -0,0 +1,58 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPECIALFUNCTIONS_BFLOAT16_H +#define EIGEN_SPECIALFUNCTIONS_BFLOAT16_H + +namespace Eigen { +namespace numext { + +#if EIGEN_HAS_C99_MATH +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 lgamma(const Eigen::bfloat16& a) { + return Eigen::bfloat16(Eigen::numext::lgamma(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 digamma(const Eigen::bfloat16& a) { + return Eigen::bfloat16(Eigen::numext::digamma(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 zeta(const Eigen::bfloat16& x, const Eigen::bfloat16& q) { + return Eigen::bfloat16(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 polygamma(const Eigen::bfloat16& n, const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 erf(const Eigen::bfloat16& a) { + return Eigen::bfloat16(Eigen::numext::erf(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 erfc(const Eigen::bfloat16& a) { + return Eigen::bfloat16(Eigen::numext::erfc(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 ndtri(const Eigen::bfloat16& a) { + return Eigen::bfloat16(Eigen::numext::ndtri(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 igamma(const Eigen::bfloat16& a, const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 igamma_der_a(const Eigen::bfloat16& a, const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::igamma_der_a(static_cast<float>(a), static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 gamma_sample_der_alpha(const Eigen::bfloat16& alpha, const Eigen::bfloat16& sample) { + return Eigen::bfloat16(Eigen::numext::gamma_sample_der_alpha(static_cast<float>(alpha), static_cast<float>(sample))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 igammac(const Eigen::bfloat16& a, const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 betainc(const Eigen::bfloat16& a, const Eigen::bfloat16& b, const Eigen::bfloat16& x) { + return Eigen::bfloat16(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x))); +} +#endif + +} // end namespace numext +} // end namespace Eigen + +#endif // EIGEN_SPECIALFUNCTIONS_BFLOAT16_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsFunctors.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsFunctors.h new file mode 100644 index 0000000..abefe99 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsFunctors.h @@ -0,0 +1,330 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com> +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPECIALFUNCTIONS_FUNCTORS_H +#define EIGEN_SPECIALFUNCTIONS_FUNCTORS_H + +namespace Eigen { + +namespace internal { + + +/** \internal + * \brief Template functor to compute the incomplete gamma function igamma(a, x) + * + * \sa class CwiseBinaryOp, Cwise::igamma + */ +template<typename Scalar> struct scalar_igamma_op : binary_op_base<Scalar,Scalar> +{ + EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const { + using numext::igamma; return igamma(a, x); + } + template<typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const { + return internal::pigamma(a, x); + } +}; +template<typename Scalar> +struct functor_traits<scalar_igamma_op<Scalar> > { + enum { + // Guesstimate + Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasIGamma + }; +}; + +/** \internal + * \brief Template functor to compute the derivative of the incomplete gamma + * function igamma_der_a(a, x) + * + * \sa class CwiseBinaryOp, Cwise::igamma_der_a + */ +template <typename Scalar> +struct scalar_igamma_der_a_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_der_a_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a, const Scalar& x) const { + using numext::igamma_der_a; + return igamma_der_a(a, x); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const { + return internal::pigamma_der_a(a, x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_igamma_der_a_op<Scalar> > { + enum { + // 2x the cost of igamma + Cost = 40 * NumTraits<Scalar>::MulCost + 20 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasIGammaDerA + }; +}; + +/** \internal + * \brief Template functor to compute the derivative of the sample + * of a Gamma(alpha, 1) random variable with respect to the parameter alpha + * gamma_sample_der_alpha(alpha, sample) + * + * \sa class CwiseBinaryOp, Cwise::gamma_sample_der_alpha + */ +template <typename Scalar> +struct scalar_gamma_sample_der_alpha_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_gamma_sample_der_alpha_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& alpha, const Scalar& sample) const { + using numext::gamma_sample_der_alpha; + return gamma_sample_der_alpha(alpha, sample); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& alpha, const Packet& sample) const { + return internal::pgamma_sample_der_alpha(alpha, sample); + } +}; +template <typename Scalar> +struct functor_traits<scalar_gamma_sample_der_alpha_op<Scalar> > { + enum { + // 2x the cost of igamma, minus the lgamma cost (the lgamma cancels out) + Cost = 30 * NumTraits<Scalar>::MulCost + 15 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasGammaSampleDerAlpha + }; +}; + +/** \internal + * \brief Template functor to compute the complementary incomplete gamma function igammac(a, x) + * + * \sa class CwiseBinaryOp, Cwise::igammac + */ +template<typename Scalar> struct scalar_igammac_op : binary_op_base<Scalar,Scalar> +{ + EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const { + using numext::igammac; return igammac(a, x); + } + template<typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const + { + return internal::pigammac(a, x); + } +}; +template<typename Scalar> +struct functor_traits<scalar_igammac_op<Scalar> > { + enum { + // Guesstimate + Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasIGammac + }; +}; + + +/** \internal + * \brief Template functor to compute the incomplete beta integral betainc(a, b, x) + * + */ +template<typename Scalar> struct scalar_betainc_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_betainc_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& x, const Scalar& a, const Scalar& b) const { + using numext::betainc; return betainc(x, a, b); + } + template<typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& x, const Packet& a, const Packet& b) const + { + return internal::pbetainc(x, a, b); + } +}; +template<typename Scalar> +struct functor_traits<scalar_betainc_op<Scalar> > { + enum { + // Guesstimate + Cost = 400 * NumTraits<Scalar>::MulCost + 400 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasBetaInc + }; +}; + + +/** \internal + * \brief Template functor to compute the natural log of the absolute + * value of Gamma of a scalar + * \sa class CwiseUnaryOp, Cwise::lgamma() + */ +template<typename Scalar> struct scalar_lgamma_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { + using numext::lgamma; return lgamma(a); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { return internal::plgamma(a); } +}; +template<typename Scalar> +struct functor_traits<scalar_lgamma_op<Scalar> > +{ + enum { + // Guesstimate + Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasLGamma + }; +}; + +/** \internal + * \brief Template functor to compute psi, the derivative of lgamma of a scalar. + * \sa class CwiseUnaryOp, Cwise::digamma() + */ +template<typename Scalar> struct scalar_digamma_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_digamma_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { + using numext::digamma; return digamma(a); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { return internal::pdigamma(a); } +}; +template<typename Scalar> +struct functor_traits<scalar_digamma_op<Scalar> > +{ + enum { + // Guesstimate + Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasDiGamma + }; +}; + +/** \internal + * \brief Template functor to compute the Riemann Zeta function of two arguments. + * \sa class CwiseUnaryOp, Cwise::zeta() + */ +template<typename Scalar> struct scalar_zeta_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& x, const Scalar& q) const { + using numext::zeta; return zeta(x, q); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); } +}; +template<typename Scalar> +struct functor_traits<scalar_zeta_op<Scalar> > +{ + enum { + // Guesstimate + Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasZeta + }; +}; + +/** \internal + * \brief Template functor to compute the polygamma function. + * \sa class CwiseUnaryOp, Cwise::polygamma() + */ +template<typename Scalar> struct scalar_polygamma_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_polygamma_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& n, const Scalar& x) const { + using numext::polygamma; return polygamma(n, x); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& n, const Packet& x) const { return internal::ppolygamma(n, x); } +}; +template<typename Scalar> +struct functor_traits<scalar_polygamma_op<Scalar> > +{ + enum { + // Guesstimate + Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasPolygamma + }; +}; + +/** \internal + * \brief Template functor to compute the error function of a scalar + * \sa class CwiseUnaryOp, ArrayBase::erf() + */ +template<typename Scalar> struct scalar_erf_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar + operator()(const Scalar& a) const { + return numext::erf(a); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const { + return perf(x); + } +}; +template <typename Scalar> +struct functor_traits<scalar_erf_op<Scalar> > { + enum { + PacketAccess = packet_traits<Scalar>::HasErf, + Cost = + (PacketAccess +#ifdef EIGEN_VECTORIZE_FMA + // TODO(rmlarsen): Move the FMA cost model to a central location. + // Haswell can issue 2 add/mul/madd per cycle. + // 10 pmadd, 2 pmul, 1 div, 2 other + ? (2 * NumTraits<Scalar>::AddCost + + 7 * NumTraits<Scalar>::MulCost + + scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value) +#else + ? (12 * NumTraits<Scalar>::AddCost + + 12 * NumTraits<Scalar>::MulCost + + scalar_div_cost<Scalar, packet_traits<Scalar>::HasDiv>::value) +#endif + // Assume for simplicity that this is as expensive as an exp(). + : (functor_traits<scalar_exp_op<Scalar> >::Cost)) + }; +}; + +/** \internal + * \brief Template functor to compute the Complementary Error Function + * of a scalar + * \sa class CwiseUnaryOp, Cwise::erfc() + */ +template<typename Scalar> struct scalar_erfc_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { + using numext::erfc; return erfc(a); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { return internal::perfc(a); } +}; +template<typename Scalar> +struct functor_traits<scalar_erfc_op<Scalar> > +{ + enum { + // Guesstimate + Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasErfc + }; +}; + +/** \internal + * \brief Template functor to compute the Inverse of the normal distribution + * function of a scalar + * \sa class CwiseUnaryOp, Cwise::ndtri() + */ +template<typename Scalar> struct scalar_ndtri_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_ndtri_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { + using numext::ndtri; return ndtri(a); + } + typedef typename packet_traits<Scalar>::type Packet; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a) const { return internal::pndtri(a); } +}; +template<typename Scalar> +struct functor_traits<scalar_ndtri_op<Scalar> > +{ + enum { + // On average, We are evaluating rational functions with degree N=9 in the + // numerator and denominator. This results in 2*N additions and 2*N + // multiplications. + Cost = 18 * NumTraits<Scalar>::MulCost + 18 * NumTraits<Scalar>::AddCost, + PacketAccess = packet_traits<Scalar>::HasNdtri + }; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPECIALFUNCTIONS_FUNCTORS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsHalf.