summaryrefslogtreecommitdiffstats
path: root/src/Eigen/src/CholmodSupport/CholmodSupport.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/CholmodSupport/CholmodSupport.h')
-rw-r--r--src/Eigen/src/CholmodSupport/CholmodSupport.h682
1 files changed, 682 insertions, 0 deletions
diff --git a/src/Eigen/src/CholmodSupport/CholmodSupport.h b/src/Eigen/src/CholmodSupport/CholmodSupport.h
new file mode 100644
index 0000000..adaf528
--- /dev/null
+++ b/src/Eigen/src/CholmodSupport/CholmodSupport.h
@@ -0,0 +1,682 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CHOLMODSUPPORT_H
+#define EIGEN_CHOLMODSUPPORT_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Scalar> struct cholmod_configure_matrix;
+
+template<> struct cholmod_configure_matrix<double> {
+ template<typename CholmodType>
+ static void run(CholmodType& mat) {
+ mat.xtype = CHOLMOD_REAL;
+ mat.dtype = CHOLMOD_DOUBLE;
+ }
+};
+
+template<> struct cholmod_configure_matrix<std::complex<double> > {
+ template<typename CholmodType>
+ static void run(CholmodType& mat) {
+ mat.xtype = CHOLMOD_COMPLEX;
+ mat.dtype = CHOLMOD_DOUBLE;
+ }
+};
+
+// Other scalar types are not yet supported by Cholmod
+// template<> struct cholmod_configure_matrix<float> {
+// template<typename CholmodType>
+// static void run(CholmodType& mat) {
+// mat.xtype = CHOLMOD_REAL;
+// mat.dtype = CHOLMOD_SINGLE;
+// }
+// };
+//
+// template<> struct cholmod_configure_matrix<std::complex<float> > {
+// template<typename CholmodType>
+// static void run(CholmodType& mat) {
+// mat.xtype = CHOLMOD_COMPLEX;
+// mat.dtype = CHOLMOD_SINGLE;
+// }
+// };
+
+} // namespace internal
+
+/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
+ * Note that the data are shared.
+ */
+template<typename _Scalar, int _Options, typename _StorageIndex>
+cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
+{
+ cholmod_sparse res;
+ res.nzmax = mat.nonZeros();
+ res.nrow = mat.rows();
+ res.ncol = mat.cols();
+ res.p = mat.outerIndexPtr();
+ res.i = mat.innerIndexPtr();
+ res.x = mat.valuePtr();
+ res.z = 0;
+ res.sorted = 1;
+ if(mat.isCompressed())
+ {
+ res.packed = 1;
+ res.nz = 0;
+ }
+ else
+ {
+ res.packed = 0;
+ res.nz = mat.innerNonZeroPtr();
+ }
+
+ res.dtype = 0;
+ res.stype = -1;
+
+ if (internal::is_same<_StorageIndex,int>::value)
+ {
+ res.itype = CHOLMOD_INT;
+ }
+ else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value)
+ {
+ res.itype = CHOLMOD_LONG;
+ }
+ else
+ {
+ eigen_assert(false && "Index type not supported yet");
+ }
+
+ // setup res.xtype
+ internal::cholmod_configure_matrix<_Scalar>::run(res);
+
+ res.stype = 0;
+
+ return res;
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
+{
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
+ return res;
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
+{
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
+ return res;
+}
+
+/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
+ * The data are not copied but shared. */
+template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
+cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
+{
+ cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
+
+ if(UpLo==Upper) res.stype = 1;
+ if(UpLo==Lower) res.stype = -1;
+ // swap stype for rowmajor matrices (only works for real matrices)
+ EIGEN_STATIC_ASSERT((_Options & RowMajorBit) == 0 || NumTraits<_Scalar>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+ if(_Options & RowMajorBit) res.stype *=-1;
+
+ return res;
+}
+
+/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
+ * The data are not copied but shared. */
+template<typename Derived>
+cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
+{
+ EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+ typedef typename Derived::Scalar Scalar;
+
+ cholmod_dense res;
+ res.nrow = mat.rows();
+ res.ncol = mat.cols();
+ res.nzmax = res.nrow * res.ncol;
+ res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
+ res.x = (void*)(mat.derived().data());
+ res.z = 0;
+
+ internal::cholmod_configure_matrix<Scalar>::run(res);
+
+ return res;
+}
+
+/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
+ * The data are not copied but shared. */
+template<typename Scalar, int Flags, typename StorageIndex>
+MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
+{
+ return MappedSparseMatrix<Scalar,Flags,StorageIndex>
+ (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
+ static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
+}
+
+namespace internal {
+
+// template specializations for int and long that call the correct cholmod method
+
+#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
+ template<typename _StorageIndex> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
+ template<> inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
+
+#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
+ template<typename _StorageIndex> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
+ template<> inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
+
+EIGEN_CHOLMOD_SPECIALIZE0(int, start)
+EIGEN_CHOLMOD_SPECIALIZE0(int, finish)
+
+EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L)
+EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense, cholmod_dense*, X)
+EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
+
+EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
+
+template<typename _StorageIndex> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
+template<> inline cholmod_dense* cm_solve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
