summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
committerNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
commiteda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch)
treebc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp
downloadfsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz
fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp767
1 files changed, 767 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp b/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp
new file mode 100644
index 0000000..727da7b
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp
@@ -0,0 +1,767 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+//! \addtogroup op_diagmat
+//! @{
+
+
+
+template<typename T1>
+inline
+void
+op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ if(is_Mat<T1>::value)
+ {
+ // allow detection of in-place operation
+
+ const unwrap<T1> U(X.m);
+ const Mat<eT>& A = U.M;
+
+ if(&out != &A) // no aliasing
+ {
+ const Proxy< Mat<eT> > P(A);
+
+ op_diagmat::apply(out, P);
+ }
+ else // we have aliasing
+ {
+ const uword n_rows = out.n_rows;
+ const uword n_cols = out.n_cols;
+
+ if((n_rows == 1) || (n_cols == 1)) // create diagonal matrix from vector
+ {
+ const eT* out_mem = out.memptr();
+ const uword N = out.n_elem;
+
+ Mat<eT> tmp(N,N, arma_zeros_indicator());
+
+ for(uword i=0; i<N; ++i) { tmp.at(i,i) = out_mem[i]; }
+
+ out.steal_mem(tmp);
+ }
+ else // create diagonal matrix from matrix
+ {
+ const uword N = (std::min)(n_rows, n_cols);
+
+ for(uword i=0; i < n_cols; ++i)
+ {
+ if(i < N)
+ {
+ eT& out_ii = out.at(i,i);
+
+ const eT val = out_ii;
+
+ arrayops::fill_zeros(out.colptr(i), n_rows);
+
+ out_ii = val;
+ }
+ else
+ {
+ arrayops::fill_zeros(out.colptr(i), n_rows);
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ const Proxy<T1> P(X.m);
+
+ if(P.is_alias(out))
+ {
+ Mat<eT> tmp;
+
+ op_diagmat::apply(tmp, P);
+
+ out.steal_mem(tmp);
+ }
+ else
+ {
+ op_diagmat::apply(out, P);
+ }
+ }
+ }
+
+
+
+template<typename T1>
+inline
+void
+op_diagmat::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P)
+ {
+ arma_extra_debug_sigprint();
+
+ const uword n_rows = P.get_n_rows();
+ const uword n_cols = P.get_n_cols();
+ const uword n_elem = P.get_n_elem();
+
+ if(n_elem == 0) { out.reset(); return; }
+
+ const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1);
+
+ if(P_is_vec)
+ {
+ out.zeros(n_elem, n_elem);
+
+ if(Proxy<T1>::use_at == false)
+ {
+ typename Proxy<T1>::ea_type Pea = P.get_ea();
+
+ for(uword i=0; i < n_elem; ++i) { out.at(i,i) = Pea[i]; }
+ }
+ else
+ {
+ if(n_rows == 1)
+ {
+ for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(0,i); }
+ }
+ else
+ {
+ for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(i,0); }
+ }
+ }
+ }
+ else // P represents a matrix
+ {
+ out.zeros(n_rows, n_cols);
+
+ const uword N = (std::min)(n_rows, n_cols);
+
+ for(uword i=0; i<N; ++i) { out.at(i,i) = P.at(i,i); }
+ }
+ }
+
+
+
+template<typename T1, typename T2>
+inline
+void
+op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op< Glue<T1,T2,glue_times>, op_diagmat>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ op_diagmat::apply_times(out, X.m.A, X.m.B);
+ }
+
+
+
+template<typename T1, typename T2>
+inline
+void
+op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_not_cx<typename T1::elem_type>::result* junk)
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ typedef typename T1::elem_type eT;
+
+ const partial_unwrap<T1> UA(X);
+ const partial_unwrap<T2> UB(Y);
+
+ const typename partial_unwrap<T1>::stored_type& A = UA.M;
+ const typename partial_unwrap<T2>::stored_type& B = UB.M;
+
+ arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
+
+ const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
+ const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0);
+
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ const uword B_n_rows = B.n_rows;
+ const uword B_n_cols = B.n_cols;
+
+ // check if the multiplication results in a vector
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ if((A_n_rows == 1) || (B_n_cols == 1))
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = false; vector result");
+
+ const Mat<eT> C = A*B;
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ if((A_n_cols == 1) || (B_n_cols == 1))
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = false; vector result");
+
+ const Mat<eT> C = trans(A)*B;
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ if((A_n_rows == 1) || (B_n_rows == 1))
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = true; vector result");
+
+ const Mat<eT> C = A*trans(B);
