summaryrefslogtreecommitdiffstats
path: root/src/control.cpp
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-02-12 23:58:46 +0100
committerNao Pross <np@0hm.ch>2024-02-13 00:55:20 +0100
commit6449c4d7bba3f45274b78a51871f64d429d82f8b (patch)
tree26f964a5a0db1c6f6fe8ed443f1263bb9100df2c /src/control.cpp
parentRemove empty files (diff)
downloadfsisotool-master.tar.gz
fsisotool-master.zip
Make Nyquist and Bode workHEADmaster
Diffstat (limited to '')
-rw-r--r--src/control.cpp62
1 files changed, 52 insertions, 10 deletions
diff --git a/src/control.cpp b/src/control.cpp
index 4abc899..69de3a8 100644
--- a/src/control.cpp
+++ b/src/control.cpp
@@ -81,6 +81,12 @@ namespace ct
return tf;
}
+ TransferFn cancel_zp(const TransferFn& tf, double tol)
+ {
+ math::PolyCx num(tf.num.coeffs.n_elem);
+ math::PolyCx den(tf.den.coeffs.n_elem);
+ // TODO: return new tf without poles & zeros that are closer to each other than tol
+ }
TransferFn feedback(const TransferFn& tf, complex k)
{
@@ -88,8 +94,9 @@ namespace ct
const TransferFn ol = k * tf;
const TransferFn bo = unit - ol;
const TransferFn fb = unit / bo;
- const TransferFn tf_cl = ol * fb;
+ TransferFn tf_cl = ol * fb;
// const TransferFn tf_cl = (k * tf) / (unit - k * tf);
+ tf_cl.canonicalize();
return tf_cl;
}
@@ -103,12 +110,21 @@ namespace ct
}
}
+ TransferFn& TransferFn::operator = (const TransferFn& other)
+ {
+ if (this == &other)
+ return *this;
+
+ num = math::PolyCx(other.num);
+ den = math::PolyCx(other.den);
+ return *this;
+ }
+
LocusSeries::LocusSeries(double start, double end, size_t nsamples)
: n_samples(nsamples)
, start(start)
, end(end)
, in(arma::logspace(log10(start), log10(end), n_samples))
- // FIXME: do not hardcode one root locus
, out(1, n_samples, arma::fill::zeros)
{}
@@ -124,9 +140,27 @@ namespace ct
// compute roots
for (int i = 0; i < ls.n_samples; i++)
+ // FIXME: sort the roots
ls.out.col(i) = (tf.den + ls.in(i) * tf.num).roots();
+ }
+
+ void nyquist(const TransferFn& tf, LocusSeries& ls)
+ {
+ using namespace arma;
+ complex j(0., 1.);
- // sort the roots
+ // FIXME missing the countour at infinity and the small contours for poles
+ // on the imaginary axis
+
+ // contour from 0 to i\infty
+ cx_mat num = polyval(tf.num.coeffs, j * conv_to<cx_vec>::from(ls.in));
+ cx_mat den = polyval(tf.den.coeffs, j * conv_to<cx_vec>::from(ls.in));
+
+ if (ls.out.n_rows != ls.n_samples)
+ ls.out = cx_mat(1, ls.n_samples);
+
+ for (int i = 0; i < ls.n_samples; i++)
+ ls.out(i) = num(i) / den(i);
}
SSModel::SSModel(size_t n_in, size_t n_out, size_t n_states)
@@ -181,14 +215,22 @@ namespace ct
// FIXME: non-homogeneous initial condition
// For the current application we want this to be faster rather than
- // accurate. Hence we use a simulation with ZOH input is cheap and probably
- // good enough.
- // FIXME: do not invert matrix like that
- const cx_mat Ad = expmat(ss.A * ts.dt);
- const cx_mat Bd = (Ad - eye(size(Ad))) * pinv(ss.A) * ss.B;
-
+ // accurate. Hence we use a simulation with ZOH input since it is cheap and
+ // probably good enough.
+ // FIXME: do not invert matrix like that, but I am too lazy to implement
+ // regularization
+ const int n_steps = 3;
+ const cx_mat Ad = expmat(ss.A * ts.dt / n_steps);
+ const cx_mat Bd = (Ad - eye(size(Ad))) * inv(ss.A) * ss.B;
+
+ cx_vec x(ss.n_states), xn;
for (int k = 0; k < ts.n_samples - 1; k++)
- ts.state.col(k + 1) = Ad * ts.state.col(k) + Bd * ts.in.col(k);
+ {
+ x = ts.state.col(k);
+ for (int l = 0; l < n_steps; l++)
+ xn = Ad * x + Bd * ts.in.col(k);
+ ts.state.col(k + 1) = xn;
+ }
ts.out = ss.C * ts.state + ss.D * ts.in;
}