diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 14:52:43 +0100 |
commit | eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch) | |
tree | bc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/spglue_times_meat.hpp | |
download | fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip |
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/spglue_times_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/spglue_times_meat.hpp | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/spglue_times_meat.hpp b/src/armadillo/include/armadillo_bits/spglue_times_meat.hpp new file mode 100644 index 0000000..852dcad --- /dev/null +++ b/src/armadillo/include/armadillo_bits/spglue_times_meat.hpp @@ -0,0 +1,369 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup spglue_times +//! @{ + + + +template<typename T1, typename T2> +inline +void +spglue_times::apply(SpMat<typename T1::elem_type>& out, const SpGlue<T1,T2,spglue_times>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap_spmat<T1> UA(X.A); + const unwrap_spmat<T2> UB(X.B); + + const bool is_alias = (UA.is_alias(out) || UB.is_alias(out)); + + if(is_alias == false) + { + spglue_times::apply_noalias(out, UA.M, UB.M); + } + else + { + SpMat<eT> tmp; + + spglue_times::apply_noalias(tmp, UA.M, UB.M); + + out.steal_mem(tmp); + } + } + + + +template<typename T1, typename T2> +inline +void +spglue_times::apply(SpMat<typename T1::elem_type>& out, const SpGlue<SpOp<T1,spop_scalar_times>,T2,spglue_times>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const unwrap_spmat<T1> UA(X.A.m); + const unwrap_spmat<T2> UB(X.B); + + const bool is_alias = (UA.is_alias(out) || UB.is_alias(out)); + + if(is_alias == false) + { + spglue_times::apply_noalias(out, UA.M, UB.M); + } + else + { + SpMat<eT> tmp; + + spglue_times::apply_noalias(tmp, UA.M, UB.M); + + out.steal_mem(tmp); + } + + out *= X.A.aux; + } + + + +template<typename eT> +inline +void +spglue_times::apply_noalias(SpMat<eT>& c, const SpMat<eT>& x, const SpMat<eT>& y) + { + arma_extra_debug_sigprint(); + + const uword x_n_rows = x.n_rows; + const uword x_n_cols = x.n_cols; + const uword y_n_rows = y.n_rows; + const uword y_n_cols = y.n_cols; + + arma_debug_assert_mul_size(x_n_rows, x_n_cols, y_n_rows, y_n_cols, "matrix multiplication"); + + // First we must determine the structure of the new matrix (column pointers). + // This follows the algorithm described in 'Sparse Matrix Multiplication + // Package (SMMP)' (R.E. Bank and C.C. Douglas, 2001). Their description of + // "SYMBMM" does not include anything about memory allocation. In addition it + // does not consider that there may be elements which space may be allocated + // for but which evaluate to zero anyway. So we have to modify the algorithm + // to work that way. For the "SYMBMM" implementation we will not determine + // the row indices but instead just the column pointers. + + //SpMat<typename T1::elem_type> c(x_n_rows, y_n_cols); // Initializes col_ptrs to 0. + c.zeros(x_n_rows, y_n_cols); + + //if( (x.n_elem == 0) || (y.n_elem == 0) ) { return; } + if( (x.n_nonzero == 0) || (y.n_nonzero == 0) ) { return; } + + // Auxiliary storage which denotes when items have been found. + podarray<uword> index(x_n_rows); + index.fill(x_n_rows); // Fill with invalid links. + + typename SpMat<eT>::const_iterator y_it = y.begin(); + typename SpMat<eT>::const_iterator y_end = y.end(); + + // SYMBMM: calculate column pointers for resultant matrix to obtain a good + // upper bound on the number of nonzero elements. + uword cur_col_length = 0; + uword last_ind = x_n_rows + 1; + do + { + const uword y_it_row = y_it.row(); + + // Look through the column that this point (*y_it) could affect. + typename SpMat<eT>::const_iterator x_it = x.begin_col_no_sync(y_it_row); + + while(x_it.col() == y_it_row) + { + const uword x_it_row = x_it.row(); + + // A point at x(i, j) and y(j, k) implies a point at c(i, k). + if(index[x_it_row] == x_n_rows) + { + index[x_it_row] = last_ind; + last_ind = x_it_row; + ++cur_col_length; + } + + ++x_it; + } + + const uword old_col = y_it.col(); + ++y_it; + + // See if column incremented. + if(old_col != y_it.col()) + { + // Set column pointer (this is not a cumulative count; that is done later). + access::rw(c.col_ptrs[old_col + 1]) = cur_col_length; + cur_col_length = 0; + + // Return index markers to zero. Use last_ind for traversal. + while(last_ind != x_n_rows + 1) + { + const uword tmp = index[last_ind]; + index[last_ind] = x_n_rows; + last_ind = tmp; + } + } + } + while(y_it != y_end); + + // Accumulate column pointers. + for(uword i = 0; i < c.n_cols; ++i) + { + access::rw(c.col_ptrs[i + 1]) += c.col_ptrs[i]; + } + + // Now that we know a decent bound on the