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ if((A_n_cols == 1) || (B_n_rows == 1))
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = true; vector result");
+
+ const Mat<eT> C = trans(A)*trans(B);
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+
+ // if we got to this point, the multiplication results in a matrix
+
+ const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out));
+
+ Mat<eT> tmp;
+ Mat<eT>& out = (is_alias) ? tmp : actual_out;
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = false; matrix result");
+
+ out.zeros(A_n_rows, B_n_cols);
+
+ const uword N = (std::min)(A_n_rows, B_n_cols);
+
+ for(uword k=0; k < N; ++k)
+ {
+ eT acc1 = eT(0);
+ eT acc2 = eT(0);
+
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_cols = B_n_rows
+
+ uword j;
+
+ for(j=1; j < A_n_cols; j+=2)
+ {
+ const uword i = (j-1);
+
+ const eT tmp_i = B_colptr[i];
+ const eT tmp_j = B_colptr[j];
+
+ acc1 += A.at(k, i) * tmp_i;
+ acc2 += A.at(k, j) * tmp_j;
+ }
+
+ const uword i = (j-1);
+
+ if(i < A_n_cols)
+ {
+ acc1 += A.at(k, i) * B_colptr[i];
+ }
+
+ const eT acc = acc1 + acc2;
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = false; matrix result");
+
+ out.zeros(A_n_cols, B_n_cols);
+
+ const uword N = (std::min)(A_n_cols, B_n_cols);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* A_colptr = A.colptr(k);
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_rows = B_n_rows
+
+ const eT acc = op_dot::direct_dot(A_n_rows, A_colptr, B_colptr);
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = true; matrix result");
+
+ out.zeros(A_n_rows, B_n_rows);
+
+ const uword N = (std::min)(A_n_rows, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ eT acc = eT(0);
+
+ // condition: A_n_cols = B_n_cols
+
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ acc += A.at(k,i) * B.at(k,i);
+ }
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = true; matrix result");
+
+ out.zeros(A_n_cols, B_n_rows);
+
+ const uword N = (std::min)(A_n_cols, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ eT acc = eT(0);
+
+ const eT* A_colptr = A.colptr(k);
+
+ // condition: A_n_rows = B_n_cols
+
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ acc += A_colptr[i] * B.at(k,i);
+ }
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+
+ if(is_alias) { actual_out.steal_mem(tmp); }
+ }
+
+
+
+template<typename T1, typename T2>
+inline
+void
+op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_cx_only<typename T1::elem_type>::result* junk)
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk);
+
+ typedef typename T1::pod_type T;
+ typedef typename T1::elem_type eT;
+
+ const partial_unwrap<T1> UA(X);
+ const partial_unwrap<T2> UB(Y);
+
+ const typename partial_unwrap<T1>::stored_type& A = UA.M;
+ const typename partial_unwrap<T2>::stored_type& B = UB.M;
+
+ arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
+
+ const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
+ const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0);
+
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ const uword B_n_rows = B.n_rows;
+ const uword B_n_cols = B.n_cols;
+
+ // check if the multiplication results in a vector
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ if((A_n_rows == 1) || (B_n_cols == 1))
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = false; vector result");
+
+ const Mat<eT> C = A*B;
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ if((A_n_cols == 1) || (B_n_cols == 1))
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = false; vector result");
+
+ const Mat<eT> C = trans(A)*B;
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ if((A_n_rows == 1) || (B_n_rows == 1))
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = true; vector result");
+
+ const Mat<eT> C = A*trans(B);
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ if((A_n_cols == 1) || (B_n_rows == 1))
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = true; vector result");
+
+ const Mat<eT> C = trans(A)*trans(B);
+ const eT* C_mem = C.memptr();
+ const uword N = C.n_elem;
+
+ actual_out.zeros(N,N);
+
+ for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); }
+
+ return;
+ }
+ }
+
+ // if we got to this point, the multiplication results in a matrix
+
+ const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out));
+
+ Mat<eT> tmp;
+ Mat<eT>& out = (is_alias) ? tmp : actual_out;
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = false; matrix result");
+
+ out.zeros(A_n_rows, B_n_cols);
+
+ const uword N = (std::min)(A_n_rows, B_n_cols);
+
+ for(uword k=0; k < N; ++k)
