summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
committerNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
commiteda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch)
treebc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp
downloadfsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz
fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp492
1 files changed, 492 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp b/src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp
new file mode 100644
index 0000000..290fa4f
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/newarp_GenEigsSolver_meat.hpp
@@ -0,0 +1,492 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+namespace newarp
+{
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::fill_rand(eT* dest, const uword N, const uword seed_val)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename std::mt19937_64::result_type seed_type;
+
+ local_rng.seed( seed_type(seed_val) );
+
+ std::uniform_real_distribution<double> dist(-1.0, +1.0);
+
+ for(uword i=0; i < N; ++i) { dest[i] = eT(dist(local_rng)); }
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::factorise_from(uword from_k, uword to_m, const Col<eT>& fk)
+ {
+ arma_extra_debug_sigprint();
+
+ if(to_m <= from_k) { return; }
+
+ fac_f = fk;
+
+ Col<eT> w(dim_n, arma_zeros_indicator());
+ eT beta = norm(fac_f);
+ // Keep the upperleft k x k submatrix of H and set other elements to 0
+ fac_H.tail_cols(ncv - from_k).zeros();
+ fac_H.submat(span(from_k, ncv - 1), span(0, from_k - 1)).zeros();
+ for(uword i = from_k; i <= to_m - 1; i++)
+ {
+ bool restart = false;
+ // If beta = 0, then the next V is not full rank
+ // We need to generate a new residual vector that is orthogonal
+ // to the current V, which we call a restart
+ if(beta < eps)
+ {
+ // // Generate new random vector for fac_f
+ // blas_int idist = 2;
+ // blas_int iseed[4] = {1, 3, 5, 7};
+ // iseed[0] = (i + 100) % 4095;
+ // blas_int n = dim_n;
+ // lapack::larnv(&idist, &iseed[0], &n, fac_f.memptr());
+
+ // Generate new random vector for fac_f
+ fill_rand(fac_f.memptr(), dim_n, i+1);
+
+ // f <- f - V * V' * f, so that f is orthogonal to V
+ Mat<eT> Vs(fac_V.memptr(), dim_n, i, false); // First i columns
+ Col<eT> Vf = Vs.t() * fac_f;
+ fac_f -= Vs * Vf;
+ // beta <- ||f||
+ beta = norm(fac_f);
+
+ restart = true;
+ }
+
+ // v <- f / ||f||
+ fac_V.col(i) = fac_f / beta; // The (i+1)-th column
+
+ // Note that H[i+1, i] equals to the unrestarted beta
+ if(restart) { fac_H(i, i - 1) = 0.0; } else { fac_H(i, i - 1) = beta; }
+
+ // w <- A * v, v = fac_V.col(i)
+ op.perform_op(fac_V.colptr(i), w.memptr());
+ nmatop++;
+
+ // First i+1 columns of V
+ Mat<eT> Vs(fac_V.memptr(), dim_n, i + 1, false);
+ // h = fac_H(0:i, i)
+ Col<eT> h(fac_H.colptr(i), i + 1, false);
+ // h <- V' * w
+ h = Vs.t() * w;
+
+ // f <- w - V * h
+ fac_f = w - Vs * h;
+ beta = norm(fac_f);