+
+template<typename _StorageIndex> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
+template<> inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
+
+template<typename _StorageIndex>
+inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
+template<>
+inline int cm_factorize_p<SuiteSparse_long> (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
+
+#undef EIGEN_CHOLMOD_SPECIALIZE0
+#undef EIGEN_CHOLMOD_SPECIALIZE1
+
+} // namespace internal
+
+
+enum CholmodMode {
+ CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
+};
+
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodBase
+ * \brief The base class for the direct Cholesky factorization of Cholmod
+ * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
+ */
+template<typename _MatrixType, int _UpLo, typename Derived>
+class CholmodBase : public SparseSolverBase<Derived>
+{
+ protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::derived;
+ using Base::m_isInitialized;
+ public:
+ typedef _MatrixType MatrixType;
+ enum { UpLo = _UpLo };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef MatrixType CholMatrixType;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ enum {
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ public:
+
+ CholmodBase()
+ : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
+ m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
+ internal::cm_start<StorageIndex>(m_cholmod);
+ }
+
+ explicit CholmodBase(const MatrixType& matrix)
+ : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
+ m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
+ internal::cm_start<StorageIndex>(m_cholmod);
+ compute(matrix);
+ }
+
+ ~CholmodBase()
+ {
+ if(m_cholmodFactor)
+ internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
+ internal::cm_finish<StorageIndex>(m_cholmod);
+ }
+
+ inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
+ inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was successful,
+ * \c NumericalIssue if the matrix.appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_info;
+ }
+
+ /** Computes the sparse Cholesky decomposition of \a matrix */
+ Derived& compute(const MatrixType& matrix)
+ {
+ analyzePattern(matrix);
+ factorize(matrix);
+ return derived();
+ }
+
+ /** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
+ *
+ * This function is particularly useful when solving for several problems having the same structure.
+ *
+ * \sa factorize()
+ */
+ void analyzePattern(const MatrixType& matrix)
+ {
+ if(m_cholmodFactor)
+ {
+ internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
+ m_cholmodFactor = 0;
+ }
+ cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
+ m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod);
+
+ this->m_isInitialized = true;
+ this->m_info = Success;
+ m_analysisIsOk = true;
+ m_factorizationIsOk = false;
+ }
+
+ /** Performs a numeric decomposition of \a matrix
+ *
+ * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
+ *
+ * \sa analyzePattern()
+ */
+ void factorize(const MatrixType& matrix)
+ {
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+ cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
+ internal::cm_factorize_p<StorageIndex>(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod);
+
+ // If the factorization failed, minor is the column at which it did. On success minor == n.
+ this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
+ m_factorizationIsOk = true;
+ }
+
+ /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
+ * See the Cholmod user guide for details. */
+ cholmod_common& cholmod() { return m_cholmod; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ {
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+ const Index size = m_cholmodFactor->n;
+ EIGEN_UNUSED_VARIABLE(size);
+ eigen_assert(size==b.rows());
+
+ // Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref.
+ Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
+
+ cholmod_dense b_cd = viewAsCholmod(b_ref);
+ cholmod_dense* x_cd = internal::cm_solve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod);
+ if(!x_cd)
+ {
+ this->m_info = NumericalIssue;
+ return;
+ }
+ // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
+ // NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve
+ dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
+ internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod);
+ }
+
+ /** \internal */
+ template<typename RhsDerived, typename DestDerived>
+ void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
+ {
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+ const Index size = m_cholmodFactor->n;
+ EIGEN_UNUSED_VARIABLE(size);
+ eigen_assert(size==b.rows());
+
+ // note: cs stands for Cholmod Sparse
+ Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
+ cholmod_sparse b_cs = viewAsCholmod(b_ref);
+ cholmod_sparse* x_cs = internal::cm_spsolve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod);
+ if(!x_cs)
+ {
+ this->m_info = NumericalIssue;
+ return;
+ }
+ // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
+ // NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's sparse solver)
+ dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
+ internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod);
+ }
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+
+
+ /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
+ *
+ * During the numerical factorization, an offset term is added to the diagonal coefficients:\n
+ * \c d_ii = \a offset + \c d_ii
+ *
+ * The default is \a offset=0.