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsHalf.h new file mode 100644 index 0000000..2a3a531 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsHalf.h @@ -0,0 +1,58 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPECIALFUNCTIONS_HALF_H +#define EIGEN_SPECIALFUNCTIONS_HALF_H + +namespace Eigen { +namespace numext { + +#if EIGEN_HAS_C99_MATH +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) { + return Eigen::half(Eigen::numext::lgamma(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) { + return Eigen::half(Eigen::numext::digamma(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) { + return Eigen::half(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) { + return Eigen::half(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) { + return Eigen::half(Eigen::numext::erf(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) { + return Eigen::half(Eigen::numext::erfc(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ndtri(const Eigen::half& a) { + return Eigen::half(Eigen::numext::ndtri(static_cast<float>(a))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) { + return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma_der_a(const Eigen::half& a, const Eigen::half& x) { + return Eigen::half(Eigen::numext::igamma_der_a(static_cast<float>(a), static_cast<float>(x))); +} +template <> +EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half gamma_sample_der_alpha(const Eigen::half& alpha, const Eigen::half& sample) { + return Eigen::half(Eigen::numext::gamma_sample_der_alpha(static_cast<float>(alpha), static_cast<float>(sample))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) { + return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x))); +} +template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half betainc(const Eigen::half& a, const Eigen::half& b, const Eigen::half& x) { + return Eigen::half(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x))); +} +#endif + +} // end namespace numext +} // end namespace Eigen + +#endif // EIGEN_SPECIALFUNCTIONS_HALF_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsImpl.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsImpl.h new file mode 100644 index 0000000..f1c260e --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsImpl.h @@ -0,0 +1,2045 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPECIAL_FUNCTIONS_H +#define EIGEN_SPECIAL_FUNCTIONS_H + +namespace Eigen { +namespace internal { + +// Parts of this code are based on the Cephes Math Library. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier +// +// Permission has been kindly provided by the original author +// to incorporate the Cephes software into the Eigen codebase: +// +// From: Stephen Moshier +// To: Eugene Brevdo +// Subject: Re: Permission to wrap several cephes functions in Eigen +// +// Hello Eugene, +// +// Thank you for writing. +// +// If your licensing is similar to BSD, the formal way that has been +// handled is simply to add a statement to the effect that you are incorporating +// the Cephes software by permission of the author. +// +// Good luck with your project, +// Steve + + +/**************************************************************************** + * Implementation of lgamma, requires C++11/C99 * + ****************************************************************************/ + +template <typename Scalar> +struct lgamma_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +template <typename Scalar> +struct lgamma_retval { + typedef Scalar type; +}; + +#if EIGEN_HAS_C99_MATH +// Since glibc 2.19 +#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 19) || __GLIBC__>2) \ + && (defined(_DEFAULT_SOURCE) || defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) +#define EIGEN_HAS_LGAMMA_R +#endif + +// Glibc versions before 2.19 +#if defined(__GLIBC__) && ((__GLIBC__==2 && __GLIBC_MINOR__ < 19) || __GLIBC__<2) \ + && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) +#define EIGEN_HAS_LGAMMA_R +#endif + +template <> +struct lgamma_impl<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float run(float x) { +#if !defined(EIGEN_GPU_COMPILE_PHASE) && defined (EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__) + int dummy; + return ::lgammaf_r(x, &dummy); +#elif defined(SYCL_DEVICE_ONLY) + return cl::sycl::lgamma(x); +#else + return ::lgammaf(x); +#endif + } +}; + +template <> +struct lgamma_impl<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double run(double x) { +#if !defined(EIGEN_GPU_COMPILE_PHASE) && defined(EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__) + int dummy; + return ::lgamma_r(x, &dummy); +#elif defined(SYCL_DEVICE_ONLY) + return cl::sycl::lgamma(x); +#else + return ::lgamma(x); +#endif + } +}; + +#undef EIGEN_HAS_LGAMMA_R +#endif + +/**************************************************************************** + * Implementation of digamma (psi), based on Cephes * + ****************************************************************************/ + +template <typename Scalar> +struct digamma_retval { + typedef Scalar type; +}; + +/* + * + * Polynomial evaluation helper for the Psi (digamma) function. + * + * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for + * input Scalar s, assuming s is above 10.0. + * + * If s is above a certain threshold for the given Scalar type, zero + * is returned. Otherwise the polynomial is evaluated with enough + * coefficients for results matching Scalar machine precision. + * + * + */ +template <typename Scalar> +struct digamma_impl_maybe_poly { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + + +template <> +struct digamma_impl_maybe_poly<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float run(const float s) { + const float A[] = { + -4.16666666666666666667E-3f, + 3.96825396825396825397E-3f, + -8.33333333333333333333E-3f, + 8.33333333333333333333E-2f + }; + + float z; + if (s < 1.0e8f) { + z = 1.0f / (s * s); + return z * internal::ppolevl<float, 3>::run(z, A); + } else return 0.0f; + } +}; + +template <> +struct digamma_impl_maybe_poly<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double run(const double s) { + const double A[] = { + 8.33333333333333333333E-2, + -2.10927960927960927961E-2, + 7.57575757575757575758E-3, + -4.16666666666666666667E-3, + 3.96825396825396825397E-3, + -8.33333333333333333333E-3, + 8.33333333333333333333E-2 + }; + + double z; + if (s < 1.0e17) { + z = 1.0 / (s * s); + return z * internal::ppolevl<double, 6>::run(z, A); + } + else return 0.0; + } +}; + +template <typename Scalar> +struct digamma_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar x) { + /* + * + * Psi (digamma) function (modified for Eigen) + * + * + * SYNOPSIS: + * + * double x, y, psi(); + * + * y = psi( x ); + * + * + * DESCRIPTION: + * + * d - + * psi(x) = -- ln | (x) + * dx + * + * is the logarithmic derivative of the gamma function. + * For integer x, + * n-1 + * - + * psi(n) = -EUL + > 1/k. + * - + * k=1 + * + * If x is negative, it is transformed to a positive argument by the + * reflection formula psi(1-x) = psi(x) + pi cot(pi x). + * For general positive x, the argument is made greater than 10 + * using the recurrence psi(x+1) = psi(x) + 1/x. + * Then the following asymptotic expansion is applied: + * + * inf. B + * - 2k + * psi(x) = log(x) - 1/2x - > ------- + * - 2k + * k=1 2k x + * + * where the B2k are Bernoulli numbers. + * + * ACCURACY (float): + * Relative error (except absolute when |psi| < 1): + * arithmetic domain # trials peak rms + * IEEE 0,30 30000 1.3e-15 1.4e-16 + * IEEE -30,0 40000 1.5e-15 2.2e-16 + * + * ACCURACY (double): + * Absolute error, relative when |psi| > 1 : + * arithmetic domain # trials peak rms + * IEEE -33,0 30000 8.2e-7 1.2e-7 + * IEEE 0,33 100000 7.3e-7 7.7e-8 + * + * ERROR MESSAGES: + * message condition value returned + * psi singularity x integer <=0 INFINITY + */ + + Scalar p, q, nz, s, w, y; + bool negative = false; + + const Scalar nan = NumTraits<Scalar>::quiet_NaN(); + const Scalar m_pi = Scalar(EIGEN_PI); + + const Scalar zero = Scalar(0); + const Scalar one = Scalar(1); + const Scalar half = Scalar(0.5); + nz = zero; + + if (x <= zero) { + negative = true; + q = x; + p = numext::floor(q); + if (p == q) { + return nan; + } + /* Remove the zeros of tan(m_pi x) + * by subtracting the nearest integer from x + */ + nz = q - p; + if (nz != half) { + if (nz > half) { + p += one; + nz = q - p; + } + nz = m_pi / numext::tan(m_pi * nz); + } + else { + nz = zero; + } + x = one - x; + } + + /* use the recurrence psi(x+1) = psi(x) + 1/x. */ + s = x; + w = zero; + while (s < Scalar(10)) { + w += one / s; + s += one; + } + + y = digamma_impl_maybe_poly<Scalar>::run(s); + + y = numext::log(s) - (half / s) - y - w; + + return (negative) ? y - nz : y; + } +}; + +/**************************************************************************** + * Implementation of erf, requires C++11/C99 * + ****************************************************************************/ + +/** \internal \returns the error function of \a a (coeff-wise) + Doesn't do anything fancy, just a 13/8-degree rational interpolant which + is accurate up to a couple of ulp in the range [-4, 4], outside of which + fl(erf(x)) = +/-1. + + This