+
+ if(beta > 0.717 * norm(h)) { continue; }
+
+ // f/||f|| is going to be the next column of V, so we need to test
+ // whether V' * (f/||f||) ~= 0
+ Col<eT> Vf = Vs.t() * fac_f;
+ // If not, iteratively correct the residual
+ uword count = 0;
+ while(count < 5 && abs(Vf).max() > approx0 * beta)
+ {
+ // f <- f - V * Vf
+ fac_f -= Vs * Vf;
+ // h <- h + Vf
+ h += Vf;
+ // beta <- ||f||
+ beta = norm(fac_f);
+
+ Vf = Vs.t() * fac_f;
+ count++;
+ }
+ }
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::restart(uword k)
+ {
+ arma_extra_debug_sigprint();
+
+ if(k >= ncv) { return; }
+
+ DoubleShiftQR<eT> decomp_ds(ncv);
+ UpperHessenbergQR<eT> decomp;
+
+ Mat<eT> Q(ncv, ncv, fill::eye);
+
+ for(uword i = k; i < ncv; i++)
+ {
+ if(cx_attrib::is_complex(ritz_val(i), eT(0)) && (i < (ncv - 1)) && cx_attrib::is_conj(ritz_val(i), ritz_val(i + 1), eT(0)))
+ {
+ // H - mu * I = Q1 * R1
+ // H <- R1 * Q1 + mu * I = Q1' * H * Q1
+ // H - conj(mu) * I = Q2 * R2
+ // H <- R2 * Q2 + conj(mu) * I = Q2' * H * Q2
+ //
+ // (H - mu * I) * (H - conj(mu) * I) = Q1 * Q2 * R2 * R1 = Q * R
+ eT s = 2 * ritz_val(i).real();
+ eT t = std::norm(ritz_val(i));
+ decomp_ds.compute(fac_H, s, t);
+
+ // Q -> Q * Qi
+ decomp_ds.apply_YQ(Q);
+ // H -> Q'HQ
+ fac_H = decomp_ds.matrix_QtHQ();
+
+ i++;
+ }
+ else
+ {
+ // QR decomposition of H - mu * I, mu is real
+ fac_H.diag() -= ritz_val(i).real();
+ decomp.compute(fac_H);
+
+ // Q -> Q * Qi
+ decomp.apply_YQ(Q);
+ // H -> Q'HQ = RQ + mu * I
+ fac_H = decomp.matrix_RQ();
+ fac_H.diag() += ritz_val(i).real();
+ }
+ }
+
+ // V -> VQ
+ // Q has some elements being zero
+ // The first (ncv - k + i) elements of the i-th column of Q are non-zero
+ Mat<eT> Vs(dim_n, k + 1, arma_nozeros_indicator());
+ uword nnz;
+ for(uword i = 0; i < k; i++)
+ {
+ nnz = ncv - k + i + 1;
+ Mat<eT> V(fac_V.memptr(), dim_n, nnz, false);
+ Col<eT> q(Q.colptr(i), nnz, false);
+ Col<eT> v(Vs.colptr(i), dim_n, false);
+ v = V * q;
+ }
+
+ Vs.col(k) = fac_V * Q.col(k);
+ fac_V.head_cols(k + 1) = Vs;
+
+ Col<eT> fk = fac_f * Q(ncv - 1, k - 1) + fac_V.col(k) * fac_H(k, k - 1);
+ factorise_from(k, ncv, fk);
+ retrieve_ritzpair();
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+uword
+GenEigsSolver<eT, SelectionRule, OpType>::num_converged(eT tol)
+ {
+ arma_extra_debug_sigprint();
+
+ // thresh = tol * max(prec, abs(theta)), theta for ritz value
+ const eT f_norm = arma::norm(fac_f);
+ for(uword i = 0; i < nev; i++)
+ {
+ eT thresh = tol * (std::max)(approx0, std::abs(ritz_val(i)));
+ eT resid = std::abs(ritz_est(i)) * f_norm;
+ ritz_conv[i] = (resid < thresh);
+ }
+
+ return std::count(ritz_conv.begin(), ritz_conv.end(), true);
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+uword
+GenEigsSolver<eT, SelectionRule, OpType>::nev_adjusted(uword nconv)
+ {
+ arma_extra_debug_sigprint();
+
+ uword nev_new = nev;
+
+ for(uword i = nev; i < ncv; i++)
+ {
