summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/fn_svds.hpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
committerNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
commiteda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch)
treebc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/fn_svds.hpp
downloadfsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz
fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/fn_svds.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/fn_svds.hpp352
1 files changed, 352 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/fn_svds.hpp b/src/armadillo/include/armadillo_bits/fn_svds.hpp
new file mode 100644
index 0000000..26c8c50
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/fn_svds.hpp
@@ -0,0 +1,352 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+//! \addtogroup fn_svds
+//! @{
+
+
+template<typename T1>
+inline
+bool
+svds_helper
+ (
+ Mat<typename T1::elem_type>& U,
+ Col<typename T1::pod_type >& S,
+ Mat<typename T1::elem_type>& V,
+ const SpBase<typename T1::elem_type,T1>& X,
+ const uword k,
+ const typename T1::pod_type tol,
+ const bool calc_UV,
+ const typename arma_real_only<typename T1::elem_type>::result* junk = nullptr
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ typedef typename T1::elem_type eT;
+ typedef typename T1::pod_type T;
+
+ arma_debug_check
+ (
+ ( ((void*)(&U) == (void*)(&S)) || (&U == &V) || ((void*)(&S) == (void*)(&V)) ),
+ "svds(): two or more output objects are the same object"
+ );
+
+ arma_debug_check( (tol < T(0)), "svds(): tol must be >= 0" );
+
+ const unwrap_spmat<T1> tmp(X.get_ref());
+ const SpMat<eT>& A = tmp.M;
+
+ const uword kk = (std::min)( (std::min)(A.n_rows, A.n_cols), k );
+
+ const T A_max = (A.n_nonzero > 0) ? T(max(abs(Col<eT>(const_cast<eT*>(A.values), A.n_nonzero, false)))) : T(0);
+
+ if(A_max == T(0))
+ {
+ // TODO: use reset instead ?
+ S.zeros(kk);
+
+ if(calc_UV)
+ {
+ U.eye(A.n_rows, kk);
+ V.eye(A.n_cols, kk);
+ }
+ }
+ else
+ {
+ SpMat<eT> C( (A.n_rows + A.n_cols), (A.n_rows + A.n_cols) );
+
+ SpMat<eT> B = A / A_max;
+ SpMat<eT> Bt = B.t();
+
+ C(0, A.n_rows, arma::size(B) ) = B;
+ C(A.n_rows, 0, arma::size(Bt)) = Bt;
+
+ Bt.reset();
+ B.reset();
+
+ Col<eT> eigval;
+ Mat<eT> eigvec;
+
+ eigs_opts opts;
+ opts.tol = (tol / Datum<T>::sqrt2);
+
+ const bool status = eigs_sym(eigval, eigvec, C, kk, "la", opts);
+
+ if(status == false)
+ {
+ U.soft_reset();
+ S.soft_reset();
+ V.soft_reset();
+
+ return false;
+ }
+
+ const T A_norm = max(eigval);
+
+ const T tol2 = tol / Datum<T>::sqrt2 * A_norm;
+
+ uvec indices = find(eigval > tol2);
+
+ if(indices.n_elem > kk)
+ {
+ indices = indices.subvec(0,kk-1);
+ }
+ else
+ if(indices.n_elem < kk)
+ {
+ const uvec indices2 = find(abs(eigval) <= tol2);
+
+ const uword N_extra = (std::min)( indices2.n_elem, (kk - indices.n_elem) );
+
+ if(N_extra > 0) { indices = join_cols(indices, indices2.subvec(0,N_extra-1)); }
+ }
+
+ const uvec sorted_indices = sort_index(eigval, "descend");
+
+ S = eigval.elem(sorted_indices); S *= A_max;
+
+ if(calc_UV)
+ {
+ uvec U_row_indices(A.n_rows, arma_nozeros_indicator()); for(uword i=0; i < A.n_rows; ++i) { U_row_indices[i] = i; }
+ uvec V_row_indices(A.n_cols, arma_nozeros_indicator()); for(uword i=0; i < A.n_cols; ++i) { V_row_indices[i] = i + A.n_rows; }
+
+ U = Datum<T>::sqrt2 * eigvec(U_row_indices, sorted_indices);
+ V = Datum<T>::sqrt2 * eigvec(V_row_indices, sorted_indices);
+ }
+ }
+
+ if(S.n_elem < k) { arma_debug_warn_level(1, "svds(): found fewer singular values than specified"); }
+
+ return true;
+ }
+
+
+
+template<typename T1>
+inline
+bool
+svds_helper
+ (
+ Mat<typename T1::elem_type>& U,
+ Col<typename T1::pod_type >& S,
+ Mat<typename T1::elem_type>& V,
+ const SpBase<typename T1::elem_type,T1>& X,
+ const uword k,
+ const typename T1::pod_type tol,
+ const bool calc_UV,
+ const typename arma_cx_only<typename T1::elem_type>::result* junk = nullptr
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ typedef typename T1::elem_type eT;
+ typedef typename T1::pod_type T;
+
+ if(arma_config::arpack == false)
+ {
+ arma_stop_logic_error("svds(): use of ARPACK must be enabled for decomposition of complex matrices");
+ return false;
+ }
+
+ arma_debug_check
+ (
+ ( ((void*)(&U) == (void*)(&S)) || (&U == &V) || ((void*)(&S) == (void*)(&V)) ),
+ "svds(): two or more output objects are the same object"
+ );
+
+ arma_debug_check( (tol < T(0)), "svds(): tol must be >= 0" );
+
+ const unwrap_spmat<T1> tmp(X.get_ref());
+ const SpMat<eT>& A = tmp.M;
+
+ const uword kk = (std::min)( (std::min)(A.n_rows, A.n_cols), k );
+
+ const T A_max = (A.n_nonzero > 0) ? T(max(abs(Col<eT>(const_cast<eT*>(A.values), A.n_nonzero, false)))) : T(0);
+
+ if(A_max == T(0))
+ {
+ // TODO: use reset instead ?
