diff options
Diffstat (limited to 'src/Eigen/src/Core/MathFunctions.h')
-rw-r--r-- | src/Eigen/src/Core/MathFunctions.h | 2057 |
1 files changed, 2057 insertions, 0 deletions
diff --git a/src/Eigen/src/Core/MathFunctions.h b/src/Eigen/src/Core/MathFunctions.h new file mode 100644 index 0000000..61b78f4 --- /dev/null +++ b/src/Eigen/src/Core/MathFunctions.h @@ -0,0 +1,2057 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATHFUNCTIONS_H +#define EIGEN_MATHFUNCTIONS_H + +// TODO this should better be moved to NumTraits +// Source: WolframAlpha +#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L +#define EIGEN_LOG2E 1.442695040888963407359924681001892137426645954152985934135449406931109219L +#define EIGEN_LN2 0.693147180559945309417232121458176568075500134360255254120680009493393621L + +namespace Eigen { + +// On WINCE, std::abs is defined for int only, so let's defined our own overloads: +// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. +#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 +long abs(long x) { return (labs(x)); } +double abs(double x) { return (fabs(x)); } +float abs(float x) { return (fabsf(x)); } +long double abs(long double x) { return (fabsl(x)); } +#endif + +namespace internal { + +/** \internal \class global_math_functions_filtering_base + * + * What it does: + * Defines a typedef 'type' as follows: + * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then + * global_math_functions_filtering_base<T>::type is a typedef for it. + * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. + * + * How it's used: + * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. + * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know + * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. + * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization + * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. + * + * How it's implemented: + * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace + * the typename dummy by an integer template parameter, it doesn't work anymore! + */ + +template<typename T, typename dummy = void> +struct global_math_functions_filtering_base +{ + typedef T type; +}; + +template<typename T> struct always_void { typedef void type; }; + +template<typename T> +struct global_math_functions_filtering_base + <T, + typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type + > +{ + typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; +}; + +#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> +#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type + +/**************************************************************************** +* Implementation of real * +****************************************************************************/ + +template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> +struct real_default_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x; + } +}; + +template<typename Scalar> +struct real_default_impl<Scalar,true> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + using std::real; + return real(x); + } +}; + +template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template<typename T> +struct real_impl<std::complex<T> > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex<T>& x) + { + return x.real(); + } +}; +#endif + +template<typename Scalar> +struct real_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of imag * +****************************************************************************/ + +template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> +struct imag_default_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar&) + { + return RealScalar(0); + } +}; + +template<typename Scalar> +struct imag_default_impl<Scalar,true> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + using std::imag; + return imag(x); + } +}; + +template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template<typename T> +struct imag_impl<std::complex<T> > +{ + typedef T RealScalar; + EIGEN_DEVICE_FUNC + static inline T run(const std::complex<T>& x) + { + return x.imag(); + } +}; +#endif + +template<typename Scalar> +struct imag_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of real_ref * +****************************************************************************/ + +template<typename Scalar> +struct real_ref_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar& run(Scalar& x) + { + return reinterpret_cast<RealScalar*>(&x)[0]; + } + EIGEN_DEVICE_FUNC + static inline const RealScalar& run(const Scalar& x) + { + return reinterpret_cast<const RealScalar*>(&x)[0]; + } +}; + +template<typename Scalar> +struct real_ref_retval +{ + typedef typename NumTraits<Scalar>::Real & type; +}; + +/**************************************************************************** +* Implementation of imag_ref * +****************************************************************************/ + +template<typename Scalar, bool IsComplex> +struct imag_ref_default_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar& run(Scalar& x) + { + return reinterpret_cast<RealScalar*>(&x)[1]; + } + EIGEN_DEVICE_FUNC + static inline const RealScalar& run(const Scalar& x) + { + return reinterpret_cast<RealScalar*>(&x)[1]; + } +}; + +template<typename Scalar> +struct imag_ref_default_impl<Scalar, false> +{ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + static inline Scalar run(Scalar&) + { + return Scalar(0); + } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + static inline const Scalar run(const Scalar&) + { + return Scalar(0); + } +}; + +template<typename Scalar> +struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; + +template<typename Scalar> +struct imag_ref_retval +{ + typedef typename NumTraits<Scalar>::Real & type; +}; + +/**************************************************************************** +* Implementation of conj * +****************************************************************************/ + +template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> +struct conj_default_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + return x; + } +}; + +template<typename Scalar> +struct conj_default_impl<Scalar,true> +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + using std::conj; + return conj(x); + } +}; + +template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> +struct conj_impl : conj_default_impl<Scalar, IsComplex> {}; + +template<typename Scalar> +struct conj_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of abs2 * +****************************************************************************/ + +template<typename Scalar,bool IsComplex> +struct abs2_impl_default +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x*x; + } +}; + +template<typename Scalar> +struct abs2_impl_default<Scalar, true> // IsComplex +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return x.real()*x.real() + x.imag()*x.imag(); + } +}; + +template<typename Scalar> +struct abs2_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x); + } +}; + +template<typename Scalar> +struct abs2_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of sqrt/rsqrt * +****************************************************************************/ + +template<typename Scalar> +struct sqrt_impl +{ + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE Scalar run(const Scalar& x) + { + EIGEN_USING_STD(sqrt); + return sqrt(x); + } +}; + +// Complex sqrt defined in MathFunctionsImpl.h. +template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& a_x); + +// Custom implementation is faster than `std::sqrt`, works on +// GPU, and correctly handles special cases (unlike MSVC). +template<typename T> +struct sqrt_impl<std::complex<T> > +{ + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x) + { + return complex_sqrt<T>(x); + } +}; + +template<typename Scalar> +struct sqrt_retval +{ + typedef Scalar type; +}; + +// Default implementation relies on numext::sqrt, at bottom of file. +template<typename T> +struct rsqrt_impl; + +// Complex rsqrt defined in MathFunctionsImpl.h. +template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& a_x); + +template<typename T> +struct rsqrt_impl<std::complex<T> > +{ + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x) + { + return complex_rsqrt<T>(x); + } +}; + +template<typename Scalar> +struct rsqrt_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of norm1 * +****************************************************************************/ + +template<typename Scalar, bool IsComplex> +struct norm1_default_impl; + +template<typename Scalar> +struct norm1_default_impl<Scalar,true> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + EIGEN_USING_STD(abs); + return abs(x.real()) + abs(x.imag()); + } +}; + +template<typename Scalar> +struct norm1_default_impl<Scalar, false> +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + EIGEN_USING_STD(abs); + return abs(x); + } +}; + +template<typename Scalar> +struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; + +template<typename Scalar> +struct norm1_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of hypot * +****************************************************************************/ + +template<typename Scalar> struct hypot_impl; + +template<typename Scalar> +struct hypot_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of cast * +****************************************************************************/ + +template<typename OldType, typename NewType, typename EnableIf = void> +struct cast_impl +{ + EIGEN_DEVICE_FUNC + static inline NewType run(const OldType& x) + { + return static_cast<NewType>(x); + } +}; + +// Casting from S -> Complex<T> leads to an implicit conversion from S to T, +// generating warnings on clang. Here we explicitly cast the real component. +template<typename OldType, typename NewType> +struct cast_impl<OldType, NewType, + typename internal::enable_if< + !NumTraits<OldType>::IsComplex && NumTraits<NewType>::IsComplex + >::type> +{ + EIGEN_DEVICE_FUNC + static inline NewType run(const OldType& x) + { + typedef typename NumTraits<NewType>::Real NewReal; + return static_cast<NewType>(static_cast<NewReal>(x)); + } +}; + +// here, for once, we're plainly returning NewType: we don't want cast to do weird things. + +template<typename OldType, typename NewType> +EIGEN_DEVICE_FUNC +inline NewType cast(const OldType& x) +{ + return cast_impl<OldType, NewType>::run(x); +} + +/**************************************************************************** +* Implementation of round * +****************************************************************************/ + +template<typename Scalar> +struct round_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) +#if EIGEN_HAS_CXX11_MATH + EIGEN_USING_STD(round); +#endif + return Scalar(round(x)); + } +}; + +#if !EIGEN_HAS_CXX11_MATH +#if EIGEN_HAS_C99_MATH +// Use ::roundf for float. +template<> +struct round_impl<float> { + EIGEN_DEVICE_FUNC + static inline float run(const float& x) + { + return ::roundf(x); + } +}; +#else +template<typename Scalar> +struct round_using_floor_ceil_impl +{ + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) + // Without C99 round/roundf, resort to floor/ceil. + EIGEN_USING_STD(floor); + EIGEN_USING_STD(ceil); + // If not enough precision to resolve a decimal at all, return the input. + // Otherwise, adding 0.5 can trigger