summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/mul_herk.hpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
committerNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
commiteda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch)
treebc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/mul_herk.hpp
downloadfsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz
fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/mul_herk.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/mul_herk.hpp492
1 files changed, 492 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/mul_herk.hpp b/src/armadillo/include/armadillo_bits/mul_herk.hpp
new file mode 100644
index 0000000..e6b13b2
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/mul_herk.hpp
@@ -0,0 +1,492 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+//! \addtogroup herk
+//! @{
+
+
+
+class herk_helper
+ {
+ public:
+
+ template<typename eT>
+ inline
+ static
+ void
+ inplace_conj_copy_upper_tri_to_lower_tri(Mat<eT>& C)
+ {
+ // under the assumption that C is a square matrix
+
+ const uword N = C.n_rows;
+
+ for(uword k=0; k < N; ++k)
+ {
+ eT* colmem = C.colptr(k);
+
+ for(uword i=(k+1); i < N; ++i)
+ {
+ colmem[i] = std::conj( C.at(k,i) );
+ }
+ }
+ }
+
+
+ template<typename eT>
+ arma_hot
+ inline
+ static
+ eT
+ dot_conj_row(const uword n_elem, const eT* const A, const Mat<eT>& B, const uword row)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename get_pod_type<eT>::result T;
+
+ T val_real = T(0);
+ T val_imag = T(0);
+
+ for(uword i=0; i<n_elem; ++i)
+ {
+ const std::complex<T>& X = A[i];
+ const std::complex<T>& Y = B.at(row,i);
+
+ const T a = X.real();
+ const T b = X.imag();
+
+ const T c = Y.real();
+ const T d = Y.imag();
+
+ val_real += (a*c) + (b*d);
+ val_imag += (b*c) - (a*d);
+ }
+
+ return std::complex<T>(val_real, val_imag);
+ }
+
+ };
+
+
+
+template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
+class herk_vec
+ {
+ public:
+
+ template<typename T, typename TA>
+ arma_hot
+ inline
+ static
+ void
+ apply
+ (
+ Mat< std::complex<T> >& C,
+ const TA& A,
+ const T alpha = T(1),
+ const T beta = T(0)
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ typedef std::complex<T> eT;
+
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ // for beta != 0, C is assumed to be hermitian
+
+ // do_trans_A == false -> C = alpha * A * A^H + beta*C
+ // do_trans_A == true -> C = alpha * A^H * A + beta*C
+
+ const eT* A_mem = A.memptr();
+
+ if(do_trans_A == false)
+ {
+ if(A_n_rows == 1)
+ {
+ const eT acc = op_cdot::direct_cdot(A_n_cols, A_mem, A_mem);
+
+ if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
+ else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
+ else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
+ else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
+ }
+ else
+ for(uword row_A=0; row_A < A_n_rows; ++row_A)
+ {
+ const eT& A_rowdata = A_mem[row_A];
+
+ for(uword k=row_A; k < A_n_rows; ++k)
+ {
+ const eT acc = A_rowdata * std::conj( A_mem[k] );
+
+ if( (use_alpha == false) && (use_beta == false) )
+ {
+ C.at(row_A, k) = acc;
+ if(row_A != k) { C.at(k, row_A) = std::conj(acc); }
+ }
+ else
+ if( (use_alpha == true) && (use_beta == false) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(row_A, k) = val;
+ if(row_A != k) { C.at(k, row_A) = std::conj(val); }
+ }
+ else
+ if( (use_alpha == false) && (use_beta == true) )
+ {
+ C.at(row_A, k) = acc + beta*C.at(row_A, k);
+ if(row_A != k) { C.at(k, row_A) = std::conj(acc) + beta*C.at(k, row_A); }
+ }
+ else
+ if( (use_alpha == true) && (use_beta == true) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(row_A, k) = val + beta*C.at(row_A, k);
+ if(row_A != k) { C.at(k, row_A) = std::conj(val) + beta*C.at(k, row_A); }
+ }
+ }
+ }
+ }
+ else
+ if(do_trans_A == true)
+ {
+ if(A_n_cols == 1)
+ {
+ const eT acc = op_cdot::direct_cdot(A_n_rows, A_mem, A_mem);
+
+ if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
+ else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
+ else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
+ else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
+ }
+ else
+ for(uword col_A=0; col_A < A_n_cols; ++col_A)
+ {
+ // col_A is interpreted as row_A when storing the results in matrix C
+
+ const eT A_coldata = std::conj( A_mem[col_A] );
+
+ for(uword k=col_A; k < A_n_cols ; ++k)
+ {
+ const eT acc = A_coldata * A_mem[k];
+
+ if( (use_alpha == false) && (use_beta == false) )
+ {
+ C.at(col_A, k) = acc;
+ if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
+ }
+ else
+ if( (use_alpha == true ) && (use_beta == false) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(col_A, k) = val;
+ if(col_A != k) { C.at(k, col_A) = std::conj(val); }
+ }
+ else
+ if( (use_alpha == false) && (use_beta == true ) )
+ {
+ C.at(col_A, k) = acc + beta*C.at(col_A, k);
+ if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
+ }
+ else
+ if( (use_alpha == true ) && (use_beta == true ) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(col_A, k) = val + beta*C.at(col_A, k);
+ if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
+ }
+ }
+ }
+ }
+ }
+
+ };
+
+
+
+template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
