diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/mul_herk.hpp | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/mul_herk.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/mul_herk.hpp | 492 |
1 files changed, 492 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/mul_herk.hpp b/src/armadillo/include/armadillo_bits/mul_herk.hpp new file mode 100644 index 0000000..e6b13b2 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/mul_herk.hpp @@ -0,0 +1,492 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup herk +//! @{ + + + +class herk_helper + { + public: + + template<typename eT> + inline + static + void + inplace_conj_copy_upper_tri_to_lower_tri(Mat<eT>& C) + { + // under the assumption that C is a square matrix + + const uword N = C.n_rows; + + for(uword k=0; k < N; ++k) + { + eT* colmem = C.colptr(k); + + for(uword i=(k+1); i < N; ++i) + { + colmem[i] = std::conj( C.at(k,i) ); + } + } + } + + + template<typename eT> + arma_hot + inline + static + eT + dot_conj_row(const uword n_elem, const eT* const A, const Mat<eT>& B, const uword row) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + T val_real = T(0); + T val_imag = T(0); + + for(uword i=0; i<n_elem; ++i) + { + const std::complex<T>& X = A[i]; + const std::complex<T>& Y = B.at(row,i); + + const T a = X.real(); + const T b = X.imag(); + + const T c = Y.real(); + const T d = Y.imag(); + + val_real += (a*c) + (b*d); + val_imag += (b*c) - (a*d); + } + + return std::complex<T>(val_real, val_imag); + } + + }; + + + +template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false> +class herk_vec + { + public: + + template<typename T, typename TA> + arma_hot + inline + static + void + apply + ( + Mat< std::complex<T> >& C, + const TA& A, + const T alpha = T(1), + const T beta = T(0) + ) + { + arma_extra_debug_sigprint(); + + typedef std::complex<T> eT; + + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + // for beta != 0, C is assumed to be hermitian + + // do_trans_A == false -> C = alpha * A * A^H + beta*C + // do_trans_A == true -> C = alpha * A^H * A + beta*C + + const eT* A_mem = A.memptr(); + + if(do_trans_A == false) + { + if(A_n_rows == 1) + { + const eT acc = op_cdot::direct_cdot(A_n_cols, A_mem, A_mem); + + if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; } + else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; } + else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; } + else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; } + } + else + for(uword row_A=0; row_A < A_n_rows; ++row_A) + { + const eT& A_rowdata = A_mem[row_A]; + + for(uword k=row_A; k < A_n_rows; ++k) + { + const eT acc = A_rowdata * std::conj( A_mem[k] ); + + if( (use_alpha == false) && (use_beta == false) ) + { + C.at(row_A, k) = acc; + if(row_A != k) { C.at(k, row_A) = std::conj(acc); } + } + else + if( (use_alpha == true) && (use_beta == false) ) + { + const eT val = alpha*acc; + + C.at(row_A, k) = val; + if(row_A != k) { C.at(k, row_A) = std::conj(val); } + } + else + if( (use_alpha == false) && (use_beta == true) ) + { + C.at(row_A, k) = acc + beta*C.at(row_A, k); + if(row_A != k) { C.at(k, row_A) = std::conj(acc) + beta*C.at(k, row_A); } + } + else + if( (use_alpha == true) && (use_beta == true) ) + { + const eT val = alpha*acc; + + C.at(row_A, k) = val + beta*C.at(row_A, k); + if(row_A != k) { C.at(k, row_A) = std::conj(val) + beta*C.at(k, row_A); } + } + } + } + } + else + if(do_trans_A == true) + { + if(A_n_cols == 1) + { + const eT acc = op_cdot::direct_cdot(A_n_rows, A_mem, A_mem); + + if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; } + else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; } + else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; } + else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; } + } + else + for(uword col_A=0; col_A < A_n_cols; ++col_A) + { + // col_A is interpreted as row_A when storing the results in matrix C + + const eT A_coldata = std::conj( A_mem[col_A] ); + + for(uword k=col_A; k < A_n_cols ; ++k) + { + const eT acc = A_coldata * A_mem[k]; + + if( (use_alpha == false) && (use_beta == false) ) + { + C.at(col_A, k) = acc; + if(col_A != k) { C.at(k, col_A) = std::conj(acc); } + } + else + if( (use_alpha == true ) && (use_beta == false) ) + { + const eT val = alpha*acc; + + C.at(col_A, k) = val; + if(col_A != k) { C.at(k, col_A) = std::conj(val); } + } + else + if( (use_alpha == false) && (use_beta == true ) ) + { + C.at(col_A, k) = acc + beta*C.at(col_A, k); + if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); } + } + else + if( (use_alpha == true ) && (use_beta == true ) ) + { + const eT val = alpha*acc; + + C.at(col_A, k) = val + beta*C.at(col_A, k); + if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); } + } + } + } + } + } + + }; + + + +template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false> +class herk_emul + { + public: + + template<typename T, typename TA> + arma_hot + inline + static + void + apply + ( + Mat< std::complex<T> >& C, + const TA& A, + const T alpha = T(1), + const T beta = T(0) + ) + { + arma_extra_debug_sigprint(); + + typedef std::complex<T> eT; + + // do_trans_A == false -> C = alpha * A * A^H + beta*C + // do_trans_A == true -> C = alpha * A^H * A + beta*C + + if(do_trans_A == false) + { + Mat<eT> AA; + + op_htrans::apply_mat_noalias(AA, A); + + herk_emul<true, use_alpha, use_beta>::apply(C, AA, alpha, beta); + } + else + if(do_trans_A == true) + { + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + for(uword col_A=0; col_A < A_n_cols; ++col_A) + { + // col_A is interpreted as row_A when storing the results in matrix C + + const eT* A_coldata = A.colptr(col_A); + + for(uword k=col_A; k < A_n_cols ; ++k) + { + const eT acc = op_cdot::direct_cdot(A_n_rows, A_coldata, A.colptr(k)); + + if( (use_alpha == false) && (use_beta == false) ) + { + C.at(col_A, k) = acc; + if(col_A != k) { C.at(k, col_A) = std::conj(acc); } + } + else + if( (use_alpha == true) && (use_beta == false) ) + { + const eT val = alpha*acc; + + C.at(col_A, k) = val; + if(col_A != k) { C.at(k, col_A) = std::conj(val); } + } + else + if( (use_alpha == false) && (use_beta == true) ) + { + C.at(col_A, k) = acc + beta*C.at(col_A, k); + if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); } + } + else + if( (use_alpha == true) && (use_beta == true) ) + { + const eT val = alpha*acc; + + C.at(col_A, k) = val + beta*C.at(col_A, k); + if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); } + } + } + } + } + } + + }; + + + +template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false> +class herk + { + public: + + template<typename T, typename TA> + inline + static + void + apply_blas_type( Mat<std::complex<T>>& C, const TA& A, const T alpha = T(1), const T beta = T(0) ) + { + arma_extra_debug_sigprint(); + + const uword threshold = 16; + + if(A.is_vec()) + { + // work around poor handling of vectors by herk() in standard BLAS + + herk_vec<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta); + + return; + } + + + if( (A.n_elem <= threshold) ) + { + herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta); + } + else + { + #if defined(ARMA_USE_ATLAS) + { + if(use_beta == true) + { + typedef typename std::complex<T> eT; + + // use a temporary matrix, as we can't assume that matrix C is already symmetric + Mat<eT> D(C.n_rows, C.n_cols, arma_nozeros_indicator()); + + herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha); + + // NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1 + arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem); + + return; + } + + atlas::cblas_herk<T> + ( + atlas_CblasColMajor, + atlas_CblasUpper, + (do_trans_A) ? atlas_CblasConjTrans : atlas_CblasNoTrans, + C.n_cols, + (do_trans_A) ? A.n_rows : A.n_cols, + (use_alpha) ? alpha : T(1), + A.mem, + (do_trans_A) ? A.n_rows : C.n_cols, + (use_beta) ? beta : T(0), + C.memptr(), + C.n_cols + ); + + herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C); + } + #elif defined(ARMA_USE_BLAS) + { + if(use_beta == true) + { + typedef typename std::complex<T> eT; + + // use a temporary matrix, as we can't assume that matrix C is already symmetric + Mat<eT> D(C.n_rows, C.n_cols, arma_nozeros_indicator()); + + herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha); + + // NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1 + arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem); + + return; + } + + arma_extra_debug_print("blas::herk()"); + + const char uplo = 'U'; + + const char trans_A = (do_trans_A) ? 'C' : 'N'; + + const blas_int n = blas_int(C.n_cols); + const blas_int k = (do_trans_A) ? blas_int(A.n_rows) : blas_int(A.n_cols); + + const T local_alpha = (use_alpha) ? alpha : T(1); + const T local_beta = (use_beta) ? beta : T(0); + + const blas_int lda = (do_trans_A) ? k : n; + + arma_extra_debug_print( arma_str::format("blas::herk(): trans_A = %c") % trans_A ); + + blas::herk<T> + ( + &uplo, + &trans_A, + &n, + &k, + &local_alpha, + A.mem, + &lda, + &local_beta, + C.memptr(), + &n // &ldc + ); + + herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C); + } + #else + { + herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta); + } + #endif + } + + } + + + + template<typename eT, typename TA> + inline + static + void + apply( Mat<eT>& C, const TA& A, const eT alpha = eT(1), const eT beta = eT(0), const typename arma_not_cx<eT>::result* junk = nullptr ) + { + arma_ignore(C); + arma_ignore(A); + arma_ignore(alpha); + arma_ignore(beta); + arma_ignore(junk); + + // herk() cannot be used by non-complex matrices + + return; + } + + + + template<typename TA> + arma_inline + static + void + apply + ( + Mat< std::complex<float> >& C, + const TA& A, + const float alpha = float(1), + const float beta = float(0) + ) + { + herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta); + } + + + + template<typename TA> + arma_inline + static + void + apply + ( + Mat< std::complex<double> >& C, + const TA& A, + const double alpha = double(1), + const double beta = double(0) + ) + { + herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta); + } + + }; + + + +//! @} |