+ S.zeros(kk);
+
+ if(calc_UV)
+ {
+ U.eye(A.n_rows, kk);
+ V.eye(A.n_cols, kk);
+ }
+ }
+ else
+ {
+ SpMat<eT> C( (A.n_rows + A.n_cols), (A.n_rows + A.n_cols) );
+
+ SpMat<eT> B = A / A_max;
+ SpMat<eT> Bt = B.t();
+
+ C(0, A.n_rows, arma::size(B) ) = B;
+ C(A.n_rows, 0, arma::size(Bt)) = Bt;
+
+ Bt.reset();
+ B.reset();
+
+ Col<eT> eigval_tmp;
+ Mat<eT> eigvec;
+
+ eigs_opts opts;
+ opts.tol = (tol / Datum<T>::sqrt2);
+
+ const bool status = eigs_gen(eigval_tmp, eigvec, C, kk, "lr", opts);
+
+ if(status == false)
+ {
+ U.soft_reset();
+ S.soft_reset();
+ V.soft_reset();
+
+ return false;
+ }
+
+ const Col<T> eigval = real(eigval_tmp);
+
+ const T A_norm = max(eigval);
+
+ const T tol2 = tol / Datum<T>::sqrt2 * A_norm;
+
+ uvec indices = find(eigval > tol2);
+
+ if(indices.n_elem > kk)
+ {
+ indices = indices.subvec(0,kk-1);
+ }
+ else
+ if(indices.n_elem < kk)
+ {
+ const uvec indices2 = find(abs(eigval) <= tol2);
+
+ const uword N_extra = (std::min)( indices2.n_elem, (kk - indices.n_elem) );
+
+ if(N_extra > 0) { indices = join_cols(indices, indices2.subvec(0,N_extra-1)); }
+ }
+
+ const uvec sorted_indices = sort_index(eigval, "descend");
+
+ S = eigval.elem(sorted_indices); S *= A_max;
+
+ if(calc_UV)
+ {
+ uvec U_row_indices(A.n_rows, arma_nozeros_indicator()); for(uword i=0; i < A.n_rows; ++i) { U_row_indices[i] = i; }
+ uvec V_row_indices(A.n_cols, arma_nozeros_indicator()); for(uword i=0; i < A.n_cols; ++i) { V_row_indices[i] = i + A.n_rows; }
+
+ U = Datum<T>::sqrt2 * eigvec(U_row_indices, sorted_indices);
+ V = Datum<T>::sqrt2 * eigvec(V_row_indices, sorted_indices);
+ }
+ }
+
+ if(S.n_elem < k) { arma_debug_warn_level(1, "svds(): found fewer singular values than specified"); }
+
+ return true;
+ }
+
+
+
+//! find the k largest singular values and corresponding singular vectors of sparse matrix X
+template<typename T1>
+inline
+bool
+svds
+ (
+ Mat<typename T1::elem_type>& U,
+ Col<typename T1::pod_type >& S,
+ Mat<typename T1::elem_type>& V,
+ const SpBase<typename T1::elem_type,T1>& X,
+ const uword k,
+ const typename T1::pod_type tol = 0.0,
+ const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = nullptr
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, true);
+
+ if(status == false) { arma_debug_warn_level(3, "svds(): decomposition failed"); }
+
+ return status;
+ }
+
+
+
+//! find the k largest singular values of sparse matrix X
+template<typename T1>
+inline
+bool
+svds
+ (
+ Col<typename T1::pod_type >& S,
+ const SpBase<typename T1::elem_type,T1>& X,
+ const uword k,
+ const typename T1::pod_type tol = 0.0,
+ const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = nullptr
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ Mat<typename T1::elem_type> U;
+ Mat<typename T1::elem_type> V;
+
+ const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, false);
+
+ if(status == false) { arma_debug_warn_level(3, "svds(): decomposition failed"); }
+
+ return status;
+ }
+
+
+
+//! find the k largest singular values of sparse matrix X
+template<typename T1>
+arma_warn_unused
+inline
+Col<typename T1::pod_type>
+svds
+ (
+ const SpBase<typename T1::elem_type,T1>& X,
+ const uword k,
+ const typename T1::pod_type tol = 0.0,
+ const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = nullptr
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ Col<typename T1::pod_type> S;
+
+ Mat<typename T1::elem_type> U;
+ Mat<typename T1::elem_type> V;
+
+ const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, false);
+
+ if(status == false) { arma_stop_runtime_error("svds(): decomposition failed"); }
+
+ return S;
+ }
+
+
+
+//! @}