diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/op_expmat_meat.hpp | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/op_expmat_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/op_expmat_meat.hpp | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/op_expmat_meat.hpp b/src/armadillo/include/armadillo_bits/op_expmat_meat.hpp new file mode 100644 index 0000000..d45fb36 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/op_expmat_meat.hpp @@ -0,0 +1,256 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + + +//! \addtogroup op_expmat +//! @{ + + +//! implementation based on: +//! Cleve Moler, Charles Van Loan. +//! Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. +//! SIAM Review, Vol. 45, No. 1, 2003, pp. 3-49. +//! http://dx.doi.org/10.1137/S00361445024180 + + +template<typename T1> +inline +void +op_expmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_expmat>& expr) + { + arma_extra_debug_sigprint(); + + const bool status = op_expmat::apply_direct(out, expr.m); + + if(status == false) + { + out.soft_reset(); + arma_stop_runtime_error("expmat(): given matrix appears ill-conditioned"); + } + } + + + +template<typename T1> +inline +bool +op_expmat::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type, T1>& expr) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + if(is_op_diagmat<T1>::value) + { + out = expr.get_ref(); // force the evaluation of diagmat() + + arma_debug_check( (out.is_square() == false), "expmat(): given matrix must be square sized", [&](){ out.soft_reset(); } ); + + const uword N = (std::min)(out.n_rows, out.n_cols); + + for(uword i=0; i<N; ++i) { out.at(i,i) = std::exp( out.at(i,i) ); } + + return true; + } + + Mat<eT> A = expr.get_ref(); + + arma_debug_check( (A.is_square() == false), "expmat(): given matrix must be square sized" ); + + if(A.is_diagmat()) + { + arma_extra_debug_print("op_expmat: detected diagonal matrix"); + + const uword N = (std::min)(A.n_rows, A.n_cols); + + out.zeros(N,N); + + for(uword i=0; i<N; ++i) { out.at(i,i) = std::exp( A.at(i,i) ); } + + return true; + } + + bool do_sym = false; + + if( (arma_config::optimise_sym) && (auxlib::crippled_lapack(A) == false) ) + { + bool is_approx_sym = false; + bool is_approx_sympd = false; + + sym_helper::analyse_matrix(is_approx_sym, is_approx_sympd, A); + + do_sym = ((is_cx<eT>::no) ? (is_approx_sym) : (is_approx_sym && is_approx_sympd)); + } + + if(do_sym) + { + arma_extra_debug_print("op_expmat: symmetric/hermitian optimisation"); + + Col< T> eigval; + Mat<eT> eigvec; + + const bool eig_status = eig_sym_helper(eigval, eigvec, A, 'd', "expmat()"); + + if(eig_status == false) { return false; } + + eigval = exp(eigval); + + out = eigvec * diagmat(eigval) * eigvec.t(); + + return true; + } + + const T norm_val = arma::norm(A, "inf"); + + if(arma_isfinite(norm_val) == false) { return false; } + + const double log2_val = (norm_val > T(0)) ? double(eop_aux::log2(norm_val)) : double(0); + + int exponent = int(0); std::frexp(log2_val, &exponent); + + const uword s = uword( (std::max)(int(0), exponent + int(1)) ); + + A /= eT(eop_aux::pow(double(2), double(s))); + + T c = T(0.5); + + Mat<eT> E(A.n_rows, A.n_rows, fill::eye); E += c * A; + Mat<eT> D(A.n_rows, A.n_rows, fill::eye); D -= c * A; + + Mat<eT> X = A; + + bool positive = true; + + const uword N = 6; + + for(uword i = 2; i <= N; ++i) + { + c = c * T(N - i + 1) / T(i * (2*N - i + 1)); + + X = A * X; + + E += c * X; + + if(positive) { D += c * X; } else { D -= c * X; } + + positive = (positive) ? false : true; + } + + if( (D.internal_has_nonfinite()) || (E.internal_has_nonfinite()) ) { return false; } + + const bool status = solve(out, D, E, solve_opts::no_approx); + + if(status == false) { return false; } + + for(uword i=0; i < s; ++i) { out = out * out; } + + return true; + } + + + +template<typename T1> +inline +void +op_expmat_sym::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_expmat_sym>& in) + { + arma_extra_debug_sigprint(); + + const bool status = op_expmat_sym::apply_direct(out, in.m); + + if(status == false) + { + out.soft_reset(); + arma_stop_runtime_error("expmat_sym(): transformation failed"); + } + } + + + +template<typename T1> +inline +bool +op_expmat_sym::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr) + { + arma_extra_debug_sigprint(); + + #if defined(ARMA_USE_LAPACK) + { + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + const unwrap<T1> U(expr.get_ref()); + const Mat<eT>& X = U.M; + + arma_debug_check( (X.is_square() == false), "expmat_sym(): given matrix must be square sized" ); + + if((arma_config::debug) && (arma_config::warn_level > 0) && (is_cx<eT>::yes) && (sym_helper::check_diag_imag(X) == false)) + { + arma_debug_warn_level(1, "inv_sympd(): imaginary components on diagonal are non-zero"); + } + + if(is_op_diagmat<T1>::value || X.is_diagmat()) + { + arma_extra_debug_print("op_expmat_sym: detected diagonal matrix"); + + out = X; + + eT* colmem = out.memptr(); + + const uword N = X.n_rows; + + for(uword i=0; i<N; ++i) + { + eT& out_ii = colmem[i]; + T out_ii_real = access::tmp_real(out_ii); + + out_ii = eT( std::exp(out_ii_real) ); + + colmem += N; + } + + return true; + } + + Col< T> eigval; + Mat<eT> eigvec; + + const bool status = eig_sym_helper(eigval, eigvec, X, 'd', "expmat_sym()"); + + if(status == false) { return false; } + + eigval = exp(eigval); + + out = eigvec * diagmat(eigval) * eigvec.t(); + + return true; + } + #else + { + arma_ignore(out); + arma_ignore(expr); + arma_stop_logic_error("expmat_sym(): use of LAPACK must be enabled"); + return false; + } + #endif + } + + + +//! @} |