+ *
+ * \returns a reference to \c *this.
+ */
+ Derived& setShift(const RealScalar& offset)
+ {
+ m_shiftOffset[0] = double(offset);
+ return derived();
+ }
+
+ /** \returns the determinant of the underlying matrix from the current factorization */
+ Scalar determinant() const
+ {
+ using std::exp;
+ return exp(logDeterminant());
+ }
+
+ /** \returns the log determinant of the underlying matrix from the current factorization */
+ Scalar logDeterminant() const
+ {
+ using std::log;
+ using numext::real;
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+
+ RealScalar logDet = 0;
+ Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
+ if (m_cholmodFactor->is_super)
+ {
+ // Supernodal factorization stored as a packed list of dense column-major blocs,
+ // as described by the following structure:
+
+ // super[k] == index of the first column of the j-th super node
+ StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
+ // pi[k] == offset to the description of row indices
+ StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
+ // px[k] == offset to the respective dense block
+ StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
+
+ Index nb_super_nodes = m_cholmodFactor->nsuper;
+ for (Index k=0; k < nb_super_nodes; ++k)
+ {
+ StorageIndex ncols = super[k + 1] - super[k];
+ StorageIndex nrows = pi[k + 1] - pi[k];
+
+ Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
+ logDet += sk.real().log().sum();
+ }
+ }
+ else
+ {
+ // Simplicial factorization stored as standard CSC matrix.
+ StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
+ Index size = m_cholmodFactor->n;
+ for (Index k=0; k<size; ++k)
+ logDet += log(real( x[p[k]] ));
+ }
+ if (m_cholmodFactor->is_ll)
+ logDet *= 2.0;
+ return logDet;
+ };
+
+ template<typename Stream>
+ void dumpMemory(Stream& /*s*/)
+ {}
+
+ protected:
+ mutable cholmod_common m_cholmod;
+ cholmod_factor* m_cholmodFactor;
+ double m_shiftOffset[2];
+ mutable ComputationInfo m_info;
+ int m_factorizationIsOk;
+ int m_analysisIsOk;
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSimplicialLLT
+ * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
+ * using the Cholmod library.
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * \implsparsesolverconcept
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
+ *
+ * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSimplicialLLT() : Base() { init(); }
+
+ CholmodSimplicialLLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ this->compute(matrix);
+ }
+
+ ~CholmodSimplicialLLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 0;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ m_cholmod.final_ll = 1;
+ }
+};
+
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSimplicialLDLT
+ * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
+ * using the Cholmod library.
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * \implsparsesolverconcept
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
+ *
+ * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSimplicialLDLT() : Base() { init(); }
+
+ CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ this->compute(matrix);
+ }
+
+ ~CholmodSimplicialLDLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ }
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSupernodalLLT
+ * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
+ * using the Cholmod library.
+ * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
+ * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * \implsparsesolverconcept
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
+ *
+ * \sa \ref TutorialSparseSolverConcept
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSupernodalLLT() : Base() { init(); }
+
+ CholmodSupernodalLLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ this->compute(matrix);
+ }
+
+ ~CholmodSupernodalLLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
+ }
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodDecomposition
+ * \brief A general Cholesky factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
+ * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * This variant permits to change the underlying Cholesky method at runtime.
+ * On the other hand, it does not provide access to the result of the factorization.
+ * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * \implsparsesolverconcept
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \warning Only double precision real and complex scalar types are supported by Cholmod.
+ *
+ * \sa \ref TutorialSparseSolverConcept
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodDecomposition() : Base() { init(); }
+
+ CholmodDecomposition(const MatrixType& matrix) : Base()
+ {
+ init();
+ this->compute(matrix);
+ }
+
+ ~CholmodDecomposition() {}
+
+ void setMode(CholmodMode mode)
+ {
+ switch(mode)
+ {
+ case CholmodAuto:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_AUTO;
+ break;
+ case CholmodSimplicialLLt:
+ m_cholmod.final_asis = 0;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ m_cholmod.final_ll = 1;
+ break;
+ case CholmodSupernodalLLt:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
+ break;
+ case CholmodLDLt:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ break;
+ default:
+ break;
+ }
+ }
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_AUTO;
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CHOLMODSUPPORT_H