summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/spop_var_meat.hpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
committerNao Pross <np@0hm.ch>2024-02-12 14:52:43 +0100
commiteda5bc26f44ee9a6f83dcf8c91f17296d7fc509d (patch)
treebc2efa38ff4e350f9a111ac87065cd7ae9a911c7 /src/armadillo/include/armadillo_bits/spop_var_meat.hpp
downloadfsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.tar.gz
fsisotool-eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d.zip
Move into version control
Diffstat (limited to 'src/armadillo/include/armadillo_bits/spop_var_meat.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/spop_var_meat.hpp414
1 files changed, 414 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/spop_var_meat.hpp b/src/armadillo/include/armadillo_bits/spop_var_meat.hpp
new file mode 100644
index 0000000..8d01a44
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/spop_var_meat.hpp
@@ -0,0 +1,414 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+//! \addtogroup spop_var
+//! @{
+
+
+
+template<typename T1>
+inline
+void
+spop_var::apply(SpMat<typename T1::pod_type>& out, const mtSpOp<typename T1::pod_type, T1, spop_var>& in)
+ {
+ arma_extra_debug_sigprint();
+
+ //typedef typename T1::elem_type in_eT;
+ typedef typename T1::pod_type out_eT;
+
+ const uword norm_type = in.aux_uword_a;
+ const uword dim = in.aux_uword_b;
+
+ arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
+ arma_debug_check( (dim > 1), "var(): parameter 'dim' must be 0 or 1" );
+
+ const SpProxy<T1> p(in.m);
+
+ if(p.is_alias(out) == false)
+ {
+ spop_var::apply_noalias(out, p, norm_type, dim);
+ }
+ else
+ {
+ SpMat<out_eT> tmp;
+
+ spop_var::apply_noalias(tmp, p, norm_type, dim);
+
+ out.steal_mem(tmp);
+ }
+ }
+
+
+
+template<typename T1>
+inline
+void
+spop_var::apply_noalias
+ (
+ SpMat<typename T1::pod_type>& out,
+ const SpProxy<T1>& p,
+ const uword norm_type,
+ const uword dim
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type in_eT;
+ //typedef typename T1::pod_type out_eT;
+
+ const uword p_n_rows = p.get_n_rows();
+ const uword p_n_cols = p.get_n_cols();
+
+ // TODO: this is slow; rewrite based on the approach used by sparse mean()
+
+ if(dim == 0) // find variance in each column
+ {
+ arma_extra_debug_print("spop_var::apply_noalias(): dim = 0");
+
+ out.set_size((p_n_rows > 0) ? 1 : 0, p_n_cols);
+
+ if( (p_n_rows == 0) || (p.get_n_nonzero() == 0) ) { return; }
+
+ for(uword col = 0; col < p_n_cols; ++col)
+ {
+ if(SpProxy<T1>::use_iterator)
+ {
+ // We must use an iterator; we can't access memory directly.
+ typename SpProxy<T1>::const_iterator_type it = p.begin_col(col);
+ typename SpProxy<T1>::const_iterator_type end = p.begin_col(col + 1);
+
+ const uword n_zero = p_n_rows - (end.pos() - it.pos());
+
+ // in_eT is used just to get the specialization right (complex / noncomplex)
+ out.at(0, col) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0));
+ }
+ else
+ {
+ // We can use direct memory access to calculate the variance.
+ out.at(0, col) = spop_var::direct_var
+ (
+ &p.get_values()[p.get_col_ptrs()[col]],
+ p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col],
+ p_n_rows,
+ norm_type
+ );
+ }
+ }
+ }
+ else
+ if(dim == 1) // find variance in each row
+ {
+ arma_extra_debug_print("spop_var::apply_noalias(): dim = 1");
+
+ out.set_size(p_n_rows, (p_n_cols > 0) ? 1 : 0);
+
+ if( (p_n_cols == 0) || (p.get_n_nonzero() == 0) ) { return; }
+
+ for(uword row = 0; row < p_n_rows; ++row)
+ {
+ // We have to use an iterator here regardless of whether or not we can
+ // directly access memory.
+ typename SpProxy<T1>::const_row_iterator_type it = p.begin_row(row);
+ typename SpProxy<T1>::const_row_iterator_type end = p.end_row(row);
+
+ const uword n_zero = p_n_cols - (end.pos() - it.pos());
+
+ out.at(row, 0) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0));
+ }
+ }
+ }
+
+
+
+template<typename T1>
+inline
+typename T1::pod_type
+spop_var::var_vec
+ (
+ const T1& X,
+ const uword norm_type
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
+
+ // conditionally unwrap it into a temporary and then directly operate.
+
+ const unwrap_spmat<T1> tmp(X);
+
+ return direct_var(tmp.M.values, tmp.M.n_nonzero, tmp.M.n_elem, norm_type);
+ }
+
+
+
+template<typename eT>
+inline
+eT
+spop_var::direct_var
+ (
+ const eT* const X,
+ const uword length,
+ const uword N,
+ const uword norm_type
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ if(length >= 2 && N >= 2)
+ {
+ const eT acc1 = spop_mean::direct_mean(X, length, N);
+
+ eT acc2 = eT(0);
+ eT acc3 = eT(0);
+
+ uword i, j;
+
+ for(i = 0, j = 1; j < length; i += 2, j += 2)
+ {
+ const eT Xi = X[i];
+ const eT Xj = X[j];
+
+ const eT tmpi = acc1 - Xi;
+ const eT tmpj = acc1 - Xj;
+
+ acc2 += tmpi * tmpi + tmpj * tmpj;
+ acc3 += tmpi + tmpj;
+ }
+
+ if(i < length)
+ {
+ const eT Xi = X[i];
+
+ const eT tmpi = acc1 - Xi;
+
+ acc2 += tmpi * tmpi;
+ acc3 += tmpi;
+ }
+
+ // Now add in all zero elements.