implementation works on both scalars and Ts. +*/ +template <typename T> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_fast_erf_float(const T& a_x) { + // Clamp the inputs to the range [-4, 4] since anything outside + // this range is +/-1.0f in single-precision. + const T plus_4 = pset1<T>(4.f); + const T minus_4 = pset1<T>(-4.f); + const T x = pmax(pmin(a_x, plus_4), minus_4); + // The monomial coefficients of the numerator polynomial (odd). + const T alpha_1 = pset1<T>(-1.60960333262415e-02f); + const T alpha_3 = pset1<T>(-2.95459980854025e-03f); + const T alpha_5 = pset1<T>(-7.34990630326855e-04f); + const T alpha_7 = pset1<T>(-5.69250639462346e-05f); + const T alpha_9 = pset1<T>(-2.10102402082508e-06f); + const T alpha_11 = pset1<T>(2.77068142495902e-08f); + const T alpha_13 = pset1<T>(-2.72614225801306e-10f); + + // The monomial coefficients of the denominator polynomial (even). + const T beta_0 = pset1<T>(-1.42647390514189e-02f); + const T beta_2 = pset1<T>(-7.37332916720468e-03f); + const T beta_4 = pset1<T>(-1.68282697438203e-03f); + const T beta_6 = pset1<T>(-2.13374055278905e-04f); + const T beta_8 = pset1<T>(-1.45660718464996e-05f); + + // Since the polynomials are odd/even, we need x^2. + const T x2 = pmul(x, x); + + // Evaluate the numerator polynomial p. + T p = pmadd(x2, alpha_13, alpha_11); + p = pmadd(x2, p, alpha_9); + p = pmadd(x2, p, alpha_7); + p = pmadd(x2, p, alpha_5); + p = pmadd(x2, p, alpha_3); + p = pmadd(x2, p, alpha_1); + p = pmul(x, p); + + // Evaluate the denominator polynomial p. + T q = pmadd(x2, beta_8, beta_6); + q = pmadd(x2, q, beta_4); + q = pmadd(x2, q, beta_2); + q = pmadd(x2, q, beta_0); + + // Divide the numerator by the denominator. + return pdiv(p, q); +} + +template <typename T> +struct erf_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE T run(const T& x) { + return generic_fast_erf_float(x); + } +}; + +template <typename Scalar> +struct erf_retval { + typedef Scalar type; +}; + +#if EIGEN_HAS_C99_MATH +template <> +struct erf_impl<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float run(float x) { +#if defined(SYCL_DEVICE_ONLY) + return cl::sycl::erf(x); +#else + return generic_fast_erf_float(x); +#endif + } +}; + +template <> +struct erf_impl<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double run(double x) { +#if defined(SYCL_DEVICE_ONLY) + return cl::sycl::erf(x); +#else + return ::erf(x); +#endif + } +}; +#endif // EIGEN_HAS_C99_MATH + +/*************************************************************************** +* Implementation of erfc, requires C++11/C99 * +****************************************************************************/ + +template <typename Scalar> +struct erfc_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +template <typename Scalar> +struct erfc_retval { + typedef Scalar type; +}; + +#if EIGEN_HAS_C99_MATH +template <> +struct erfc_impl<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float run(const float x) { +#if defined(SYCL_DEVICE_ONLY) + return cl::sycl::erfc(x); +#else + return ::erfcf(x); +#endif + } +}; + +template <> +struct erfc_impl<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double run(const double x) { +#if defined(SYCL_DEVICE_ONLY) + return cl::sycl::erfc(x); +#else + return ::erfc(x); +#endif + } +}; +#endif // EIGEN_HAS_C99_MATH + + +/*************************************************************************** +* Implementation of ndtri. * +****************************************************************************/ + +/* Inverse of Normal distribution function (modified for Eigen). + * + * + * SYNOPSIS: + * + * double x, y, ndtri(); + * + * x = ndtri( y ); + * + * + * + * DESCRIPTION: + * + * Returns the argument, x, for which the area under the + * Gaussian probability density function (integrated from + * minus infinity to x) is equal to y. + * + * + * For small arguments 0 < y < exp(-2), the program computes + * z = sqrt( -2.0 * log(y) ); then the approximation is + * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). + * There are two rational functions P/Q, one for 0 < y < exp(-32) + * and the other for y up to exp(-2). For larger arguments, + * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0.125, 1 5500 9.5e-17 2.1e-17 + * DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17 + * IEEE 0.125, 1 20000 7.2e-16 1.3e-16 + * IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * ndtri domain x <= 0 -MAXNUM + * ndtri domain x >= 1 MAXNUM + * + */ + /* + Cephes Math Library Release 2.2: June, 1992 + Copyright 1985, 1987, 1992 by Stephen L. Moshier + Direct inquiries to 30 Frost Street, Cambridge, MA 02140 + */ + + +// TODO: Add a cheaper approximation for float. + + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T flipsign( + const T& should_flipsign, const T& x) { + typedef typename unpacket_traits<T>::type Scalar; + const T sign_mask = pset1<T>(Scalar(-0.0)); + T sign_bit = pand<T>(should_flipsign, sign_mask); + return pxor<T>(sign_bit, x); +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double flipsign<double>( + const double& should_flipsign, const double& x) { + return should_flipsign == 0 ? x : -x; +} + +template<> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float flipsign<float>( + const float& should_flipsign, const float& x) { + return should_flipsign == 0 ? x : -x; +} + +// We split this computation in to two so that in the scalar path +// only one branch is evaluated (due to our template specialization of pselect +// being an if statement.) + +template <typename T, typename ScalarType> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_gt_exp_neg_two(const T& b) { + const ScalarType p0[] = { + ScalarType(-5.99633501014107895267e1), + ScalarType(9.80010754185999661536e1), + ScalarType(-5.66762857469070293439e1), + ScalarType(1.39312609387279679503e1), + ScalarType(-1.23916583867381258016e0) + }; + const ScalarType q0[] = { + ScalarType(1.0), + ScalarType(1.95448858338141759834e0), + ScalarType(4.67627912898881538453e0), + ScalarType(8.63602421390890590575e1), + ScalarType(-2.25462687854119370527e2), + ScalarType(2.00260212380060660359e2), + ScalarType(-8.20372256168333339912e1), + ScalarType(1.59056225126211695515e1), + ScalarType(-1.18331621121330003142e0) + }; + const T sqrt2pi = pset1<T>(ScalarType(2.50662827463100050242e0)); + const T half = pset1<T>(ScalarType(0.5)); + T c, c2, ndtri_gt_exp_neg_two; + + c = psub(b, half); + c2 = pmul(c, c); + ndtri_gt_exp_neg_two = pmadd(c, pmul( + c2, pdiv( + internal::ppolevl<T, 4>::run(c2, p0), + internal::ppolevl<T, 8>::run(c2, q0))), c); + return pmul(ndtri_gt_exp_neg_two, sqrt2pi); +} + +template <typename T, typename ScalarType> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_lt_exp_neg_two( + const T& b, const T& should_flipsign) { + /* Approximation for interval z = sqrt(-2 log a ) between 2 and 8 + * i.e., a between exp(-2) = .135 and exp(-32) = 1.27e-14. + */ + const ScalarType p1[] = { + ScalarType(4.05544892305962419923e0), + ScalarType(3.15251094599893866154e1), + ScalarType(5.71628192246421288162e1), + ScalarType(4.40805073893200834700e1), + ScalarType(1.46849561928858024014e1), + ScalarType(2.18663306850790267539e0), + ScalarType(-1.40256079171354495875e-1), + ScalarType(-3.50424626827848203418e-2), + ScalarType(-8.57456785154685413611e-4) + }; + const ScalarType q1[] = { + ScalarType(1.0), + ScalarType(1.57799883256466749731e1), + ScalarType(4.53907635128879210584e1), + ScalarType(4.13172038254672030440e1), + ScalarType(1.50425385692907503408e1), + ScalarType(2.50464946208309415979e0), + ScalarType(-1.42182922854787788574e-1), + ScalarType(-3.80806407691578277194e-2), + ScalarType(-9.33259480895457427372e-4) + }; + /* Approximation for interval z = sqrt(-2 log a ) between 8 and 64 + * i.e., a between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. + */ + const ScalarType p2[] = { + ScalarType(3.23774891776946035970e0), + ScalarType(6.91522889068984211695e0), + ScalarType(3.93881025292474443415e0), + ScalarType(1.33303460815807542389e0), + ScalarType(2.01485389549179081538e-1), + ScalarType(1.23716634817820021358e-2), + ScalarType(3.01581553508235416007e-4), + ScalarType(2.65806974686737550832e-6), + ScalarType(6.23974539184983293730e-9) + }; + const ScalarType q2[] = { + ScalarType(1.0), + ScalarType(6.02427039364742014255e0), + ScalarType(3.67983563856160859403e0), + ScalarType(1.37702099489081330271e0), + ScalarType(2.16236993594496635890e-1), + ScalarType(1.34204006088543189037e-2), + ScalarType(3.28014464682127739104e-4), + ScalarType(2.89247864745380683936e-6), + ScalarType(6.79019408009981274425e-9) + }; + const T eight = pset1<T>(ScalarType(8.0)); + const T one = pset1<T>(ScalarType(1)); + const T neg_two = pset1<T>(ScalarType(-2)); + T x, x0, x1, z; + + x = psqrt(pmul(neg_two, plog(b))); + x0 = psub(x, pdiv(plog(x), x)); + z = pdiv(one, x); + x1 = pmul( + z, pselect( + pcmp_lt(x, eight), + pdiv(internal::ppolevl<T, 8>::run(z, p1), + internal::ppolevl<T, 8>::run(z, q1)), + pdiv(internal::ppolevl<T, 8>::run(z, p2), + internal::ppolevl<T, 8>::run(z, q2)))); + return flipsign(should_flipsign, psub(x0, x1)); +} + +template <typename T, typename ScalarType> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T generic_ndtri(const T& a) { + const T maxnum = pset1<T>(NumTraits<ScalarType>::infinity()); + const T neg_maxnum = pset1<T>(-NumTraits<ScalarType>::infinity()); + + const T zero = pset1<T>(ScalarType(0)); + const T one = pset1<T>(ScalarType(1)); + // exp(-2) + const T exp_neg_two = pset1<T>(ScalarType(0.13533528323661269189)); + T b, ndtri, should_flipsign; + + should_flipsign = pcmp_le(a, psub(one, exp_neg_two)); + b = pselect(should_flipsign, a, psub(one, a)); + + ndtri = pselect( + pcmp_lt(exp_neg_two, b), + generic_ndtri_gt_exp_neg_two<T, ScalarType>(b), + generic_ndtri_lt_exp_neg_two<T, ScalarType>(b, should_flipsign)); + + return pselect( + pcmp_le(a, zero), neg_maxnum, + pselect(pcmp_le(one, a), maxnum, ndtri)); +} + +template <typename Scalar> +struct ndtri_retval { + typedef Scalar type; +}; + +#if !EIGEN_HAS_C99_MATH + +template <typename Scalar> +struct ndtri_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +# else + +template <typename Scalar> +struct ndtri_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar x) { + return generic_ndtri<Scalar, Scalar>(x); + } +}; + +#endif // EIGEN_HAS_C99_MATH + + +/************************************************************************************************************** + * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 * + **************************************************************************************************************/ + +template <typename Scalar> +struct igammac_retval { + typedef Scalar type; +}; + +// NOTE: cephes_helper is also used to implement zeta +template <typename Scalar> +struct cephes_helper { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; } +}; + +template <> +struct cephes_helper<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float machep() { + return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0 + } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float big() { + // use epsneg (1.0 - epsneg == 1.0) + return 1.0f / (NumTraits<float>::epsilon() / 2); + } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float biginv() { + // epsneg + return machep(); + } +}; + +template <> +struct cephes_helper<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double machep() { + return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0 + } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double big() { + return 1.0 / NumTraits<double>::epsilon(); + } + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double biginv() { + // inverse of eps + return NumTraits<double>::epsilon(); + } +}; + +enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE }; + +template <typename Scalar> +EIGEN_DEVICE_FUNC +static EIGEN_STRONG_INLINE Scalar main_igamma_term(Scalar a, Scalar x) { + /* Compute x**a * exp(-x) / gamma(a) */ + Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); + if (logax < -numext::log(NumTraits<Scalar>::highest()) || + // Assuming x and a aren't Nan. + (numext::isnan)(logax)) { + return Scalar(0); + } + return numext::exp(logax); +} + +template <typename Scalar, IgammaComputationMode mode> +EIGEN_DEVICE_FUNC +int igamma_num_iterations() { + /* Returns the maximum number of internal iterations for igamma computation. + */ + if (mode == VALUE) { + return 2000; + } + + if (internal::is_same<Scalar, float>::value) { + return 200; + } else if (internal::is_same<Scalar, double>::value) { + return 500; + } else { + return 2000; + } +} + +template <typename Scalar, IgammaComputationMode mode> +struct igammac_cf_impl { + /* Computes igamc(a, x) or derivative (depending on the mode) + * using the continued fraction expansion of the complementary + * incomplete Gamma function. + * + * Preconditions: + * a > 0 + * x >= 1 + * x >= a + */ + EIGEN_DEVICE_FUNC + static Scalar run(Scalar a, Scalar x) { + const Scalar zero = 0; + const Scalar one = 1; + const Scalar two = 2; + const Scalar machep = cephes_helper<Scalar>::machep(); + const Scalar big = cephes_helper<Scalar>::big(); + const Scalar biginv = cephes_helper<Scalar>::biginv(); + + if ((numext::isinf)(x)) { + return zero; + } + + Scalar ax = main_igamma_term<Scalar>(a, x); + // This is independent of mode. If this value is zero, + // then the function value is zero. If the function value is zero, + // then we are in a neighborhood where the function value evalutes to zero, + // so the derivative is zero. + if (ax == zero) { + return zero; + } + + // continued fraction + Scalar y = one - a; + Scalar z = x + y + one; + Scalar c = zero; + Scalar pkm2 = one; + Scalar qkm2 = x; + Scalar pkm1 = x + one; + Scalar qkm1 = z * x; + Scalar ans = pkm1 / qkm1; + + Scalar dpkm2_da = zero; + Scalar dqkm2_da = zero; + Scalar dpkm1_da = zero; + Scalar dqkm1_da = -x; + Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1; + + for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) { + c += one; + y += one; + z += two; + + Scalar yc = y * c; + Scalar pk = pkm1 * z - pkm2 * yc; + Scalar qk = qkm1 * z - qkm2 * yc; + + Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c; + Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c; + + if (qk != zero) { + Scalar ans_prev = ans; + ans = pk / qk; + + Scalar dans_da_prev = dans_da; + dans_da = (dpk_da - ans * dqk_da) / qk; + + if (mode == VALUE) { + if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) { + break; + } + } else { + if (numext::abs(dans_da - dans_da_prev) <= machep) { + break; + } + } + } + + pkm2 = pkm1; + pkm1 = pk; + qkm2 = qkm1; + qkm1 = qk; + + dpkm2_da = dpkm1_da; + dpkm1_da = dpk_da; + dqkm2_da = dqkm1_da; + dqkm1_da = dqk_da; + + if (numext::abs(pk) > big) { + pkm2 *= biginv; + pkm1 *= biginv; + qkm2 *= biginv; + qkm1 *= biginv; + + dpkm2_da *= biginv; + dpkm1_da *= biginv; + dqkm2_da *= biginv; + dqkm1_da *= biginv; + } + } + + /* Compute x**a * exp(-x) / gamma(a) */ + Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a); + Scalar dax_da = ax * dlogax_da; + + switch (mode) { + case VALUE: + return ans * ax; + case DERIVATIVE: + return ans * dax_da + dans_da * ax; + case SAMPLE_DERIVATIVE: + default: // this is needed to suppress clang warning + return -(dans_da + ans * dlogax_da) * x; + } + } +}; + +template <typename Scalar, IgammaComputationMode mode> +struct igamma_series_impl { + /* Computes igam(a, x) or its derivative (depending on the mode) + * using the series expansion of the incomplete Gamma function. + * + * Preconditions: + * x > 0 + * a > 0 + * !(x > 1 && x > a) + */ + EIGEN_DEVICE_FUNC + static Scalar run(Scalar a, Scalar x) { + const Scalar zero = 0; + const Scalar one = 1; + const Scalar machep = cephes_helper<Scalar>::machep(); + + Scalar ax = main_igamma_term<Scalar>(a, x); + + // This is independent of mode. If this value is zero, + // then the function value is zero. If the function value is zero, + // then we are in a neighborhood where the function value evalutes to zero, + // so the derivative is zero. + if (ax == zero) { + return zero; + } + + ax /= a; + + /* power series */ + Scalar r = a; + Scalar c = one; + Scalar ans = one; + + Scalar dc_da = zero; + Scalar dans_da = zero; + + for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) { + r += one; + Scalar term = x / r; + Scalar dterm_da = -x / (r * r); + dc_da = term * dc_da + dterm_da * c; + dans_da += dc_da; + c *= term; + ans += c; + + if (mode == VALUE) { + if (c <= machep * ans) { + break; + } + } else { + if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) { + break; + } + } + } + + Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one); + Scalar dax_da = ax * dlogax_da; + + switch (mode) { + case VALUE: + return ans * ax; + case DERIVATIVE: + return ans * dax_da + dans_da * ax; + case SAMPLE_DERIVATIVE: + default: // this is needed to suppress clang warning + return -(dans_da + ans * dlogax_da) * x / a; + } + } +}; + +#if !EIGEN_HAS_C99_MATH + +template <typename Scalar> +struct igammac_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar a, Scalar x) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +#else + +template <typename Scalar> +struct igammac_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar a, Scalar x) { + /* igamc() + * + * Incomplete gamma integral (modified for Eigen) + * + * + * + * SYNOPSIS: + * + * double a, x, y, igamc(); + * + * y = igamc( a, x ); + * + * DESCRIPTION: + * + * The function is defined by + * + * + * igamc(a,x) = 1 - igam(a,x) + * + * inf. + * - + * 1 | | -t a-1 + * = ----- | e t dt. + * - | | + * | (a) - + * x + * + * + * In this implementation both arguments must be positive. + * The integral is evaluated by either a power series or + * continued fraction expansion, depending on the relative + * values of a and x. + * + * ACCURACY (float): + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 30000 7.8e-6 5.9e-7 + * + * + * ACCURACY (double): + * + * Tested at random a, x. + * a x Relative error: + * arithmetic domain domain # trials peak rms + * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 + * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 + * + */ + /* + Cephes Math Library Release 2.2: June, 1992 + Copyright 1985, 1987, 1992 by Stephen L. Moshier + Direct inquiries to 30 Frost Street, Cambridge, MA 02140 + */ + const Scalar zero = 0; + const Scalar one = 1; + const Scalar nan = NumTraits<Scalar>::quiet_NaN(); + + if ((x < zero) || (a <= zero)) { + // domain error + return nan; + } + + if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans + return nan; + } + + if ((x < one) || (x < a)) { + return (one - igamma_series_impl<Scalar, VALUE>::run(a, x)); + } + + return igammac_cf_impl<Scalar, VALUE>::run(a, x); + } +}; + +#endif // EIGEN_HAS_C99_MATH + +/************************************************************************************************ + * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 * + ************************************************************************************************/ + +#if !EIGEN_HAS_C99_MATH + +template <typename Scalar, IgammaComputationMode mode> +struct igamma_generic_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +#else + +template <typename Scalar, IgammaComputationMode mode> +struct igamma_generic_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar a, Scalar x) { + /* Depending on the mode, returns + * - VALUE: incomplete Gamma function igamma(a, x) + * - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x) + * - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable + * x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx + * + * Derivatives are implemented by forward-mode differentiation. + */ + const Scalar zero = 0; + const Scalar one = 1; + const Scalar nan = NumTraits<Scalar>::quiet_NaN(); + + if (x == zero) return zero; + + if ((x < zero) || (a <= zero)) { // domain error + return nan; + } + + if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans + return nan; + } + + if ((x > one) && (x > a)) { + Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x); + if (mode == VALUE) { + return one - ret; + } else { + return -ret; + } + } + + return igamma_series_impl<Scalar, mode>::run(a, x); + } +}; + +#endif // EIGEN_HAS_C99_MATH + +template <typename Scalar> +struct igamma_retval { + typedef Scalar type; +}; + +template <typename Scalar> +struct igamma_impl : igamma_generic_impl<Scalar, VALUE> { + /* igam() + * Incomplete gamma integral. + * + * The CDF of Gamma(a, 1) random variable at the point x. + * + * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample + * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points. + * The ground truth is computed by mpmath. Mean absolute error: + * float: 1.26713e-05 + * double: 2.33606e-12 + * + * Cephes documentation