+class herk_emul
+ {
+ public:
+
+ template<typename T, typename TA>
+ arma_hot
+ inline
+ static
+ void
+ apply
+ (
+ Mat< std::complex<T> >& C,
+ const TA& A,
+ const T alpha = T(1),
+ const T beta = T(0)
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ typedef std::complex<T> eT;
+
+ // do_trans_A == false -> C = alpha * A * A^H + beta*C
+ // do_trans_A == true -> C = alpha * A^H * A + beta*C
+
+ if(do_trans_A == false)
+ {
+ Mat<eT> AA;
+
+ op_htrans::apply_mat_noalias(AA, A);
+
+ herk_emul<true, use_alpha, use_beta>::apply(C, AA, alpha, beta);
+ }
+ else
+ if(do_trans_A == true)
+ {
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ for(uword col_A=0; col_A < A_n_cols; ++col_A)
+ {
+ // col_A is interpreted as row_A when storing the results in matrix C
+
+ const eT* A_coldata = A.colptr(col_A);
+
+ for(uword k=col_A; k < A_n_cols ; ++k)
+ {
+ const eT acc = op_cdot::direct_cdot(A_n_rows, A_coldata, A.colptr(k));
+
+ if( (use_alpha == false) && (use_beta == false) )
+ {
+ C.at(col_A, k) = acc;
+ if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
+ }
+ else
+ if( (use_alpha == true) && (use_beta == false) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(col_A, k) = val;
+ if(col_A != k) { C.at(k, col_A) = std::conj(val); }
+ }
+ else
+ if( (use_alpha == false) && (use_beta == true) )
+ {
+ C.at(col_A, k) = acc + beta*C.at(col_A, k);
+ if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
+ }
+ else
+ if( (use_alpha == true) && (use_beta == true) )
+ {
+ const eT val = alpha*acc;
+
+ C.at(col_A, k) = val + beta*C.at(col_A, k);
+ if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
+ }
+ }
+ }
+ }
+ }
+
+ };
+
+
+
+template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
+class herk
+ {
+ public:
+
+ template<typename T, typename TA>
+ inline
+ static
+ void
+ apply_blas_type( Mat<std::complex<T>>& C, const TA& A, const T alpha = T(1), const T beta = T(0) )
+ {
+ arma_extra_debug_sigprint();
+
+ const uword threshold = 16;
+
+ if(A.is_vec())
+ {
+ // work around poor handling of vectors by herk() in standard BLAS
+
+ herk_vec<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
+
+ return;
+ }
+
+
+ if( (A.n_elem <= threshold) )
+ {
+ herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
+ }
+ else
+ {
+ #if defined(ARMA_USE_ATLAS)
+ {
+ if(use_beta == true)
+ {
+ typedef typename std::complex<T> eT;
+
+ // use a temporary matrix, as we can't assume that matrix C is already symmetric
+ Mat<eT> D(C.n_rows, C.n_cols, arma_nozeros_indicator());
+
+ herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
+
+ // NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
+ arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
+
+ return;
+ }
+
+ atlas::cblas_herk<T>
+ (
+ atlas_CblasColMajor,
+ atlas_CblasUpper,
+ (do_trans_A) ? atlas_CblasConjTrans : atlas_CblasNoTrans,
+ C.n_cols,
+ (do_trans_A) ? A.n_rows : A.n_cols,
+ (use_alpha) ? alpha : T(1),
+ A.mem,
+ (do_trans_A) ? A.n_rows : C.n_cols,
+ (use_beta) ? beta : T(0),
+ C.memptr(),
+ C.n_cols
+ );
+
+ herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
+ }
+ #elif defined(ARMA_USE_BLAS)
+ {
+ if(use_beta == true)
+ {
+ typedef typename std::complex<T> eT;
+
+ // use a temporary matrix, as we can't assume that matrix C is already symmetric
+ Mat<eT> D(C.n_rows, C.n_cols, arma_nozeros_indicator());
+
+ herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
+
+ // NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
+ arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
+
+ return;
+ }
+
+ arma_extra_debug_print("blas::herk()");
+
+ const char uplo = 'U';
+
+ const char trans_A = (do_trans_A) ? 'C' : 'N';
+
+ const blas_int n = blas_int(C.n_cols);
+ const blas_int k = (do_trans_A) ? blas_int(A.n_rows) : blas_int(A.n_cols);
+
+ const T local_alpha = (use_alpha) ? alpha : T(1);
+ const T local_beta = (use_beta) ? beta : T(0);
+
+ const blas_int lda = (do_trans_A) ? k : n;
+
+ arma_extra_debug_print( arma_str::format("blas::herk(): trans_A = %c") % trans_A );
+
+ blas::herk<T>
+ (
+ &uplo,
+ &trans_A,
+ &n,
+ &k,
+ &local_alpha,
+ A.mem,
+ &lda,
+ &local_beta,
+ C.memptr(),
+ &n // &ldc
+ );
+
+ herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
+ }
+ #else
+ {
+ herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
+ }
+ #endif
+ }
+
+ }
+
+
+
+ template<typename eT, typename TA>
+ inline
+ static
+ void
+ apply( Mat<eT>& C, const TA& A, const eT alpha = eT(1), const eT beta = eT(0), const typename arma_not_cx<eT>::result* junk = nullptr )
+ {
+ arma_ignore(C);
+ arma_ignore(A);
+ arma_ignore(alpha);
+ arma_ignore(beta);
+ arma_ignore(junk);
+
+ // herk() cannot be used by non-complex matrices
+
+ return;
+ }
+
+
+
+ template<typename TA>
+ arma_inline
+ static
+ void
+ apply
+ (
+ Mat< std::complex<float> >& C,
+ const TA& A,
+ const float alpha = float(1),
+ const float beta = float(0)
+ )
+ {
+ herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
+ }
+
+
+
+ template<typename TA>
+ arma_inline
+ static
+ void
+ apply
+ (
+ Mat< std::complex<double> >& C,
+ const TA& A,
+ const double alpha = double(1),
+ const double beta = double(0)
+ )
+ {
+ herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
+ }
+
+ };
+
+
+
+//! @}