an increment by 1. + const Scalar limit = Scalar(1ull << (NumTraits<Scalar>::digits() - 1)); + if (x >= limit || x <= -limit) { + return x; + } + return (x > Scalar(0)) ? Scalar(floor(x + Scalar(0.5))) : Scalar(ceil(x - Scalar(0.5))); + } +}; + +template<> +struct round_impl<float> : round_using_floor_ceil_impl<float> {}; + +template<> +struct round_impl<double> : round_using_floor_ceil_impl<double> {}; +#endif // EIGEN_HAS_C99_MATH +#endif // !EIGEN_HAS_CXX11_MATH + +template<typename Scalar> +struct round_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of rint * +****************************************************************************/ + +template<typename Scalar> +struct rint_impl { + EIGEN_DEVICE_FUNC + static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) +#if EIGEN_HAS_CXX11_MATH + EIGEN_USING_STD(rint); +#endif + return rint(x); + } +}; + +#if !EIGEN_HAS_CXX11_MATH +template<> +struct rint_impl<double> { + EIGEN_DEVICE_FUNC + static inline double run(const double& x) + { + return ::rint(x); + } +}; +template<> +struct rint_impl<float> { + EIGEN_DEVICE_FUNC + static inline float run(const float& x) + { + return ::rintf(x); + } +}; +#endif + +template<typename Scalar> +struct rint_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of arg * +****************************************************************************/ + +// Visual Studio 2017 has a bug where arg(float) returns 0 for negative inputs. +// This seems to be fixed in VS 2019. +#if EIGEN_HAS_CXX11_MATH && (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920) +// std::arg is only defined for types of std::complex, or integer types or float/double/long double +template<typename Scalar, + bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value + || is_same<Scalar, float>::value || is_same<Scalar, double>::value + || is_same<Scalar, long double>::value > +struct arg_default_impl; + +template<typename Scalar> +struct arg_default_impl<Scalar, true> { + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + #if defined(EIGEN_HIP_DEVICE_COMPILE) + // HIP does not seem to have a native device side implementation for the math routine "arg" + using std::arg; + #else + EIGEN_USING_STD(arg); + #endif + return static_cast<RealScalar>(arg(x)); + } +}; + +// Must be non-complex floating-point type (e.g. half/bfloat16). +template<typename Scalar> +struct arg_default_impl<Scalar, false> { + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return (x < Scalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0); + } +}; +#else +template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> +struct arg_default_impl +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + return (x < RealScalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0); + } +}; + +template<typename Scalar> +struct arg_default_impl<Scalar,true> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline RealScalar run(const Scalar& x) + { + EIGEN_USING_STD(arg); + return arg(x); + } +}; +#endif +template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; + +template<typename Scalar> +struct arg_retval +{ + typedef typename NumTraits<Scalar>::Real type; +}; + +/**************************************************************************** +* Implementation of expm1 * +****************************************************************************/ + +// This implementation is based on GSL Math's expm1. +namespace std_fallback { + // fallback expm1 implementation in case there is no expm1(Scalar) function in namespace of Scalar, + // or that there is no suitable std::expm1 function available. Implementation + // attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php. + template<typename Scalar> + EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + typedef typename NumTraits<Scalar>::Real RealScalar; + + EIGEN_USING_STD(exp); + Scalar u = exp(x); + if (numext::equal_strict(u, Scalar(1))) { + return x; + } + Scalar um1 = u - RealScalar(1); + if (numext::equal_strict(um1, Scalar(-1))) { + return RealScalar(-1); + } + + EIGEN_USING_STD(log); + Scalar logu = log(u); + return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu; + } +} + +template<typename Scalar> +struct expm1_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + #if EIGEN_HAS_CXX11_MATH + using std::expm1; + #else + using std_fallback::expm1; + #endif + return expm1(x); + } +}; + +template<typename Scalar> +struct expm1_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of log * +****************************************************************************/ + +// Complex log defined in MathFunctionsImpl.h. +template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z); + +template<typename Scalar> +struct log_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) + { + EIGEN_USING_STD(log); + return static_cast<Scalar>(log(x)); + } +}; + +template<typename Scalar> +struct log_impl<std::complex<Scalar> > { + EIGEN_DEVICE_FUNC static inline std::complex<Scalar> run(const std::complex<Scalar>& z) + { + return complex_log(z); + } +}; + +/**************************************************************************** +* Implementation of log1p * +****************************************************************************/ + +namespace std_fallback { + // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, + // or that there is no suitable std::log1p function available + template<typename Scalar> + EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + typedef typename NumTraits<Scalar>::Real RealScalar; + EIGEN_USING_STD(log); + Scalar x1p = RealScalar(1) + x; + Scalar log_1p = log_impl<Scalar>::run(x1p); + const bool is_small = numext::equal_strict(x1p, Scalar(1)); + const bool is_inf = numext::equal_strict(x1p, log_1p); + return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1))); + } +} + +template<typename Scalar> +struct log1p_impl { + EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + #if EIGEN_HAS_CXX11_MATH + using std::log1p; + #else + using std_fallback::log1p; + #endif + return log1p(x); + } +}; + +// Specialization for complex types that are not supported by std::log1p. +template <typename RealScalar> +struct log1p_impl<std::complex<RealScalar> > { + EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run( + const std::complex<RealScalar>& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) + return std_fallback::log1p(x); + } +}; + +template<typename Scalar> +struct log1p_retval +{ + typedef Scalar type; +}; + +/**************************************************************************** +* Implementation of pow * +****************************************************************************/ + +template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger> +struct pow_impl +{ + //typedef Scalar retval; + typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type; + static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) + { + EIGEN_USING_STD(pow); + return pow(x, y); + } +}; + +template<typename ScalarX,typename ScalarY> +struct pow_impl<ScalarX,ScalarY, true> +{ + typedef ScalarX result_type; + static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) + { + ScalarX res(1); + eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); + if(y & 1) res *= x; + y >>= 1; + while(y) + { + x *= x; + if(y&1) res *= x; + y >>= 1; + } + return res; + } +}; + +/**************************************************************************** +* Implementation of random * +****************************************************************************/ + +template<typename Scalar, + bool IsComplex, + bool IsInteger> +struct random_default_impl {}; + +template<typename Scalar> +struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; + +template<typename Scalar> +struct random_retval +{ + typedef Scalar type; +}; + +template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); +template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); + +template<typename Scalar> +struct random_default_impl<Scalar, false, false> +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); + } + static inline Scalar run() + { + return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); + } +}; + +enum { + meta_floor_log2_terminate, + meta_floor_log2_move_up, + meta_floor_log2_move_down, + meta_floor_log2_bogus +}; + +template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector +{ + enum { middle = (lower + upper) / 2, + value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) + : (n < (1 << middle)) ? int(meta_floor_log2_move_down) + : (n==0) ? int(meta_floor_log2_bogus) + : int(meta_floor_log2_move_up) + }; +}; + +template<unsigned int n, + int lower = 0, + int upper = sizeof(unsigned int) * CHAR_BIT - 1, + int selector = meta_floor_log2_selector<n, lower, upper>::value> +struct meta_floor_log2 {}; + +template<unsigned int n, int lower, int upper> +struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> +{ + enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; +}; + +template<unsigned int n, int lower, int upper> +struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> +{ + enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; +}; + +template<unsigned int n, int lower, int upper> +struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> +{ + enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; +}; + +template<unsigned int n, int lower, int upper> +struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> +{ + // no value, error at compile time +}; + +template<typename Scalar> +struct random_default_impl<Scalar, false, true> +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + if (y <= x) + return x; + // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself. + typedef typename make_unsigned<Scalar>::type ScalarU; + // ScalarX is the widest of ScalarU and unsigned int. + // We'll deal only with ScalarX and unsigned int below thus avoiding signed + // types and arithmetic and signed overflows (which are undefined behavior). + typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX; + // The following difference doesn't overflow, provided our integer types are two's + // complement and have the same number of padding bits in signed and unsigned variants. + // This is the case in most modern implementations of C++. + ScalarX range = ScalarX(y) - ScalarX(x); + ScalarX offset = 0; + ScalarX divisor = 1; + ScalarX multiplier = 1; + const unsigned rand_max = RAND_MAX; + if (range <= rand_max) divisor = (rand_max + 1) / (range + 1); + else multiplier = 1 + range / (rand_max + 1); + // Rejection sampling. + do { + offset = (unsigned(std::rand()) * multiplier) / divisor; + } while (offset > range); + return Scalar(ScalarX(x) + offset); + } + + static inline Scalar run() + { +#ifdef EIGEN_MAKING_DOCS + return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); +#else + enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, + scalar_bits = sizeof(Scalar) * CHAR_BIT, + shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), + offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 + }; + return Scalar((std::rand() >> shift) - offset); +#endif + } +}; + +template<typename Scalar> +struct random_default_impl<Scalar, true, false> +{ + static inline Scalar run(const Scalar& x, const Scalar& y) + { + return Scalar(random(x.real(), y.real()), + random(x.imag(), y.imag())); + } + static