below. + * + * SYNOPSIS: + * + * double a, x, y, igam(); + * + * y = igam( a, x ); + * + * DESCRIPTION: + * + * The function is defined by + * + * x + * - + * 1 | | -t a-1 + * igam(a,x) = ----- | e t dt. + * - | | + * | (a) - + * 0 + * + * + * In this implementation both arguments must be positive. + * The integral is evaluated by either a power series or + * continued fraction expansion, depending on the relative + * values of a and x. + * + * ACCURACY (double): + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 200000 3.6e-14 2.9e-15 + * IEEE 0,100 300000 9.9e-14 1.5e-14 + * + * + * ACCURACY (float): + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 20000 7.8e-6 5.9e-7 + * + */ + /* + Cephes Math Library Release 2.2: June, 1992 + Copyright 1985, 1987, 1992 by Stephen L. Moshier + Direct inquiries to 30 Frost Street, Cambridge, MA 02140 + */ + + /* left tail of incomplete gamma function: + * + * inf. k + * a -x - x + * x e > ---------- + * - - + * k=0 | (a+k+1) + * + */ +}; + +template <typename Scalar> +struct igamma_der_a_retval : igamma_retval<Scalar> {}; + +template <typename Scalar> +struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> { + /* Derivative of the incomplete Gamma function with respect to a. + * + * Computes d/da igamma(a, x) by forward differentiation of the igamma code. + * + * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample + * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points. + * The ground truth is computed by mpmath. Mean absolute error: + * float: 6.17992e-07 + * double: 4.60453e-12 + * + * Reference: + * R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma + * integral". Journal of the Royal Statistical Society. 1982 + */ +}; + +template <typename Scalar> +struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {}; + +template <typename Scalar> +struct gamma_sample_der_alpha_impl + : igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> { + /* Derivative of a Gamma random variable sample with respect to alpha. + * + * Consider a sample of a Gamma random variable with the concentration + * parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization + * derivative that we want to compute is dsample / dalpha = + * d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample). + * However, this formula is numerically unstable and expensive, so instead + * we use implicit differentiation: + * + * igamma(alpha, sample) = u, where u ~ Uniform(0, 1). + * Apply d / dalpha to both sides: + * d igamma(alpha, sample) / dalpha + * + d igamma(alpha, sample) / dsample * dsample/dalpha = 0 + * d igamma(alpha, sample) / dalpha + * + Gamma(sample | alpha, 1) dsample / dalpha = 0 + * dsample/dalpha = - (d igamma(alpha, sample) / dalpha) + * / Gamma(sample | alpha, 1) + * + * Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution + * (note that the derivative of the CDF w.r.t. sample is the PDF). + * See the reference below for more details. + * + * The derivative of igamma(alpha, sample) is computed by forward + * differentiation of the igamma code. Division by the Gamma PDF is performed + * in the same code, increasing the accuracy and speed due to cancellation + * of some terms. + * + * Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample + * 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300 + * points. The ground truth is computed by mpmath. Mean absolute error: + * float: 2.1686e-06 + * double: 1.4774e-12 + * + * Reference: + * M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients". + * 2018 + */ +}; + +/***************************************************************************** + * Implementation of Riemann zeta function of two arguments, based on Cephes * + *****************************************************************************/ + +template <typename Scalar> +struct zeta_retval { + typedef Scalar type; +}; + +template <typename Scalar> +struct zeta_impl_series { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(const Scalar) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +template <> +struct zeta_impl_series<float> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) { + int i = 0; + while(i < 9) + { + i += 1; + a += 1.0f; + b = numext::pow( a, -x ); + s += b; + if( numext::abs(b/s) < machep ) + return true; + } + + //Return whether we are done + return false; + } +}; + +template <> +struct zeta_impl_series<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) { + int i = 0; + while( (i < 9) || (a <= 9.0) ) + { + i += 1; + a += 1.0; + b = numext::pow( a, -x ); + s += b; + if( numext::abs(b/s) < machep ) + return true; + } + + //Return whether we are done + return false; + } +}; + +template <typename Scalar> +struct zeta_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar x, Scalar q) { + /* zeta.c + * + * Riemann zeta function of two arguments + * + * + * + * SYNOPSIS: + * + * double x, q, y, zeta(); + * + * y = zeta( x, q ); + * + * + * + * DESCRIPTION: + * + * + * + * inf. + * - -x + * zeta(x,q) = > (k+q) + * - + * k=0 + * + * where x > 1 and q is not a negative integer or zero. + * The Euler-Maclaurin summation formula is used to obtain + * the expansion + * + * n + * - -x + * zeta(x,q) = > (k+q) + * - + * k=1 + * + * 1-x inf. B x(x+1)...(x+2j) + * (n+q) 1 - 2j + * + --------- - ------- + > -------------------- + * x-1 x - x+2j+1 + * 2(n+q) j=1 (2j)! (n+q) + * + * where the B2j are Bernoulli numbers. Note that (see zetac.c) + * zeta(x,1) = zetac(x) + 1. + * + * + * + * ACCURACY: + * + * Relative error for single precision: + * arithmetic domain # trials peak rms + * IEEE 0,25 10000 6.9e-7 1.0e-7 + * + * Large arguments may produce underflow in powf(), in which + * case the results are inaccurate. + * + * REFERENCE: + * + * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, + * Series, and Products, p. 1073; Academic Press, 1980. + * + */ + + int i; + Scalar p, r, a, b, k, s, t, w; + + const Scalar A[] = { + Scalar(12.0), + Scalar(-720.0), + Scalar(30240.0), + Scalar(-1209600.0), + Scalar(47900160.0), + Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/ + Scalar(7.47242496e10), + Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/ + Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/ + Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/ + Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/ + Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/ + }; + + const Scalar maxnum = NumTraits<Scalar>::infinity(); + const Scalar zero = 0.0, half = 0.5, one = 1.0; + const Scalar machep = cephes_helper<Scalar>::machep(); + const Scalar nan = NumTraits<Scalar>::quiet_NaN(); + + if( x == one ) + return maxnum; + + if( x < one ) + { + return nan; + } + + if( q <= zero ) + { + if(q == numext::floor(q)) + { + if (x == numext::floor(x) && long(x) % 2 == 0) { + return maxnum; + } + else { + return nan; + } + } + p = x; + r = numext::floor(p); + if (p != r) + return nan; + } + + /* Permit negative q but continue sum until n+q > +9 . + * This case should be handled by a reflection formula. + * If q<0 and x is an integer, there is a relation to + * the polygamma function. + */ + s = numext::pow( q, -x ); + a = q; + b = zero; + // Run the summation in a helper function that is specific to the floating precision + if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) { + return s; + } + + w = a; + s += b*w/(x-one); + s -= half * b; + a = one; + k = zero; + for( i=0; i<12; i++ ) + { + a *= x + k; + b /= w; + t = a*b/A[i]; + s = s + t; + t = numext::abs(t/s); + if( t < machep ) { + break; + } + k += one; + a *= x + k; + b /= w; + k += one; + } + return s; + } +}; + +/**************************************************************************** + * Implementation of polygamma function, requires C++11/C99 * + ****************************************************************************/ + +template <typename Scalar> +struct polygamma_retval { + typedef Scalar type; +}; + +#if !EIGEN_HAS_C99_MATH + +template <typename Scalar> +struct polygamma_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +#else + +template <typename Scalar> +struct polygamma_impl { + EIGEN_DEVICE_FUNC + static Scalar run(Scalar n, Scalar x) { + Scalar zero = 0.0, one = 1.0; + Scalar nplus = n + one; + const Scalar nan = NumTraits<Scalar>::quiet_NaN(); + + // Check that n is a non-negative integer + if (numext::floor(n) != n || n < zero) { + return nan; + } + // Just return the digamma function for n = 0 + else if (n == zero) { + return digamma_impl<Scalar>::run(x); + } + // Use the same implementation as scipy + else { + Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus)); + return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x); + } + } +}; + +#endif // EIGEN_HAS_C99_MATH + +/************************************************************************************************ + * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 * + ************************************************************************************************/ + +template <typename Scalar> +struct betainc_retval { + typedef Scalar type; +}; + +#if !EIGEN_HAS_C99_MATH + +template <typename Scalar> +struct betainc_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +#else + +template <typename Scalar> +struct betainc_impl { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) { + /* betaincf.c + * + * Incomplete beta integral + * + * + * SYNOPSIS: + * + * float a, b, x, y, betaincf(); + * + * y = betaincf( a, b, x ); + * + * + * DESCRIPTION: + * + * Returns incomplete beta integral of the arguments, evaluated + * from zero to x. The function is defined as + * + * x + * - - + * | (a+b) | | a-1 b-1 + * ----------- | t (1-t) dt. + * - - | | + * | (a) | (b) - + * 0 + * + * The domain of definition is 0 <= x <= 1. In this + * implementation a and b are restricted to positive values. + * The integral from x to 1 may be obtained by the symmetry + * relation + * + * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ). + * + * The integral is evaluated by a continued fraction expansion. + * If a < 1, the function calls itself recursively after a + * transformation to increase a to a+1. + * + * ACCURACY (float): + * + * Tested at random points (a,b,x) with a and b in the indicated + * interval and x between 0 and 1. + * + * arithmetic domain # trials peak rms + * Relative error: + * IEEE 0,30 10000 3.7e-5 5.1e-6 + * IEEE 0,100 10000 1.7e-4 2.5e-5 + * The useful domain for relative error is limited by underflow + * of