+ if(std::abs(ritz_est(i)) < eps) { nev_new++; }
+ }
+ // Adjust nev_new again, according to dnaup2.f line 660~674 in ARPACK
+ nev_new += (std::min)(nconv, (ncv - nev_new) / 2);
+ if(nev_new == 1 && ncv >= 6)
+ {
+ nev_new = ncv / 2;
+ }
+ else
+ if(nev_new == 1 && ncv > 3)
+ {
+ nev_new = 2;
+ }
+
+ if(nev_new > ncv - 2) { nev_new = ncv - 2; }
+
+ // Increase nev by one if ritz_val[nev - 1] and
+ // ritz_val[nev] are conjugate pairs
+ if(cx_attrib::is_complex(ritz_val(nev_new - 1), eps) && cx_attrib::is_conj(ritz_val(nev_new - 1), ritz_val(nev_new), eps))
+ {
+ nev_new++;
+ }
+
+ return nev_new;
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::retrieve_ritzpair()
+ {
+ arma_extra_debug_sigprint();
+
+ UpperHessenbergEigen<eT> decomp(fac_H);
+
+ Col< std::complex<eT> > evals = decomp.eigenvalues();
+ Mat< std::complex<eT> > evecs = decomp.eigenvectors();
+
+ SortEigenvalue< std::complex<eT>, SelectionRule > sorting(evals.memptr(), evals.n_elem);
+ std::vector<uword> ind = sorting.index();
+
+ // Copy the ritz values and vectors to ritz_val and ritz_vec, respectively
+ for(uword i = 0; i < ncv; i++)
+ {
+ ritz_val(i) = evals(ind[i]);
+ ritz_est(i) = evecs(ncv - 1, ind[i]);
+ }
+ for(uword i = 0; i < nev; i++)
+ {
+ ritz_vec.col(i) = evecs.col(ind[i]);
+ }
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::sort_ritzpair()
+ {
+ arma_extra_debug_sigprint();
+
+ // SortEigenvalue< std::complex<eT>, EigsSelect::LARGEST_MAGN > sorting(ritz_val.memptr(), nev);
+
+ // sort Ritz values according to SelectionRule, to be consistent with ARPACK
+ SortEigenvalue< std::complex<eT>, SelectionRule > sorting(ritz_val.memptr(), nev);
+
+ std::vector<uword> ind = sorting.index();
+
+ Col< std::complex<eT> > new_ritz_val(ncv, arma_zeros_indicator() );
+ Mat< std::complex<eT> > new_ritz_vec(ncv, nev, arma_nozeros_indicator());
+ std::vector<bool> new_ritz_conv(nev);
+
+ for(uword i = 0; i < nev; i++)
+ {
+ new_ritz_val(i) = ritz_val(ind[i]);
+ new_ritz_vec.col(i) = ritz_vec.col(ind[i]);
+ new_ritz_conv[i] = ritz_conv[ind[i]];
+ }
+
+ ritz_val.swap(new_ritz_val);
+ ritz_vec.swap(new_ritz_vec);
+ ritz_conv.swap(new_ritz_conv);
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+GenEigsSolver<eT, SelectionRule, OpType>::GenEigsSolver(const OpType& op_, uword nev_, uword ncv_)
+ : op(op_)
+ , nev(nev_)
+ , dim_n(op.n_rows)
+ , ncv(ncv_ > dim_n ? dim_n : ncv_)
+ , nmatop(0)
+ , niter(0)
+ , eps(std::numeric_limits<eT>::epsilon())
+ , approx0(std::pow(eps, eT(2.0) / 3))
+ {
+ arma_extra_debug_sigprint();
+
+ arma_debug_check( (nev_ < 1 || nev_ > dim_n - 2), "newarp::GenEigsSolver: nev must satisfy 1 <= nev <= n - 2, n is the size of matrix" );
+ arma_debug_check( (ncv_ < nev_ + 2 || ncv_ > dim_n), "newarp::GenEigsSolver: ncv must satisfy nev + 2 <= ncv <= n, n is the size of matrix" );
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::init(eT* init_resid)
+ {