inline Scalar run() + { + typedef typename NumTraits<Scalar>::Real RealScalar; + return Scalar(random<RealScalar>(), random<RealScalar>()); + } +}; + +template<typename Scalar> +inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) +{ + return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); +} + +template<typename Scalar> +inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() +{ + return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); +} + +// Implementation of is* functions + +// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. +#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) +#define EIGEN_USE_STD_FPCLASSIFY 1 +#else +#define EIGEN_USE_STD_FPCLASSIFY 0 +#endif + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<internal::is_integral<T>::value,bool>::type +isnan_impl(const T&) { return false; } + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<internal::is_integral<T>::value,bool>::type +isinf_impl(const T&) { return false; } + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<internal::is_integral<T>::value,bool>::type +isfinite_impl(const T&) { return true; } + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type +isfinite_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isfinite)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isfinite; + return isfinite EIGEN_NOT_A_MACRO (x); + #else + return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest(); + #endif +} + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type +isinf_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isinf)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isinf; + return isinf EIGEN_NOT_A_MACRO (x); + #else + return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); + #endif +} + +template<typename T> +EIGEN_DEVICE_FUNC +typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type +isnan_impl(const T& x) +{ + #if defined(EIGEN_GPU_COMPILE_PHASE) + return (::isnan)(x); + #elif EIGEN_USE_STD_FPCLASSIFY + using std::isnan; + return isnan EIGEN_NOT_A_MACRO (x); + #else + return x != x; + #endif +} + +#if (!EIGEN_USE_STD_FPCLASSIFY) + +#if EIGEN_COMP_MSVC + +template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) +{ + return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; +} + +//MSVC defines a _isnan builtin function, but for double only +EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } +EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } + +EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } +EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } + +#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) + +#if EIGEN_GNUC_AT_LEAST(5,0) + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) +#else + // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), + // while the second prevent too aggressive optimizations in fast-math mode: + #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) +#endif + +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } +template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } + +#undef EIGEN_TMP_NOOPT_ATTRIB + +#endif + +#endif + +// The following overload are defined at the end of this file +template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); +template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); +template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); + +template<typename T> T generic_fast_tanh_float(const T& a_x); +} // end namespace internal + +/**************************************************************************** +* Generic math functions * +****************************************************************************/ + +namespace numext { + +#if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) +template<typename T> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + EIGEN_USING_STD(min) + return min EIGEN_NOT_A_MACRO (x,y); +} + +template<typename T> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + EIGEN_USING_STD(max) + return max EIGEN_NOT_A_MACRO (x,y); +} +#else +template<typename T> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) +{ + return y < x ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) +{ + return fminf(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y) +{ + return fmin(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y) +{ +#if defined(EIGEN_HIPCC) + // no "fminl" on HIP yet + return (x < y) ? x : y; +#else + return fminl(x, y); +#endif +} + +template<typename T> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) +{ + return x < y ? y : x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) +{ + return fmaxf(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y) +{ + return fmax(x, y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y) +{ +#if defined(EIGEN_HIPCC) + // no "fmaxl" on HIP yet + return (x > y) ? x : y; +#else + return fmaxl(x, y); +#endif +} +#endif + +#if defined(SYCL_DEVICE_ONLY) + + +#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long) +#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long) +#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) +#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) +#define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) +#define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) +#define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC,cl::sycl::cl_double) +#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC,cl::sycl::cl_double) +#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(NAME, FUNC, RET_TYPE) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double) + +#define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \ +template<> \ + EIGEN_DEVICE_FUNC \ + EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \ + return cl::sycl::FUNC(x); \ + } + +#define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) \ + SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE) + +#define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \ + template<> \ + EIGEN_DEVICE_FUNC \ + EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x, const ARG_TYPE2& y) { \ + return cl::sycl::FUNC(x, y); \ + } + +#define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \ + SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE) + +#define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) \ + SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE) + +SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin) +SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax) + +#endif + + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) +{ + return internal::real_ref_impl<Scalar>::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) +{ + return internal::imag_ref_impl<Scalar>::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); +} + +EIGEN_DEVICE_FUNC +inline bool abs2(bool x) { return x; } + +template<typename T> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE T absdiff(const T& x, const T& y) +{ + return x > y ? x - y : y - x; +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE float absdiff(const float& x, const float& y) +{ + return fabsf(x - y); +} +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE double absdiff(const double& x, const double& y) +{ + return fabs(x - y); +} + +#if !defined(EIGEN_GPUCC) +// HIP and CUDA do not support long double. +template<> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE long double absdiff(const long double& x, const long double& y) { + return fabsl(x - y); +} +#endif + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) +{ + return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); +} + +#if defined(SYCL_DEVICE_ONLY) + SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot) +#endif + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log1p(const float &x) { return ::log1pf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log1p(const double &x) { return ::log1p(x); } +#endif + +template<typename ScalarX,typename ScalarY> +EIGEN_DEVICE_FUNC +inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y) +{ + return internal::pow_impl<ScalarX,ScalarY>::run(x, y); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow) +#endif + +template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } +template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } +template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool) +#endif + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(rint, Scalar) rint(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(rint, Scalar)::run(x); +} + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round) +#endif + +template<typename T> +EIGEN_DEVICE_FUNC +T (floor)(const T& x) +{ + EIGEN_USING_STD(floor) + return floor(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float floor(const float &x) { return ::floorf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double floor(const double &x) { return ::floor(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC +T (ceil)(const T& x) +{ + EIGEN_USING_STD(ceil); + return ceil(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float ceil(const float &x) { return ::ceilf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double ceil(const double &x) { return ::ceil(x); } +#endif + + +/** Log base 2 for 32 bits positive integers. + * Conveniently returns 0 for x==0. */ +inline int log2(int x) +{ + eigen_assert(x>=0); + unsigned int v(x); + static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return table[(v * 0x07C4ACDDU) >> 27]; +} + +/** \returns the square root of \a x. + * + * It is essentially equivalent to + * \code using std::sqrt; return sqrt(x); \endcode + * but slightly faster for float/double and some compilers (e.g., gcc), thanks to + * specializations when SSE is enabled. + * + * It's usage is justified in performance critical functions, like norm/normalize. + */ +template<typename Scalar> +EIGEN_DEVICE_FUNC +EIGEN_ALWAYS_INLINE EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x); +} + +// Boolean specialization, avoids implicit float to bool conversion (-Wimplicit-conversion-floating-point-to-bool). +template<> +EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC +bool sqrt<bool>(const bool &x) { return x; } + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt) +#endif + +/** \returns the reciprocal square root of \a x. **/ +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T rsqrt(const T& x) +{ + return internal::rsqrt_impl<T>::run(x); +} + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T log(const T &x) { + return internal::log_impl<T>::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log) +#endif + + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float log(const float &x) { return ::logf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double log(const double &x) { return ::log(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type +abs(const T &x) { + EIGEN_USING_STD(abs); + return abs(x); +} + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type +abs(const T &x) { + return x; +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const float &x) { return ::fabsf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const double &x) { return ::fabs(x); } + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float abs(const std::complex<float>& x) { + return ::hypotf(x.real(), x.imag()); +} + +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double abs(const std::complex<double>& x) { + return ::hypot(x.real(), x.imag()); +} +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T exp(const T &x) { + EIGEN_USING_STD(exp); + return exp(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float exp(const float &x) { return ::expf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double exp(const double &x) { return ::exp(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +std::complex<float> exp(const std::complex<float>& x) { + float com = ::expf(x.real()); + float res_real = com * ::cosf(x.imag()); + float res_imag = com * ::sinf(x.imag()); + return std::complex<float>(res_real, res_imag); +} + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +std::complex<double> exp(const std::complex<double>& x) { + double com = ::exp(x.real()); + double res_real = com * ::cos(x.imag()); + double res_imag = com * ::sin(x.imag()); + return std::complex<double>(res_real, res_imag); +} +#endif + +template<typename Scalar> +EIGEN_DEVICE_FUNC +inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x) +{ + return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float expm1(const float &x) { return ::expm1f(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double expm1(const double &x) { return ::expm1(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cos(const T &x) { + EIGEN_USING_STD(cos); + return cos(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos,cos) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cos(const float &x) { return ::cosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cos(const double &x) { return ::cos(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sin(const T &x) { + EIGEN_USING_STD(sin); + return sin(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sin(const float &x) { return ::sinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sin(const double &x) { return ::sin(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tan(const T &x) { + EIGEN_USING_STD(tan); + return tan(x); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tan(const float &x) { return ::tanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tan(const double &x) { return ::tan(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T acos(const T &x) { + EIGEN_USING_STD(acos); + return acos(x); +} + +#if EIGEN_HAS_CXX11_MATH +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T acosh(const T &x) { + EIGEN_USING_STD(acosh); + return static_cast<T>(acosh(x)); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float acos(const float &x) { return ::acosf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double acos(const double &x) { return ::acos(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T asin(const T &x) { + EIGEN_USING_STD(asin); + return asin(x); +} + +#if EIGEN_HAS_CXX11_MATH +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T asinh(const T &x) { + EIGEN_USING_STD(asinh); + return static_cast<T>(asinh(x)); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float asin(const float &x) { return ::asinf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double asin(const double &x) { return ::asin(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T atan(const T &x) { + EIGEN_USING_STD(atan); + return static_cast<T>(atan(x)); +} + +#if EIGEN_HAS_CXX11_MATH +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T atanh(const T &x) { + EIGEN_USING_STD(atanh); + return static_cast<T>(atanh(x)); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float atan(const float &x) { return ::atanf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double atan(const double &x) { return ::atan(x); } +#endif + + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T cosh(const T &x) { + EIGEN_USING_STD(cosh); + return static_cast<T>(cosh(x)); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float cosh(const float &x) { return ::coshf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double cosh(const double &x) { return ::cosh(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T sinh(const T &x) { + EIGEN_USING_STD(sinh); + return static_cast<T>(sinh(x)); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float sinh(const float &x) { return ::sinhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double sinh(const double &x) { return ::sinh(x); } +#endif + +template<typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T tanh(const T &x) { + EIGEN_USING_STD(tanh); + return tanh(x); +} + +#if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY) +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(float x) { return internal::generic_fast_tanh_float(x); } +#endif + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh) +#endif + +#if defined(EIGEN_GPUCC) +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float tanh(const float &x) { return ::tanhf(x); } + +template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double tanh(const double &x) { return ::tanh(x); } +#endif + +template <typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T fmod(const T& a, const T& b) { + EIGEN_USING_STD(fmod); + return fmod(a, b); +} + +#if defined(SYCL_DEVICE_ONLY) +SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod) +#endif + +#if defined(EIGEN_GPUCC) +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float fmod(const float& a, const float& b) { + return ::fmodf(a, b); +} + +template <> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double fmod(const double& a, const double& b) { + return ::fmod(a, b); +} +#endif + +#if defined(SYCL_DEVICE_ONLY) +#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY +#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY +#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE +#undef SYCL_SPECIALIZE_GEN_UNARY_FUNC +#undef SYCL_SPECIALIZE_UNARY_FUNC +#undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC +#undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC +#undef SYCL_SPECIALIZE_BINARY_FUNC +#endif + +} // end namespace numext + +namespace internal { + +template<typename T> +EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) +{ + return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); +} + +template<typename T> +EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) +{ + return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); +} + +template<typename T> +EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) +{ + return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); +} + +/**************************************************************************** +* Implementation of fuzzy comparisons * +****************************************************************************/ + +template<typename Scalar, + bool IsComplex, + bool IsInteger> +struct scalar_fuzzy_default_impl {}; + +template<typename Scalar> +struct scalar_fuzzy_default_impl<Scalar, false, false> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + template<typename OtherScalar> EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) + { + return numext::abs(x) <= numext::abs(y) * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return x <= y || isApprox(x, y, prec); + } +}; + +template<typename Scalar> +struct scalar_fuzzy_default_impl<Scalar, false, true> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + template<typename OtherScalar> EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) + { + return x == Scalar(0); + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) + { + return x == y; + } + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) + { + return x <= y; + } +}; + +template<typename Scalar> +struct scalar_fuzzy_default_impl<Scalar, true, false> +{ + typedef typename NumTraits<Scalar>::Real RealScalar; + template<typename OtherScalar> EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) + { + return numext::abs2(x) <= numext::abs2(y) * prec * prec; + } + EIGEN_DEVICE_FUNC + static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) + { + return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; + } +}; + +template<typename Scalar> +struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; + +template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC +inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, + const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) +{ + return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); +} + +template<typename Scalar> EIGEN_DEVICE_FUNC +inline bool isApprox(const Scalar& x, const Scalar& y, + const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) +{ + return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); +} + +template<typename Scalar> EIGEN_DEVICE_FUNC +inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, + const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) +{ + return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); +} + +/****************************************** +*** The special case of the bool type *** +******************************************/ + +template<> struct random_impl<bool> +{ + static inline bool run() + { + return random<int>(0,1)==0 ? false : true; + } + + static inline bool run(const bool& a, const bool& b) + { + return random<int>(a, b)==0 ? false : true; + } +}; + +template<> struct scalar_fuzzy_impl<bool> +{ + typedef bool RealScalar; + + template<typename OtherScalar> EIGEN_DEVICE_FUNC + static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) + { + return !x; + } + + EIGEN_DEVICE_FUNC + static inline bool isApprox(bool x, bool y, bool) + { + return x == y; + } + + EIGEN_DEVICE_FUNC + static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) + { + return (!x) || y; + } + +}; + +} // end namespace internal + +// Default implementations that rely on other numext implementations +namespace internal { + +// Specialization for complex types that are not supported by std::expm1. +template <typename RealScalar> +struct expm1_impl<std::complex<RealScalar> > { + EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run( + const std::complex<RealScalar>& x) { + EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) + RealScalar xr = x.real(); + RealScalar xi = x.imag(); + // expm1(z) = exp(z) - 1 + // = exp(x + i * y) - 1 + // = exp(x) * (cos(y) + i * sin(y)) - 1 + // = exp(x) * cos(y) - 1 + i * exp(x) * sin(y) + // Imag(expm1(z)) = exp(x) * sin(y) + // Real(expm1(z)) = exp(x) * cos(y) - 1 + // = exp(x) * cos(y) - 1. + // = expm1(x) + exp(x) * (cos(y) - 1) + // = expm1(x) + exp(x) * (2 * sin(y / 2) ** 2) + RealScalar erm1 = numext::expm1<RealScalar>(xr); + RealScalar er = erm1 + RealScalar(1.); + RealScalar sin2 = numext::sin(xi / RealScalar(2.)); + sin2 = sin2 * sin2; + RealScalar s = numext::sin(xi); + RealScalar real_part = erm1 - RealScalar(2.) * er * sin2; + return std::complex<RealScalar>(real_part, er * s); + } +}; + +template<typename T> +struct rsqrt_impl { + EIGEN_DEVICE_FUNC + static EIGEN_ALWAYS_INLINE T run(const T& x) { + return T(1)/numext::sqrt(x); + } +}; + +#if defined(EIGEN_GPU_COMPILE_PHASE) +template<typename T> +struct conj_impl<std::complex<T>, true> +{ + EIGEN_DEVICE_FUNC + static inline std::complex<T> run(const std::complex<T>& x) + { + return std::complex<T>(numext::real(x), -numext::imag(x)); + } +}; +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_MATHFUNCTIONS_H |