the single precision exponential function. + * Absolute error: + * IEEE 0,30 100000 2.2e-5 9.6e-7 + * IEEE 0,100 10000 6.5e-5 3.7e-6 + * + * Larger errors may occur for extreme ratios of a and b. + * + * ACCURACY (double): + * arithmetic domain # trials peak rms + * IEEE 0,5 10000 6.9e-15 4.5e-16 + * IEEE 0,85 250000 2.2e-13 1.7e-14 + * IEEE 0,1000 30000 5.3e-12 6.3e-13 + * IEEE 0,10000 250000 9.3e-11 7.1e-12 + * IEEE 0,100000 10000 8.7e-10 4.8e-11 + * Outputs smaller than the IEEE gradual underflow threshold + * were excluded from these statistics. + * + * ERROR MESSAGES: + * message condition value returned + * incbet domain x<0, x>1 nan + * incbet underflow nan + */ + + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), + THIS_TYPE_IS_NOT_SUPPORTED); + return Scalar(0); + } +}; + +/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True) + * Continued fraction expansion #2 for incomplete beta integral (small_branch = False) + */ +template <typename Scalar> +struct incbeta_cfe { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) { + EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value || + internal::is_same<Scalar, double>::value), + THIS_TYPE_IS_NOT_SUPPORTED); + const Scalar big = cephes_helper<Scalar>::big(); + const Scalar machep = cephes_helper<Scalar>::machep(); + const Scalar biginv = cephes_helper<Scalar>::biginv(); + + const Scalar zero = 0; + const Scalar one = 1; + const Scalar two = 2; + + Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2; + Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update; + Scalar ans; + int n; + + const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300; + const Scalar thresh = + (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep; + Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one; + + if (small_branch) { + k1 = a; + k2 = a + b; + k3 = a; + k4 = a + one; + k5 = one; + k6 = b - one; + k7 = k4; + k8 = a + two; + k26update = one; + } else { + k1 = a; + k2 = b - one; + k3 = a; + k4 = a + one; + k5 = one; + k6 = a + b; + k7 = a + one; + k8 = a + two; + k26update = -one; + x = x / (one - x); + } + + pkm2 = zero; + qkm2 = one; + pkm1 = one; + qkm1 = one; + ans = one; + n = 0; + + do { + xk = -(x * k1 * k2) / (k3 * k4); + pk = pkm1 + pkm2 * xk; + qk = qkm1 + qkm2 * xk; + pkm2 = pkm1; + pkm1 = pk; + qkm2 = qkm1; + qkm1 = qk; + + xk = (x * k5 * k6) / (k7 * k8); + pk = pkm1 + pkm2 * xk; + qk = qkm1 + qkm2 * xk; + pkm2 = pkm1; + pkm1 = pk; + qkm2 = qkm1; + qkm1 = qk; + + if (qk != zero) { + r = pk / qk; + if (numext::abs(ans - r) < numext::abs(r) * thresh) { + return r; + } + ans = r; + } + + k1 += one; + k2 += k26update; + k3 += two; + k4 += two; + k5 += one; + k6 -= k26update; + k7 += two; + k8 += two; + + if ((numext::abs(qk) + numext::abs(pk)) > big) { + pkm2 *= biginv; + pkm1 *= biginv; + qkm2 *= biginv; + qkm1 *= biginv; + } + if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) { + pkm2 *= big; + pkm1 *= big; + qkm2 *= big; + qkm1 *= big; + } + } while (++n < num_iters); + + return ans; + } +}; + +/* Helper functions depending on the Scalar type */ +template <typename Scalar> +struct betainc_helper {}; + +template <> +struct betainc_helper<float> { + /* Core implementation, assumes a large (> 1.0) */ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb, + float xx) { + float ans, a, b, t, x, onemx; + bool reversed_a_b = false; + + onemx = 1.0f - xx; + + /* see if x is greater than the mean */ + if (xx > (aa / (aa + bb))) { + reversed_a_b = true; + a = bb; + b = aa; + t = xx; + x = onemx; + } else { + a = aa; + b = bb; + t = onemx; + x = xx; + } + + /* Choose expansion for optimal convergence */ + if (b > 10.0f) { + if (numext::abs(b * x / a) < 0.3f) { + t = betainc_helper<float>::incbps(a, b, x); + if (reversed_a_b) t = 1.0f - t; + return t; + } + } + + ans = x * (a + b - 2.0f) / (a - 1.0f); + if (ans < 1.0f) { + ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */); + t = b * numext::log(t); + } else { + ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */); + t = (b - 1.0f) * numext::log(t); + } + + t += a * numext::log(x) + lgamma_impl<float>::run(a + b) - + lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b); + t += numext::log(ans / a); + t = numext::exp(t); + + if (reversed_a_b) t = 1.0f - t; + return t; + } + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) { + float t, u, y, s; + const float machep = cephes_helper<float>::machep(); + + y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a); + y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b); + y += lgamma_impl<float>::run(a + b); + + t = x / (1.0f - x); + s = 0.0f; + u = 1.0f; + do { + b -= 1.0f; + if (b == 0.0f) { + break; + } + a += 1.0f; + u *= t * b / a; + s += u; + } while (numext::abs(u) > machep); + + return numext::exp(y) * (1.0f + s); + } +}; + +template <> +struct betainc_impl<float> { + EIGEN_DEVICE_FUNC + static float run(float a, float b, float x) { + const float nan = NumTraits<float>::quiet_NaN(); + float ans, t; + + if (a <= 0.0f) return nan; + if (b <= 0.0f) return nan; + if ((x <= 0.0f) || (x >= 1.0f)) { + if (x == 0.0f) return 0.0f; + if (x == 1.0f) return 1.0f; + // mtherr("betaincf", DOMAIN); + return nan; + } + + /* transformation for small aa */ + if (a <= 1.0f) { + ans = betainc_helper<float>::incbsa(a + 1.0f, b, x); + t = a * numext::log(x) + b * numext::log1p(-x) + + lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) - + lgamma_impl<float>::run(b); + return (ans + numext::exp(t)); + } else { + return betainc_helper<float>::incbsa(a, b, x); + } + } +}; + +template <> +struct betainc_helper<double> { + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) { + const double machep = cephes_helper<double>::machep(); + + double s, t, u, v, n, t1, z, ai; + + ai = 1.0 / a; + u = (1.0 - b) * x; + v = u / (a + 1.0); + t1 = v; + t = u; + n = 2.0; + s = 0.0; + z = machep * ai; + while (numext::abs(v) > z) { + u = (n - b) * x / n; + t *= u; + v = t / (a + n); + s += v; + n += 1.0; + } + s += t1; + s += ai; + + u = a * numext::log(x); + // TODO: gamma() is not directly implemented in Eigen. + /* + if ((a + b) < maxgam && numext::abs(u) < maxlog) { + t = gamma(a + b) / (gamma(a) * gamma(b)); + s = s * t * pow(x, a); + } + */ + t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - + lgamma_impl<double>::run(b) + u + numext::log(s); + return s = numext::exp(t); + } +}; + +template <> +struct betainc_impl<double> { + EIGEN_DEVICE_FUNC + static double run(double aa, double bb, double xx) { + const double nan = NumTraits<double>::quiet_NaN(); + const double machep = cephes_helper<double>::machep(); + // const double maxgam = 171.624376956302725; + + double a, b, t, x, xc, w, y; + bool reversed_a_b = false; + + if (aa <= 0.0 || bb <= 0.0) { + return nan; // goto domerr; + } + + if ((xx <= 0.0) || (xx >= 1.0)) { + if (xx == 0.0) return (0.0); + if (xx == 1.0) return (1.0); + // mtherr("incbet", DOMAIN); + return nan; + } + + if ((bb * xx) <= 1.0 && xx <= 0.95) { + return betainc_helper<double>::incbps(aa, bb, xx); + } + + w = 1.0 - xx; + + /* Reverse a and b if x is greater than the mean. */ + if (xx > (aa / (aa + bb))) { + reversed_a_b = true; + a = bb; + b = aa; + xc = xx; + x = w; + } else { + a = aa; + b = bb; + xc = w; + x = xx; + } + + if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) { + t = betainc_helper<double>::incbps(a, b, x); + if (t <= machep) { + t = 1.0 - machep; + } else { + t = 1.0 - t; + } + return t; + } + + /* Choose expansion for better convergence. */ + y = x * (a + b - 2.0) - (a - 1.0); + if (y < 0.0) { + w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */); + } else { + w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc; + } + + /* Multiply w by the factor + a b _ _ _ + x (1-x) | (a+b) / ( a | (a) | (b) ) . */ + + y = a * numext::log(x); + t = b * numext::log(xc); + // TODO: gamma is not directly implemented in Eigen. + /* + if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog) + { + t = pow(xc, b); + t *= pow(x, a); + t /= a; + t *= w; + t *= gamma(a + b) / (gamma(a) * gamma(b)); + } else { + */ + /* Resort to logarithms. */ + y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - + lgamma_impl<double>::run(b); + y += numext::log(w / a); + t = numext::exp(y); + + /* } */ + // done: + + if (reversed_a_b) { + if (t <= machep) { + t = 1.0 - machep; + } else { + t = 1.0 - t; + } + } + return t; + } +}; + +#endif // EIGEN_HAS_C99_MATH + +} // end namespace internal + +namespace numext { + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar) + lgamma(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar) + digamma(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar) +zeta(const Scalar& x, const Scalar& q) { + return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar) +polygamma(const Scalar& n, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar) + erf(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar) + erfc(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(ndtri, Scalar) + ndtri(const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(ndtri, Scalar)::run(x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar) + igamma(const Scalar& a, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar) + igamma_der_a(const Scalar& a, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar) + gamma_sample_der_alpha(const Scalar& a, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar) + igammac(const Scalar& a, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x); +} + +template <typename Scalar> +EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar) + betainc(const Scalar& a, const Scalar& b, const Scalar& x) { + return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x); +} + +} // end namespace numext +} // end namespace Eigen + +#endif // EIGEN_SPECIAL_FUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsPacketMath.h b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsPacketMath.h new file mode 100644 index 0000000..2bb0179 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsPacketMath.h @@ -0,0 +1,79 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPECIALFUNCTIONS_PACKETMATH_H +#define EIGEN_SPECIALFUNCTIONS_PACKETMATH_H + +namespace Eigen { + +namespace internal { + +/** \internal \returns the ln(|gamma(\a a)|) (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); } + +/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); } + +/** \internal \returns the zeta function of