+ {
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_cols = B_n_rows
+
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ // acc += A.at(k, i) * B_colptr[i];
+
+ const std::complex<T>& xx = A.at(k, i);
+ const std::complex<T>& yy = B_colptr[i];
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = yy.imag();
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+
+ const eT acc = std::complex<T>(acc_real, acc_imag);
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = false; matrix result");
+
+ out.zeros(A_n_cols, B_n_cols);
+
+ const uword N = (std::min)(A_n_cols, B_n_cols);
+
+ for(uword k=0; k < N; ++k)
+ {
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ const eT* A_colptr = A.colptr(k);
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_rows = B_n_rows
+
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ // acc += std::conj(A_colptr[i]) * B_colptr[i];
+
+ const std::complex<T>& xx = A_colptr[i];
+ const std::complex<T>& yy = B_colptr[i];
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = yy.imag();
+
+ // take into account the complex conjugate of xx
+
+ acc_real += (a*c) + (b*d);
+ acc_imag += (a*d) - (b*c);
+ }
+
+ const eT acc = std::complex<T>(acc_real, acc_imag);
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true) )
+ {
+ arma_extra_debug_print("trans_A = false; trans_B = true; matrix result");
+
+ out.zeros(A_n_rows, B_n_rows);
+
+ const uword N = (std::min)(A_n_rows, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ // condition: A_n_cols = B_n_cols
+
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ // acc += A.at(k,i) * std::conj(B.at(k,i));
+
+ const std::complex<T>& xx = A.at(k, i);
+ const std::complex<T>& yy = B.at(k, i);
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = -yy.imag(); // take the conjugate
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+
+ const eT acc = std::complex<T>(acc_real, acc_imag);
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == true) )
+ {
+ arma_extra_debug_print("trans_A = true; trans_B = true; matrix result");
+
+ out.zeros(A_n_cols, B_n_rows);
+
+ const uword N = (std::min)(A_n_cols, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ const eT* A_colptr = A.colptr(k);
+
+ // condition: A_n_rows = B_n_cols
+
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i));
+
+ const std::complex<T>& xx = A_colptr[i];
+ const std::complex<T>& yy = B.at(k, i);
+
+ const T a = xx.real();
+ const T b = -xx.imag(); // take the conjugate
+
+ const T c = yy.real();
+ const T d = -yy.imag(); // take the conjugate
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+
+ const eT acc = std::complex<T>(acc_real, acc_imag);
+
+ out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+ }
+
+ if(is_alias) { actual_out.steal_mem(tmp); }
+ }
+
+
+
+//
+//
+//
+
+
+
+template<typename T1>
+inline
+void
+op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat2>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const uword row_offset = X.aux_uword_a;
+ const uword col_offset = X.aux_uword_b;
+
+ const Proxy<T1> P(X.m);
+
+ if(P.is_alias(out))
+ {
+ Mat<eT> tmp;
+
+ op_diagmat2::apply(tmp, P, row_offset, col_offset);
+
+ out.steal_mem(tmp);
+ }
+ else
+ {
+ op_diagmat2::apply(out, P, row_offset, col_offset);
+ }
+ }
+
+
+
+template<typename T1>
+inline
+void
+op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword row_offset, const uword col_offset)
+ {
+ arma_extra_debug_sigprint();
+
+ const uword n_rows = P.get_n_rows();
+ const uword n_cols = P.get_n_cols();
+ const uword n_elem = P.get_n_elem();
+
+ if(n_elem == 0) { out.reset(); return; }
+
+ const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1);
+
+ if(P_is_vec)
+ {
+ const uword n_pad = (std::max)(row_offset, col_offset);
+
+ out.zeros(n_elem + n_pad, n_elem + n_pad);
+
+ if(Proxy<T1>::use_at == false)
+ {
+ typename Proxy<T1>::ea_type Pea = P.get_ea();
+
+ for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = Pea[i]; }
+ }
+ else
+ {
+ if(n_rows == 1)
+ {
+ for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(0,i); }
+ }
+ else
+ {
+ for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(i,0); }
+ }
+ }
+ }
+ else // P represents a matrix
+ {
+ arma_debug_check_bounds
+ (
+ ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)),
+ "diagmat(): requested diagonal out of bounds"
+ );
+
+ out.zeros(n_rows, n_cols);
+
+ const uword N = (std::min)(n_rows - row_offset, n_cols - col_offset);
+
+ for(uword i=0; i<N; ++i)
+ {
+ const uword row = i + row_offset;
+ const uword col = i + col_offset;
+
+ out.at(row,col) = P.at(row,col);
+ }
+ }
+ }
+
+
+
+//! @}