+ acc2 += (N - length) * (acc1 * acc1);
+ acc3 += (N - length) * acc1;
+
+ const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N);
+ const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val;
+
+ return var_val;
+ }
+ else if(length == 1 && N > 1) // if N == 1, then variance is zero.
+ {
+ const eT mean = X[0] / eT(N);
+ const eT val = mean - X[0];
+
+ const eT acc2 = (val * val) + (N - length) * (mean * mean);
+ const eT acc3 = val + (N - length) * mean;
+
+ const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N);
+ const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val;
+
+ return var_val;
+ }
+ else
+ {
+ return eT(0);
+ }
+ }
+
+
+
+template<typename T>
+inline
+T
+spop_var::direct_var
+ (
+ const std::complex<T>* const X,
+ const uword length,
+ const uword N,
+ const uword norm_type
+ )
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename std::complex<T> eT;
+
+ if(length >= 2 && N >= 2)
+ {
+ const eT acc1 = spop_mean::direct_mean(X, length, N);
+
+ T acc2 = T(0);
+ eT acc3 = eT(0);
+
+ for(uword i = 0; i < length; ++i)
+ {
+ const eT tmp = acc1 - X[i];
+
+ acc2 += std::norm(tmp);
+ acc3 += tmp;
+ }
+
+ // Add zero elements to sums
+ acc2 += std::norm(acc1) * T(N - length);
+ acc3 += acc1 * T(N - length);
+
+ const T norm_val = (norm_type == 0) ? T(N - 1) : T(N);
+ const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val;
+
+ return var_val;
+ }
+ else if(length == 1 && N > 1) // if N == 1, then variance is zero.
+ {
+ const eT mean = X[0] / T(N);
+ const eT val = mean - X[0];
+
+ const T acc2 = std::norm(val) + (N - length) * std::norm(mean);
+ const eT acc3 = val + T(N - length) * mean;
+
+ const T norm_val = (norm_type == 0) ? T(N - 1) : T(N);
+ const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val;
+
+ return var_val;
+ }
+ else
+ {
+ return T(0); // All elements are zero
+ }
+ }
+
+
+
+template<typename T1, typename eT>
+inline
+eT
+spop_var::iterator_var
+ (
+ T1& it,
+ const T1& end,
+ const uword n_zero,
+ const uword norm_type,
+ const eT junk1,
+ const typename arma_not_cx<eT>::result* junk2
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk1);
+ arma_ignore(junk2);
+
+ T1 new_it(it); // for mean
+ // T1 backup_it(it); // in case we have to call robust iterator_var
+ eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0));
+
+ eT acc2 = eT(0);
+ eT acc3 = eT(0);
+
+ const uword it_begin_pos = it.pos();
+
+ while(it != end)
+ {
+ const eT tmp = mean - (*it);
+
+ acc2 += (tmp * tmp);
+ acc3 += (tmp);
+
+ ++it;
+ }
+
+ const uword n_nonzero = (it.pos() - it_begin_pos);
+ if(n_nonzero == 0)
+ {
+ return eT(0);
+ }
+
+ if(n_nonzero + n_zero == 1)
+ {
+ return eT(0); // only one element
+ }
+
+ // Add in entries for zeros.
+ acc2 += eT(n_zero) * (mean * mean);
+ acc3 += eT(n_zero) * mean;
+
+ const eT norm_val = (norm_type == 0) ? eT(n_zero + n_nonzero - 1) : eT(n_zero + n_nonzero);
+ const eT var_val = (acc2 - (acc3 * acc3) / eT(n_nonzero + n_zero)) / norm_val;
+
+ return var_val;
+ }
+
+
+
+template<typename T1, typename eT>
+inline
+typename get_pod_type<eT>::result
+spop_var::iterator_var
+ (
+ T1& it,
+ const T1& end,
+ const uword n_zero,
+ const uword norm_type,
+ const eT junk1,
+ const typename arma_cx_only<eT>::result* junk2
+ )
+ {
+ arma_extra_debug_sigprint();
+ arma_ignore(junk1);
+ arma_ignore(junk2);
+
+ typedef typename get_pod_type<eT>::result T;
+
+ T1 new_it(it); // for mean
+ // T1 backup_it(it); // in case we have to call robust iterator_var
+ eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0));
+
+ T acc2 = T(0);
+ eT acc3 = eT(0);
+
+ const uword it_begin_pos = it.pos();
+
+ while(it != end)
+ {
+ eT tmp = mean - (*it);
+
+ acc2 += std::norm(tmp);
+ acc3 += (tmp);
+
+ ++it;
+ }
+
+ const uword n_nonzero = (it.pos() - it_begin_pos);
+ if(n_nonzero == 0)
+ {
+ return T(0);
+ }
+
+ if(n_nonzero + n_zero == 1)
+ {
+ return T(0); // only one element
+ }
+
+ // Add in entries for zero elements.
+ acc2 += T(n_zero) * std::norm(mean);
+ acc3 += T(n_zero) * mean;
+
+ const T norm_val = (norm_type == 0) ? T(n_zero + n_nonzero - 1) : T(n_zero + n_nonzero);
+ const T var_val = (acc2 - std::norm(acc3) / T(n_nonzero + n_zero)) / norm_val;
+
+ return var_val;
+ }
+
+
+
+//! @}