diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp | 767 |
1 files changed, 767 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp b/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp new file mode 100644 index 0000000..727da7b --- /dev/null +++ b/src/armadillo/include/armadillo_bits/op_diagmat_meat.hpp @@ -0,0 +1,767 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup op_diagmat +//! @{ + + + +template<typename T1> +inline +void +op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + if(is_Mat<T1>::value) + { + // allow detection of in-place operation + + const unwrap<T1> U(X.m); + const Mat<eT>& A = U.M; + + if(&out != &A) // no aliasing + { + const Proxy< Mat<eT> > P(A); + + op_diagmat::apply(out, P); + } + else // we have aliasing + { + const uword n_rows = out.n_rows; + const uword n_cols = out.n_cols; + + if((n_rows == 1) || (n_cols == 1)) // create diagonal matrix from vector + { + const eT* out_mem = out.memptr(); + const uword N = out.n_elem; + + Mat<eT> tmp(N,N, arma_zeros_indicator()); + + for(uword i=0; i<N; ++i) { tmp.at(i,i) = out_mem[i]; } + + out.steal_mem(tmp); + } + else // create diagonal matrix from matrix + { + const uword N = (std::min)(n_rows, n_cols); + + for(uword i=0; i < n_cols; ++i) + { + if(i < N) + { + eT& out_ii = out.at(i,i); + + const eT val = out_ii; + + arrayops::fill_zeros(out.colptr(i), n_rows); + + out_ii = val; + } + else + { + arrayops::fill_zeros(out.colptr(i), n_rows); + } + } + } + } + } + else + { + const Proxy<T1> P(X.m); + + if(P.is_alias(out)) + { + Mat<eT> tmp; + + op_diagmat::apply(tmp, P); + + out.steal_mem(tmp); + } + else + { + op_diagmat::apply(out, P); + } + } + } + + + +template<typename T1> +inline +void +op_diagmat::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P) + { + arma_extra_debug_sigprint(); + + const uword n_rows = P.get_n_rows(); + const uword n_cols = P.get_n_cols(); + const uword n_elem = P.get_n_elem(); + + if(n_elem == 0) { out.reset(); return; } + + const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1); + + if(P_is_vec) + { + out.zeros(n_elem, n_elem); + + if(Proxy<T1>::use_at == false) + { + typename Proxy<T1>::ea_type Pea = P.get_ea(); + + for(uword i=0; i < n_elem; ++i) { out.at(i,i) = Pea[i]; } + } + else + { + if(n_rows == 1) + { + for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(0,i); } + } + else + { + for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(i,0); } + } + } + } + else // P represents a matrix + { + out.zeros(n_rows, n_cols); + + const uword N = (std::min)(n_rows, n_cols); + + for(uword i=0; i<N; ++i) { out.at(i,i) = P.at(i,i); } + } + } + + + +template<typename T1, typename T2> +inline +void +op_diagmat::apply(Mat<typename T1::elem_type>& out, const Op< Glue<T1,T2,glue_times>, op_diagmat>& X) + { + arma_extra_debug_sigprint(); + + op_diagmat::apply_times(out, X.m.A, X.m.B); + } + + + +template<typename T1, typename T2> +inline +void +op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_not_cx<typename T1::elem_type>::result* junk) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const partial_unwrap<T1> UA(X); + const partial_unwrap<T2> UB(Y); + + const typename partial_unwrap<T1>::stored_type& A = UA.M; + const typename partial_unwrap<T2>::stored_type& B = UB.M; + + arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); + + const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times; + const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); + + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + const uword B_n_rows = B.n_rows; + const uword B_n_cols = B.n_cols; + + // check if the multiplication results in a vector + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + if((A_n_rows == 1) || (B_n_cols == 1)) + { + arma_extra_debug_print("trans_A = false; trans_B = false; vector result"); + + const Mat<eT> C = A*B; + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) ) + { + if((A_n_cols == 1) || (B_n_cols == 1)) + { + arma_extra_debug_print("trans_A = true; trans_B = false; vector result"); + + const Mat<eT> C = trans(A)*B; + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) ) + { + if((A_n_rows == 1) || (B_n_rows == 1)) + { + arma_extra_debug_print("trans_A = false; trans_B = true; vector result"); + + const Mat<eT> C = A*trans(B); + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) ) + { + if((A_n_cols == 1) || (B_n_rows == 1)) + { + arma_extra_debug_print("trans_A = true; trans_B = true; vector