two arguments (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); } + +/** \internal \returns the polygamma function (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet ppolygamma(const Packet& n, const Packet& x) { using numext::polygamma; return polygamma(n, x); } + +/** \internal \returns the erf(\a a) (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet perf(const Packet& a) { using numext::erf; return erf(a); } + +/** \internal \returns the erfc(\a a) (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); } + +/** \internal \returns the ndtri(\a a) (coeff-wise) */ +template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS +Packet pndtri(const Packet& a) { + typedef typename unpacket_traits<Packet>::type ScalarType; + using internal::generic_ndtri; return generic_ndtri<Packet, ScalarType>(a); +} + +/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */ +template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); } + +/** \internal \returns the derivative of the incomplete gamma function + * igamma_der_a(\a a, \a x) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pigamma_der_a(const Packet& a, const Packet& x) { + using numext::igamma_der_a; return igamma_der_a(a, x); +} + +/** \internal \returns compute the derivative of the sample + * of Gamma(alpha, 1) random variable with respect to the parameter a + * gamma_sample_der_alpha(\a alpha, \a sample) */ +template <typename Packet> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pgamma_sample_der_alpha(const Packet& alpha, const Packet& sample) { + using numext::gamma_sample_der_alpha; return gamma_sample_der_alpha(alpha, sample); +} + +/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */ +template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); } + +/** \internal \returns the complementary incomplete gamma function betainc(\a a, \a b, \a x) */ +template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +Packet pbetainc(const Packet& a, const Packet& b,const Packet& x) { using numext::betainc; return betainc(a, b, x); } + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SPECIALFUNCTIONS_PACKETMATH_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/BesselFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/BesselFunctions.h new file mode 100644 index 0000000..2d76692 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/BesselFunctions.h @@ -0,0 +1,46 @@ +#ifndef EIGEN_AVX_BESSELFUNCTIONS_H +#define EIGEN_AVX_BESSELFUNCTIONS_H + +namespace Eigen { +namespace internal { + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_i0) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_i0) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_i0e) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_i0e) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_i1) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_i1) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_i1e) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_i1e) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_j0) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_j0) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_j1) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_j1) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_k0) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_k0) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_k0e) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_k0e) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_k1) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_k1) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_k1e) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_k1e) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_y0) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_y0) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pbessel_y1) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pbessel_y1) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_AVX_BESSELFUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/SpecialFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/SpecialFunctions.h new file mode 100644 index 0000000..35e62a8 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX/SpecialFunctions.h @@ -0,0 +1,16 @@ +#ifndef EIGEN_AVX_SPECIALFUNCTIONS_H +#define EIGEN_AVX_SPECIALFUNCTIONS_H + +namespace Eigen { +namespace internal { + +F16_PACKET_FUNCTION(Packet8f, Packet8h, perf) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, perf) + +F16_PACKET_FUNCTION(Packet8f, Packet8h, pndtri) +BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pndtri) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_AVX_SPECIAL_FUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/BesselFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/BesselFunctions.h new file mode 100644 index 0000000..7dd3c3e --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/BesselFunctions.h @@ -0,0 +1,46 @@ +#ifndef EIGEN_AVX512_BESSELFUNCTIONS_H +#define EIGEN_AVX512_BESSELFUNCTIONS_H + +namespace Eigen { +namespace internal { + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_i0) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_i0) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_i0e) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_i0e) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_i1) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_i1) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_i1e) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_i1e) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_j0) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_j0) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_j1) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_j1) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_k0) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_k0) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_k0e) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_k0e) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_k1) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_k1) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_k1e) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_k1e) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_y0) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_y0) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pbessel_y1) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pbessel_y1) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_AVX512_BESSELFUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h new file mode 100644 index 0000000..79878f2 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h @@ -0,0 +1,16 @@ +#ifndef EIGEN_AVX512_SPECIALFUNCTIONS_H +#define EIGEN_AVX512_SPECIALFUNCTIONS_H + +namespace Eigen { +namespace internal { + +F16_PACKET_FUNCTION(Packet16f, Packet16h, perf) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, perf) + +F16_PACKET_FUNCTION(Packet16f, Packet16h, pndtri) +BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pndtri) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_AVX512_SPECIAL_FUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/GPU/SpecialFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/GPU/SpecialFunctions.h new file mode 100644 index 0000000..dd3bf4d --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/GPU/SpecialFunctions.h @@ -0,0 +1,369 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GPU_SPECIALFUNCTIONS_H +#define EIGEN_GPU_SPECIALFUNCTIONS_H + +namespace Eigen { + +namespace internal { + +// Make sure this is only available when targeting a GPU: we don't want to +// introduce conflicts between these packet_traits definitions and the ones +// we'll use on the host side (SSE, AVX, ...) +#if defined(EIGEN_GPUCC) && defined(EIGEN_USE_GPU) + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 plgamma<float4>(const float4& a) +{ + return make_float4(lgammaf(a.x), lgammaf(a.y), lgammaf(a.z), lgammaf(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 plgamma<double2>(const double2& a) +{ + using numext::lgamma; + return make_double2(lgamma(a.x), lgamma(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pdigamma<float4>(const float4& a) +{ + using numext::digamma; + return make_float4(digamma(a.x), digamma(a.y), digamma(a.z), digamma(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pdigamma<double2>(const double2& a) +{ + using numext::digamma; + return make_double2(digamma(a.x), digamma(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pzeta<float4>(const float4& x, const float4& q) +{ + using numext::zeta; + return make_float4(zeta(x.x, q.x), zeta(x.y, q.y), zeta(x.z, q.z), zeta(x.w, q.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pzeta<double2>(const double2& x, const double2& q) +{ + using numext::zeta; + return make_double2(zeta(x.x, q.x), zeta(x.y, q.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 ppolygamma<float4>(const float4& n, const float4& x) +{ + using numext::polygamma; + return make_float4(polygamma(n.x, x.x), polygamma(n.y, x.y), polygamma(n.z, x.z), polygamma(n.w, x.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 ppolygamma<double2>(const double2& n, const double2& x) +{ + using numext::polygamma; + return make_double2(polygamma(n.x, x.x), polygamma(n.y, x.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 perf<float4>(const float4& a) +{ + return make_float4(erff(a.x), erff(a.y), erff(a.z), erff(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 perf<double2>(const double2& a) +{ + using numext::erf; + return make_double2(erf(a.x), erf(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 perfc<float4>(const float4& a) +{ + using numext::erfc; + return make_float4(erfc(a.x), erfc(a.y), erfc(a.z), erfc(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 perfc<double2>(const double2& a) +{ + using numext::erfc; + return make_double2(erfc(a.x), erfc(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pndtri<float4>(const float4& a) +{ + using numext::ndtri; + return make_float4(ndtri(a.x), ndtri(a.y), ndtri(a.z), ndtri(a.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pndtri<double2>(const double2& a) +{ + using numext::ndtri; + return make_double2(ndtri(a.x), ndtri(a.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pigamma<float4>(const float4& a, const float4& x) +{ + using numext::igamma; + return make_float4( + igamma(a.x, x.x), + igamma(a.y, x.y), + igamma(a.z, x.z), + igamma(a.w, x.