number of nonzero elements, + // allocate the memory and fill it. + + const uword max_n_nonzero = c.col_ptrs[c.n_cols]; + + c.mem_resize(max_n_nonzero); + + // Now the implementation of the NUMBMM algorithm. + uword cur_pos = 0; // Current position in c matrix. + podarray<eT> sums(x_n_rows); // Partial sums. + sums.zeros(); + + podarray<uword> sorted_indices(x_n_rows); // upper bound + + // last_ind is already set to x_n_rows, and cur_col_length is already set to 0. + // We will loop through all columns as necessary. + uword cur_col = 0; + while(cur_col < c.n_cols) + { + // Skip to next column with elements in it. + while((cur_col < c.n_cols) && (c.col_ptrs[cur_col] == c.col_ptrs[cur_col + 1])) + { + // Update current column pointer to actual number of nonzero elements up + // to this point. + access::rw(c.col_ptrs[cur_col]) = cur_pos; + ++cur_col; + } + + if(cur_col == c.n_cols) { break; } + + // Update current column pointer. + access::rw(c.col_ptrs[cur_col]) = cur_pos; + + // Check all elements in this column. + typename SpMat<eT>::const_iterator y_col_it = y.begin_col_no_sync(cur_col); + + while(y_col_it.col() == cur_col) + { + const uword y_col_it_row = y_col_it.row(); + + // Check all elements in the column of the other matrix corresponding to + // the row of this column. + typename SpMat<eT>::const_iterator x_col_it = x.begin_col_no_sync(y_col_it_row); + + const eT y_value = (*y_col_it); + + while(x_col_it.col() == y_col_it_row) + { + const uword x_col_it_row = x_col_it.row(); + + // A point at x(i, j) and y(j, k) implies a point at c(i, k). + // Add to partial sum. + const eT x_value = (*x_col_it); + sums[x_col_it_row] += (x_value * y_value); + + // Add point if it hasn't already been marked. + if(index[x_col_it_row] == x_n_rows) + { + index[x_col_it_row] = last_ind; + last_ind = x_col_it_row; + } + + ++x_col_it; + } + + ++y_col_it; + } + + // Now sort the indices that were used in this column. + uword cur_index = 0; + while(last_ind != x_n_rows + 1) + { + const uword tmp = last_ind; + + // Check that it wasn't a "fake" nonzero element. + if(sums[tmp] != eT(0)) + { + // Assign to next open position. + sorted_indices[cur_index] = tmp; + ++cur_index; + } + + last_ind = index[tmp]; + index[tmp] = x_n_rows; + } + + // Now sort the indices. + if(cur_index != 0) + { + op_sort::direct_sort_ascending(sorted_indices.memptr(), cur_index); + + for(uword k = 0; k < cur_index; ++k) + { + const uword row = sorted_indices[k]; + access::rw(c.row_indices[cur_pos]) = row; + access::rw(c.values[cur_pos]) = sums[row]; + sums[row] = eT(0); + ++cur_pos; + } + } + + // Move to next column. + ++cur_col; + } + + // Update last column pointer and resize to actual memory size. + + // access::rw(c.col_ptrs[c.n_cols]) = cur_pos; + // c.mem_resize(cur_pos); + + access::rw(c.col_ptrs[c.n_cols]) = cur_pos; + + if(cur_pos < max_n_nonzero) { c.mem_resize(cur_pos); } + } + + + +// +// +// + + + +template<typename T1, typename T2> +inline +void +spglue_times_mixed::apply(SpMat<typename eT_promoter<T1,T2>::eT>& out, const mtSpGlue<typename eT_promoter<T1,T2>::eT, T1, T2, spglue_times_mixed>& expr) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT1; + typedef typename T2::elem_type eT2; + + typedef typename eT_promoter<T1,T2>::eT out_eT; + + if( (is_same_type<eT1,out_eT>::no) && (is_same_type<eT2,out_eT>::yes) ) + { + // upgrade T1 + + const unwrap_spmat<T1> UA(expr.A); + const unwrap_spmat<T2> UB(expr.B); + + const SpMat<eT1>& A = UA.M; + const SpMat<eT2>& B = UB.M; + + SpMat<out_eT> AA(arma_layout_indicator(), A); + + for(uword i=0; i < A.n_nonzero; ++i) { access::rw(AA.values[i]) = out_eT(A.values[i]); } + + const SpMat<out_eT>& BB = reinterpret_cast< const SpMat<out_eT>& >(B); + + out = AA * BB; + } + else + if( (is_same_type<eT1,out_eT>::yes) && (is_same_type<eT2,out_eT>::no) ) + { + // upgrade T2 + + const unwrap_spmat<T1> UA(expr.A); + const unwrap_spmat<T2> UB(expr.B); + + const SpMat<eT1>& A = UA.M; + const SpMat<eT2>& B = UB.M; + + const SpMat<out_eT>& AA = reinterpret_cast< const SpMat<out_eT>& >(A); + + SpMat<out_eT> BB(arma_layout_indicator(), B); + + for(uword i=0; i < B.n_nonzero; ++i) { access::rw(BB.values[i]) = out_eT(B.values[i]); } + + out = AA * BB; + } + else + { + // upgrade T1 and T2 + + const unwrap_spmat<T1> UA(expr.A); + const unwrap_spmat<T2> UB(expr.B); + + const SpMat<eT1>& A = UA.M; + const SpMat<eT2>& B = UB.M; + + SpMat<out_eT> AA(arma_layout_indicator(), A); + SpMat<out_eT> BB(arma_layout_indicator(), B); + + for(uword i=0; i < A.n_nonzero; ++i) { access::rw(AA.values[i]) = out_eT(A.values[i]); } + for(uword i=0; i < B.n_nonzero; ++i) { access::rw(BB.values[i]) = out_eT(B.values[i]); } + + out = AA * BB; + } + } + + + +//! @} |