result"); + + const Mat<eT> C = trans(A)*trans(B); + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + + // if we got to this point, the multiplication results in a matrix + + const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out)); + + Mat<eT> tmp; + Mat<eT>& out = (is_alias) ? tmp : actual_out; + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = false; trans_B = false; matrix result"); + + out.zeros(A_n_rows, B_n_cols); + + const uword N = (std::min)(A_n_rows, B_n_cols); + + for(uword k=0; k < N; ++k) + { + eT acc1 = eT(0); + eT acc2 = eT(0); + + const eT* B_colptr = B.colptr(k); + + // condition: A_n_cols = B_n_rows + + uword j; + + for(j=1; j < A_n_cols; j+=2) + { + const uword i = (j-1); + + const eT tmp_i = B_colptr[i]; + const eT tmp_j = B_colptr[j]; + + acc1 += A.at(k, i) * tmp_i; + acc2 += A.at(k, j) * tmp_j; + } + + const uword i = (j-1); + + if(i < A_n_cols) + { + acc1 += A.at(k, i) * B_colptr[i]; + } + + const eT acc = acc1 + acc2; + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = true; trans_B = false; matrix result"); + + out.zeros(A_n_cols, B_n_cols); + + const uword N = (std::min)(A_n_cols, B_n_cols); + + for(uword k=0; k < N; ++k) + { + const eT* A_colptr = A.colptr(k); + const eT* B_colptr = B.colptr(k); + + // condition: A_n_rows = B_n_rows + + const eT acc = op_dot::direct_dot(A_n_rows, A_colptr, B_colptr); + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) ) + { + arma_extra_debug_print("trans_A = false; trans_B = true; matrix result"); + + out.zeros(A_n_rows, B_n_rows); + + const uword N = (std::min)(A_n_rows, B_n_rows); + + for(uword k=0; k < N; ++k) + { + eT acc = eT(0); + + // condition: A_n_cols = B_n_cols + + for(uword i=0; i < A_n_cols; ++i) + { + acc += A.at(k,i) * B.at(k,i); + } + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) ) + { + arma_extra_debug_print("trans_A = true; trans_B = true; matrix result"); + + out.zeros(A_n_cols, B_n_rows); + + const uword N = (std::min)(A_n_cols, B_n_rows); + + for(uword k=0; k < N; ++k) + { + eT acc = eT(0); + + const eT* A_colptr = A.colptr(k); + + // condition: A_n_rows = B_n_cols + + for(uword i=0; i < A_n_rows; ++i) + { + acc += A_colptr[i] * B.at(k,i); + } + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + + if(is_alias) { actual_out.steal_mem(tmp); } + } + + + +template<typename T1, typename T2> +inline +void +op_diagmat::apply_times(Mat<typename T1::elem_type>& actual_out, const T1& X, const T2& Y, const typename arma_cx_only<typename T1::elem_type>::result* junk) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef typename T1::elem_type eT; + + const partial_unwrap<T1> UA(X); + const partial_unwrap<T2> UB(Y); + + const typename partial_unwrap<T1>::stored_type& A = UA.M; + const typename partial_unwrap<T2>::stored_type& B = UB.M; + + arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); + + const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times; + const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); + + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + const uword B_n_rows = B.n_rows; + const uword B_n_cols = B.n_cols; + + // check if the multiplication results in a vector + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + if((A_n_rows == 1) || (B_n_cols == 1)) + { + arma_extra_debug_print("trans_A = false; trans_B = false; vector result"); + + const Mat<eT> C = A*B; + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) ) + { + if((A_n_cols == 1) || (B_n_cols == 1)) + { + arma_extra_debug_print("trans_A = true; trans_B = false; vector result"); + + const Mat<eT> C = trans(A)*B; + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) ) + { + if((A_n_rows == 1) || (B_n_rows == 1)) + { + arma_extra_debug_print("trans_A = false; trans_B = true; vector result"); + + const Mat<eT> C = A*trans(B); + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) ) + { + if((A_n_cols == 1) || (B_n_rows == 1)) + { + arma_extra_debug_print("trans_A = true; trans_B = true; vector result"); + + const Mat<eT> C = trans(A)*trans(B); + const eT* C_mem = C.memptr(); + const uword N = C.n_elem; + + actual_out.zeros(N,N); + + for(uword i=0; i<N; ++i) { actual_out.at(i,i) = (use_alpha) ? eT(alpha * C_mem[i]) : eT(C_mem[i]); } + + return; + } + } + + // if we got to this point, the multiplication results in a matrix + + const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out)); + + Mat<eT> tmp; + Mat<eT>& out = (is_alias) ? tmp : actual_out; + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = false; trans_B = false; matrix result"); + + out.zeros(A_n_rows, B_n_cols); + + const uword N = (std::min)(A_n_rows, B_n_cols); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* B_colptr = B.colptr(k); + + // condition: A_n_cols = B_n_rows + + for(uword i=0; i < A_n_cols; ++i) + { + // acc += A.at(k, i) * B_colptr[i]; + + const std::complex<T>& xx = A.at(k, i); + const std::complex<T>& yy = B_colptr[i]; + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = yy.imag(); + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = true; trans_B = false; matrix result"); + + out.zeros(A_n_cols, B_n_cols); + + const uword N = (std::min)(A_n_cols, B_n_cols); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* A_colptr = A.colptr(k); + const eT* B_colptr = B.colptr(k); + + // condition: A_n_rows = B_n_rows + + for(uword i=0; i < A_n_rows; ++i) + { + // acc += std::conj(A_colptr[i]) * B_colptr[i]; + + const std::complex<T>& xx = A_colptr[i]; + const std::complex<T>& yy = B_colptr[i]; + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = yy.imag(); + + // take into account the complex conjugate of xx + + acc_real += (a*c) + (b*d); + acc_imag += (a*d) - (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true) ) + { + arma_extra_debug_print("trans_A = false; trans_B = true; matrix result"); + + out.zeros(A_n_rows, B_n_rows); + + const uword N = (std::min)(A_n_rows, B_n_rows); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + // condition: A_n_cols = B_n_cols + + for(uword i=0; i < A_n_cols; ++i) + { + // acc += A.at(k,i) * std::conj(B.at(k,i)); + + const std::complex<T>& xx = A.at(k, i); + const std::complex<T>& yy = B.at(k, i); + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = -yy.imag(); // take the conjugate + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == true) ) + { + arma_extra_debug_print("trans_A = true; trans_B = true; matrix result"); + + out.zeros(A_n_cols, B_n_rows); + + const uword N = (std::min)(A_n_cols, B_n_rows); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* A_colptr = A.colptr(k); + + // condition: A_n_rows = B_n_cols + + for(uword i=0; i < A_n_rows; ++i) + { + // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i)); + + const std::complex<T>& xx = A_colptr[i]; + const std::complex<T>& yy = B.at(k, i); + + const T a = xx.real(); + const T b = -xx.imag(); // take the conjugate + + const T c = yy.real(); + const T d = -yy.imag(); // take the conjugate + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + + if(is_alias) { actual_out.steal_mem(tmp); } + } + + + +// +// +// + + + +template<typename T1> +inline +void +op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagmat2>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const uword row_offset = X.aux_uword_a; + const uword col_offset = X.aux_uword_b; + + const Proxy<T1> P(X.m); + + if(P.is_alias(out)) + { + Mat<eT> tmp; + + op_diagmat2::apply(tmp, P, row_offset, col_offset); + + out.steal_mem(tmp); + } + else + { + op_diagmat2::apply(out, P, row_offset, col_offset); + } + } + + + +template<typename T1> +inline +void +op_diagmat2::apply(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword row_offset, const uword col_offset) + { + arma_extra_debug_sigprint(); + + const uword n_rows = P.get_n_rows(); + const uword n_cols = P.get_n_cols(); + const uword n_elem = P.get_n_elem(); + + if(n_elem == 0) { out.reset(); return; } + + const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1); + + if(P_is_vec) + { + const uword n_pad = (std::max)(row_offset, col_offset); + + out.zeros(n_elem + n_pad, n_elem + n_pad); + + if(Proxy<T1>::use_at == false) + { + typename Proxy<T1>::ea_type Pea = P.get_ea(); + + for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = Pea[i]; } + } + else + { + if(n_rows == 1) + { + for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(0,i); } + } + else + { + for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(i,0); } + } + } + } + else // P represents a matrix + { + arma_debug_check_bounds + ( + ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)), + "diagmat(): requested diagonal out of bounds" + ); + + out.zeros(n_rows, n_cols); + + const uword N = (std::min)(n_rows - row_offset, n_cols - col_offset); + + for(uword i=0; i<N; ++i) + { + const uword row = i + row_offset; + const uword col = i + col_offset; + + out.at(row,col) = P.at(row,col); + } + } + } + + + +//! @} |