diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp | 536 |
1 files changed, 536 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp b/src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp new file mode 100644 index 0000000..f337192 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/op_diagvec_meat.hpp @@ -0,0 +1,536 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup op_diagvec +//! @{ + + + +template<typename T1> +inline +void +op_diagvec::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagvec>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const Proxy<T1> P(X.m); + + if(P.is_alias(out) == false) + { + op_diagvec::apply_proxy(out, P); + } + else + { + Mat<eT> tmp; + + op_diagvec::apply_proxy(tmp, P); + + out.steal_mem(tmp); + } + } + + + +template<typename T1> +inline +void +op_diagvec::apply_proxy(Mat<typename T1::elem_type>& out, const Proxy<T1>& P) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const uword n_rows = P.get_n_rows(); + const uword n_cols = P.get_n_cols(); + + const uword len = (std::min)(n_rows, n_cols); + + out.set_size(len, 1); + + eT* out_mem = out.memptr(); + + uword i,j; + for(i=0, j=1; j < len; i+=2, j+=2) + { + const eT tmp_i = P.at(i, i); + const eT tmp_j = P.at(j, j); + + out_mem[i] = tmp_i; + out_mem[j] = tmp_j; + } + + if(i < len) + { + out_mem[i] = P.at(i, i); + } + } + + + +template<typename T1, typename T2> +inline +void +op_diagvec::apply(Mat<typename T1::elem_type>& actual_out, const Op< Glue<T1,T2,glue_times>, op_diagvec>& X, const typename arma_not_cx<typename T1::elem_type>::result* junk) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::elem_type eT; + + const partial_unwrap<T1> UA(X.m.A); + const partial_unwrap<T2> UB(X.m.B); + + const typename partial_unwrap<T1>::stored_type& A = UA.M; + const typename partial_unwrap<T2>::stored_type& B = UB.M; + + arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); + + if( (A.n_elem == 0) || (B.n_elem == 0) ) { actual_out.reset(); return; } + + const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times; + const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); + + const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out)); + + Mat<eT> tmp; + Mat<eT>& out = (is_alias) ? tmp : actual_out; + + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + const uword B_n_rows = B.n_rows; + const uword B_n_cols = B.n_cols; + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = false; trans_B = false;"); + + const uword N = (std::min)(A_n_rows, B_n_cols); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + eT acc1 = eT(0); + eT acc2 = eT(0); + + const eT* B_colptr = B.colptr(k); + + // condition: A_n_cols = B_n_rows + + uword j; + + for(j=1; j < A_n_cols; j+=2) + { + const uword i = (j-1); + + const eT tmp_i = B_colptr[i]; + const eT tmp_j = B_colptr[j]; + + acc1 += A.at(k, i) * tmp_i; + acc2 += A.at(k, j) * tmp_j; + } + + const uword i = (j-1); + + if(i < A_n_cols) + { + acc1 += A.at(k, i) * B_colptr[i]; + } + + const eT acc = acc1 + acc2; + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = true; trans_B = false;"); + + const uword N = (std::min)(A_n_cols, B_n_cols); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + const eT* A_colptr = A.colptr(k); + const eT* B_colptr = B.colptr(k); + + // condition: A_n_rows = B_n_rows + + const eT acc = op_dot::direct_dot(A_n_rows, A_colptr, B_colptr); + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) ) + { + arma_extra_debug_print("trans_A = false; trans_B = true;"); + + const uword N = (std::min)(A_n_rows, B_n_rows); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + eT acc = eT(0); + + // condition: A_n_cols = B_n_cols + + for(uword i=0; i < A_n_cols; ++i) + { + acc += A.at(k,i) * B.at(k,i); + } + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) ) + { + arma_extra_debug_print("trans_A = true; trans_B = true;"); + + const uword N = (std::min)(A_n_cols, B_n_rows); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + eT acc = eT(0); + + const eT* A_colptr = A.colptr(k); + + // condition: A_n_rows = B_n_cols + + for(uword i=0; i < A_n_rows; ++i) + { + acc += A_colptr[i] * B.at(k,i); + } + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + + if(is_alias) { actual_out.steal_mem(tmp); } + } + + + +template<typename T1, typename T2> +inline +void +op_diagvec::apply(Mat<typename T1::elem_type>& actual_out, const Op< Glue<T1,T2,glue_times>, op_diagvec>& X, const typename arma_cx_only<typename T1::elem_type>::result* junk) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + typedef typename T1::pod_type T; + typedef typename T1::elem_type eT; + + const partial_unwrap<T1> UA(X.m.A); + const partial_unwrap<T2> UB(X.m.B); + + const typename partial_unwrap<T1>::stored_type& A = UA.M; + const typename partial_unwrap<T2>::stored_type& B = UB.M; + + arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); + + if( (A.n_elem == 0) || (B.n_elem == 0) ) { actual_out.reset(); return; } + + const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times; + const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); + + const bool is_alias = (UA.is_alias(actual_out) || UB.is_alias(actual_out)); + + Mat<eT> tmp; + Mat<eT>& out = (is_alias) ? tmp : actual_out; + + const uword A_n_rows = A.n_rows; + const uword A_n_cols = A.n_cols; + + const uword B_n_rows = B.n_rows; + const uword B_n_cols = B.n_cols; + + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = false; trans_B = false;"); + + const uword N = (std::min)(A_n_rows, B_n_cols); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* B_colptr = B.colptr(k); + + // condition: A_n_cols = B_n_rows + + for(uword i=0; i < A_n_cols; ++i) + { + // acc += A.at(k, i) * B_colptr[i]; + + const std::complex<T>& xx = A.at(k, i); + const std::complex<T>& yy = B_colptr[i]; + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = yy.imag(); + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == false) ) + { + arma_extra_debug_print("trans_A = true; trans_B = false;"); + + const uword N = (std::min)(A_n_cols, B_n_cols); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* A_colptr = A.colptr(k); + const eT* B_colptr = B.colptr(k); + + // condition: A_n_rows = B_n_rows + + for(uword i=0; i < A_n_rows; ++i) + { + // acc += std::conj(A_colptr[i]) * B_colptr[i]; + + const std::complex<T>& xx = A_colptr[i]; + const std::complex<T>& yy = B_colptr[i]; + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = yy.imag(); + + // take into account the complex conjugate of xx + + acc_real += (a*c) + (b*d); + acc_imag += (a*d) - (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true) ) + { + arma_extra_debug_print("trans_A = false; trans_B = true;"); + + const uword N = (std::min)(A_n_rows, B_n_rows); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + // condition: A_n_cols = B_n_cols + + for(uword i=0; i < A_n_cols; ++i) + { + // acc += A.at(k,i) * std::conj(B.at(k,i)); + + const std::complex<T>& xx = A.at(k, i); + const std::complex<T>& yy = B.at(k, i); + + const T a = xx.real(); + const T b = xx.imag(); + + const T c = yy.real(); + const T d = -yy.imag(); // take the conjugate + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + else + if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == true) ) + { + arma_extra_debug_print("trans_A = true; trans_B = true;"); + + const uword N = (std::min)(A_n_cols, B_n_rows); + + out.set_size(N,1); + + eT* out_mem = out.memptr(); + + for(uword k=0; k < N; ++k) + { + T acc_real = T(0); + T acc_imag = T(0); + + const eT* A_colptr = A.colptr(k); + + // condition: A_n_rows = B_n_cols + + for(uword i=0; i < A_n_rows; ++i) + { + // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i)); + + const std::complex<T>& xx = A_colptr[i]; + const std::complex<T>& yy = B.at(k, i); + + const T a = xx.real(); + const T b = -xx.imag(); // take the conjugate + + const T c = yy.real(); + const T d = -yy.imag(); // take the conjugate + + acc_real += (a*c) - (b*d); + acc_imag += (a*d) + (b*c); + } + + const eT acc = std::complex<T>(acc_real, acc_imag); + + out_mem[k] = (use_alpha) ? eT(alpha * acc) : eT(acc); + } + } + + if(is_alias) { actual_out.steal_mem(tmp); } + } + + + +// +// +// + + + +template<typename T1> +inline +void +op_diagvec2::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_diagvec2>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const uword a = X.aux_uword_a; + const uword b = X.aux_uword_b; + + const uword row_offset = (b > 0) ? a : 0; + const uword col_offset = (b == 0) ? a : 0; + + const Proxy<T1> P(X.m); + + if(P.is_alias(out) == false) + { + op_diagvec2::apply_proxy(out, P, row_offset, col_offset); + } + else + { + Mat<eT> tmp; + + op_diagvec2::apply_proxy(tmp, P, row_offset, col_offset); + + out.steal_mem(tmp); + } + } + + + +template<typename T1> +inline +void +op_diagvec2::apply_proxy(Mat<typename T1::elem_type>& out, const Proxy<T1>& P, const uword row_offset, const uword col_offset) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const uword n_rows = P.get_n_rows(); + const uword n_cols = P.get_n_cols(); + + arma_debug_check_bounds + ( + ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)), + "diagvec(): requested diagonal is out of bounds" + ); + + const uword len = (std::min)(n_rows - row_offset, n_cols - col_offset); + + out.set_size(len, 1); + + eT* out_mem = out.memptr(); + + uword i,j; + for(i=0, j=1; j < len; i+=2, j+=2) + { + const eT tmp_i = P.at( i + row_offset, i + col_offset ); + const eT tmp_j = P.at( j + row_offset, j + col_offset ); + + out_mem[i] = tmp_i; + out_mem[j] = tmp_j; + } + + if(i < len) + { + out_mem[i] = P.at( i + row_offset, i + col_offset ); + } + } + + + +//! @} |