+ arma_extra_debug_sigprint();
+
+ // Reset all matrices/vectors to zero
+ fac_V.zeros(dim_n, ncv);
+ fac_H.zeros(ncv, ncv);
+ fac_f.zeros(dim_n);
+ ritz_val.zeros(ncv);
+ ritz_vec.zeros(ncv, nev);
+ ritz_est.zeros(ncv);
+ ritz_conv.assign(nev, false);
+
+ nmatop = 0;
+ niter = 0;
+
+ Col<eT> r(init_resid, dim_n, false);
+ // The first column of fac_V
+ Col<eT> v(fac_V.colptr(0), dim_n, false);
+ eT rnorm = norm(r);
+ arma_check( (rnorm < eps), "newarp::GenEigsSolver::init(): initial residual vector cannot be zero" );
+ v = r / rnorm;
+
+ Col<eT> w(dim_n, arma_zeros_indicator());
+ op.perform_op(v.memptr(), w.memptr());
+ nmatop++;
+
+ fac_H(0, 0) = dot(v, w);
+ fac_f = w - v * fac_H(0, 0);
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+void
+GenEigsSolver<eT, SelectionRule, OpType>::init()
+ {
+ arma_extra_debug_sigprint();
+
+ // podarray<eT> init_resid(dim_n);
+ // blas_int idist = 2; // Uniform(-1, 1)
+ // blas_int iseed[4] = {1, 3, 5, 7}; // Fixed random seed
+ // blas_int n = dim_n;
+ // lapack::larnv(&idist, &iseed[0], &n, init_resid.memptr());
+ // init(init_resid.memptr());
+
+ podarray<eT> init_resid(dim_n);
+
+ fill_rand(init_resid.memptr(), dim_n, 0);
+
+ init(init_resid.memptr());
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+uword
+GenEigsSolver<eT, SelectionRule, OpType>::compute(uword maxit, eT tol)
+ {
+ arma_extra_debug_sigprint();
+
+ // The m-step Arnoldi factorisation
+ factorise_from(1, ncv, fac_f);
+ retrieve_ritzpair();
+ // Restarting
+ uword i, nconv = 0, nev_adj;
+ for(i = 0; i < maxit; i++)
+ {
+ nconv = num_converged(tol);
+ if(nconv >= nev) { break; }
+
+ nev_adj = nev_adjusted(nconv);
+ restart(nev_adj);
+ }
+ // Sorting results
+ sort_ritzpair();
+
+ niter = i + 1;
+
+ return (std::min)(nev, nconv);
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+Col< std::complex<eT> >
+GenEigsSolver<eT, SelectionRule, OpType>::eigenvalues()
+ {
+ arma_extra_debug_sigprint();
+
+ uword nconv = std::count(ritz_conv.begin(), ritz_conv.end(), true);
+ Col< std::complex<eT> > res(nconv, arma_zeros_indicator());
+
+ if(nconv > 0)
+ {
+ uword j = 0;
+ for(uword i = 0; i < nev; i++)
+ {
+ if(ritz_conv[i])
+ {
+ res(j) = ritz_val(i);
+ j++;
+ }
+ }
+ }
+
+ return res;
+ }
+
+
+
+template<typename eT, int SelectionRule, typename OpType>
+inline
+Mat< std::complex<eT> >
+GenEigsSolver<eT, SelectionRule, OpType>::eigenvectors(uword nvec)
+ {
+ arma_extra_debug_sigprint();
+
+ uword nconv = std::count(ritz_conv.begin(), ritz_conv.end(), true);
+ nvec = (std::min)(nvec, nconv);
+ Mat< std::complex<eT> > res(dim_n, nvec);
+
+ if(nvec > 0)
+ {
+ Mat< std::complex<eT> > ritz_vec_conv(ncv, nvec, arma_zeros_indicator());
+ uword j = 0;
+ for(uword i = 0; (i < nev) && (j < nvec); i++)
+ {
+ if(ritz_conv[i])
+ {
+ ritz_vec_conv.col(j) = ritz_vec.col(i);
+ j++;
+ }
+ }
+
+ res = fac_V * ritz_vec_conv;
+ }
+
+ return res;
+ }
+
+
+} // namespace newarp