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pigamma<double2>(const double2& a, const double2& x) +{ + using numext::igamma; + return make_double2(igamma(a.x, x.x), igamma(a.y, x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pigamma_der_a<float4>( + const float4& a, const float4& x) { + using numext::igamma_der_a; + return make_float4(igamma_der_a(a.x, x.x), igamma_der_a(a.y, x.y), + igamma_der_a(a.z, x.z), igamma_der_a(a.w, x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pigamma_der_a<double2>(const double2& a, const double2& x) { + using numext::igamma_der_a; + return make_double2(igamma_der_a(a.x, x.x), igamma_der_a(a.y, x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pgamma_sample_der_alpha<float4>( + const float4& alpha, const float4& sample) { + using numext::gamma_sample_der_alpha; + return make_float4( + gamma_sample_der_alpha(alpha.x, sample.x), + gamma_sample_der_alpha(alpha.y, sample.y), + gamma_sample_der_alpha(alpha.z, sample.z), + gamma_sample_der_alpha(alpha.w, sample.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pgamma_sample_der_alpha<double2>(const double2& alpha, const double2& sample) { + using numext::gamma_sample_der_alpha; + return make_double2( + gamma_sample_der_alpha(alpha.x, sample.x), + gamma_sample_der_alpha(alpha.y, sample.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pigammac<float4>(const float4& a, const float4& x) +{ + using numext::igammac; + return make_float4( + igammac(a.x, x.x), + igammac(a.y, x.y), + igammac(a.z, x.z), + igammac(a.w, x.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pigammac<double2>(const double2& a, const double2& x) +{ + using numext::igammac; + return make_double2(igammac(a.x, x.x), igammac(a.y, x.y)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float4 pbetainc<float4>(const float4& a, const float4& b, const float4& x) +{ + using numext::betainc; + return make_float4( + betainc(a.x, b.x, x.x), + betainc(a.y, b.y, x.y), + betainc(a.z, b.z, x.z), + betainc(a.w, b.w, x.w)); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double2 pbetainc<double2>(const double2& a, const double2& b, const double2& x) +{ + using numext::betainc; + return make_double2(betainc(a.x, b.x, x.x), betainc(a.y, b.y, x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_i0e<float4>(const float4& x) { + using numext::bessel_i0e; + return make_float4(bessel_i0e(x.x), bessel_i0e(x.y), bessel_i0e(x.z), bessel_i0e(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_i0e<double2>(const double2& x) { + using numext::bessel_i0e; + return make_double2(bessel_i0e(x.x), bessel_i0e(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_i0<float4>(const float4& x) { + using numext::bessel_i0; + return make_float4(bessel_i0(x.x), bessel_i0(x.y), bessel_i0(x.z), bessel_i0(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_i0<double2>(const double2& x) { + using numext::bessel_i0; + return make_double2(bessel_i0(x.x), bessel_i0(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_i1e<float4>(const float4& x) { + using numext::bessel_i1e; + return make_float4(bessel_i1e(x.x), bessel_i1e(x.y), bessel_i1e(x.z), bessel_i1e(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_i1e<double2>(const double2& x) { + using numext::bessel_i1e; + return make_double2(bessel_i1e(x.x), bessel_i1e(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_i1<float4>(const float4& x) { + using numext::bessel_i1; + return make_float4(bessel_i1(x.x), bessel_i1(x.y), bessel_i1(x.z), bessel_i1(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_i1<double2>(const double2& x) { + using numext::bessel_i1; + return make_double2(bessel_i1(x.x), bessel_i1(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_k0e<float4>(const float4& x) { + using numext::bessel_k0e; + return make_float4(bessel_k0e(x.x), bessel_k0e(x.y), bessel_k0e(x.z), bessel_k0e(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_k0e<double2>(const double2& x) { + using numext::bessel_k0e; + return make_double2(bessel_k0e(x.x), bessel_k0e(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_k0<float4>(const float4& x) { + using numext::bessel_k0; + return make_float4(bessel_k0(x.x), bessel_k0(x.y), bessel_k0(x.z), bessel_k0(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_k0<double2>(const double2& x) { + using numext::bessel_k0; + return make_double2(bessel_k0(x.x), bessel_k0(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_k1e<float4>(const float4& x) { + using numext::bessel_k1e; + return make_float4(bessel_k1e(x.x), bessel_k1e(x.y), bessel_k1e(x.z), bessel_k1e(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_k1e<double2>(const double2& x) { + using numext::bessel_k1e; + return make_double2(bessel_k1e(x.x), bessel_k1e(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_k1<float4>(const float4& x) { + using numext::bessel_k1; + return make_float4(bessel_k1(x.x), bessel_k1(x.y), bessel_k1(x.z), bessel_k1(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_k1<double2>(const double2& x) { + using numext::bessel_k1; + return make_double2(bessel_k1(x.x), bessel_k1(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_j0<float4>(const float4& x) { + using numext::bessel_j0; + return make_float4(bessel_j0(x.x), bessel_j0(x.y), bessel_j0(x.z), bessel_j0(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_j0<double2>(const double2& x) { + using numext::bessel_j0; + return make_double2(bessel_j0(x.x), bessel_j0(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_j1<float4>(const float4& x) { + using numext::bessel_j1; + return make_float4(bessel_j1(x.x), bessel_j1(x.y), bessel_j1(x.z), bessel_j1(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_j1<double2>(const double2& x) { + using numext::bessel_j1; + return make_double2(bessel_j1(x.x), bessel_j1(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_y0<float4>(const float4& x) { + using numext::bessel_y0; + return make_float4(bessel_y0(x.x), bessel_y0(x.y), bessel_y0(x.z), bessel_y0(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_y0<double2>(const double2& x) { + using numext::bessel_y0; + return make_double2(bessel_y0(x.x), bessel_y0(x.y)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pbessel_y1<float4>(const float4& x) { + using numext::bessel_y1; + return make_float4(bessel_y1(x.x), bessel_y1(x.y), bessel_y1(x.z), bessel_y1(x.w)); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 +pbessel_y1<double2>(const double2& x) { + using numext::bessel_y1; + return make_double2(bessel_y1(x.x), bessel_y1(x.y)); +} + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_GPU_SPECIALFUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/BesselFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/BesselFunctions.h new file mode 100644 index 0000000..67433b0 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/BesselFunctions.h @@ -0,0 +1,54 @@ +#ifndef EIGEN_NEON_BESSELFUNCTIONS_H +#define EIGEN_NEON_BESSELFUNCTIONS_H + +namespace Eigen { +namespace internal { + +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + +#define NEON_HALF_TO_FLOAT_FUNCTIONS(METHOD) \ +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +Packet8hf METHOD<Packet8hf>(const Packet8hf& x) { \ + const Packet4f lo = METHOD<Packet4f>(vcvt_f32_f16(vget_low_f16(x))); \ + const Packet4f hi = METHOD<Packet4f>(vcvt_f32_f16(vget_high_f16(x))); \ + return vcombine_f16(vcvt_f16_f32(lo), vcvt_f16_f32(hi)); \ +} \ + \ +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +Packet4hf METHOD<Packet4hf>(const Packet4hf& x) { \ + return vcvt_f16_f32(METHOD<Packet4f>(vcvt_f32_f16(x))); \ +} + +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_i0) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_i0e) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_i1) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_i1e) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_j0) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_j1) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_k0) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_k0e) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_k1) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_k1e) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_y0) +NEON_HALF_TO_FLOAT_FUNCTIONS(pbessel_y1) + +#undef NEON_HALF_TO_FLOAT_FUNCTIONS +#endif + +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_i0) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_i0e) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_i1) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_i1e) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_j0) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_j1) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_k0) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_k0e) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_k1) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_k1e) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_y0) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pbessel_y1) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_NEON_BESSELFUNCTIONS_H diff --git a/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/SpecialFunctions.h b/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/SpecialFunctions.h new file mode 100644 index 0000000..ec92951 --- /dev/null +++ b/src/EigenUnsupported/src/SpecialFunctions/arch/NEON/SpecialFunctions.h @@ -0,0 +1,34 @@ +#ifndef EIGEN_NEON_SPECIALFUNCTIONS_H +#define EIGEN_NEON_SPECIALFUNCTIONS_H + +namespace Eigen { +namespace internal { + +#if EIGEN_HAS_ARM64_FP16_VECTOR_ARITHMETIC + +#define NEON_HALF_TO_FLOAT_FUNCTIONS(METHOD) \ +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +Packet8hf METHOD<Packet8hf>(const Packet8hf& x) { \ + const Packet4f lo = METHOD<Packet4f>(vcvt_f32_f16(vget_low_f16(x))); \ + const Packet4f hi = METHOD<Packet4f>(vcvt_f32_f16(vget_high_f16(x))); \ + return vcombine_f16(vcvt_f16_f32(lo), vcvt_f16_f32(hi)); \ +} \ + \ +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ +Packet4hf METHOD<Packet4hf>(const Packet4hf& x) { \ + return vcvt_f16_f32(METHOD<Packet4f>(vcvt_f32_f16(x))); \ +} + +NEON_HALF_TO_FLOAT_FUNCTIONS(perf) +NEON_HALF_TO_FLOAT_FUNCTIONS(pndtri) + +#undef NEON_HALF_TO_FLOAT_FUNCTIONS +#endif + +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, perf) +BF16_PACKET_FUNCTION(Packet4f, Packet4bf, pndtri) + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_NEON_SPECIALFUNCTIONS_H |