summaryrefslogtreecommitdiffstats
path: root/src/Eigen/src/LU
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/LU')
-rw-r--r--src/Eigen/src/LU/Determinant.h117
-rw-r--r--src/Eigen/src/LU/FullPivLU.h877
-rw-r--r--src/Eigen/src/LU/InverseImpl.h432
-rw-r--r--src/Eigen/src/LU/PartialPivLU.h624
-rw-r--r--src/Eigen/src/LU/PartialPivLU_LAPACKE.h83
-rw-r--r--src/Eigen/src/LU/arch/InverseSize4.h351
6 files changed, 0 insertions, 2484 deletions
diff --git a/src/Eigen/src/LU/Determinant.h b/src/Eigen/src/LU/Determinant.h
deleted file mode 100644
index 3a41e6f..0000000
--- a/src/Eigen/src/LU/Determinant.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DETERMINANT_H
-#define EIGEN_DETERMINANT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Derived>
-EIGEN_DEVICE_FUNC
-inline const typename Derived::Scalar bruteforce_det3_helper
-(const MatrixBase<Derived>& matrix, int a, int b, int c)
-{
- return matrix.coeff(0,a)
- * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
-}
-
-template<typename Derived,
- int DeterminantType = Derived::RowsAtCompileTime
-> struct determinant_impl
-{
- static inline typename traits<Derived>::Scalar run(const Derived& m)
- {
- if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0)
- return typename traits<Derived>::Scalar(1);
- return m.partialPivLu().determinant();
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 1>
-{
- static inline EIGEN_DEVICE_FUNC
- typename traits<Derived>::Scalar run(const Derived& m)
- {
- return m.coeff(0,0);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 2>
-{
- static inline EIGEN_DEVICE_FUNC
- typename traits<Derived>::Scalar run(const Derived& m)
- {
- return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 3>
-{
- static inline EIGEN_DEVICE_FUNC
- typename traits<Derived>::Scalar run(const Derived& m)
- {
- return bruteforce_det3_helper(m,0,1,2)
- - bruteforce_det3_helper(m,1,0,2)
- + bruteforce_det3_helper(m,2,0,1);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 4>
-{
- typedef typename traits<Derived>::Scalar Scalar;
- static EIGEN_DEVICE_FUNC
- Scalar run(const Derived& m)
- {
- Scalar d2_01 = det2(m, 0, 1);
- Scalar d2_02 = det2(m, 0, 2);
- Scalar d2_03 = det2(m, 0, 3);
- Scalar d2_12 = det2(m, 1, 2);
- Scalar d2_13 = det2(m, 1, 3);
- Scalar d2_23 = det2(m, 2, 3);
- Scalar d3_0 = det3(m, 1,d2_23, 2,d2_13, 3,d2_12);
- Scalar d3_1 = det3(m, 0,d2_23, 2,d2_03, 3,d2_02);
- Scalar d3_2 = det3(m, 0,d2_13, 1,d2_03, 3,d2_01);
- Scalar d3_3 = det3(m, 0,d2_12, 1,d2_02, 2,d2_01);
- return internal::pmadd(-m(0,3),d3_0, m(1,3)*d3_1) +
- internal::pmadd(-m(2,3),d3_2, m(3,3)*d3_3);
- }
-protected:
- static EIGEN_DEVICE_FUNC
- Scalar det2(const Derived& m, Index i0, Index i1)
- {
- return m(i0,0) * m(i1,1) - m(i1,0) * m(i0,1);
- }
-
- static EIGEN_DEVICE_FUNC
- Scalar det3(const Derived& m, Index i0, const Scalar& d0, Index i1, const Scalar& d1, Index i2, const Scalar& d2)
- {
- return internal::pmadd(m(i0,2), d0, internal::pmadd(-m(i1,2), d1, m(i2,2)*d2));
- }
-};
-
-} // end namespace internal
-
-/** \lu_module
- *
- * \returns the determinant of this matrix
- */
-template<typename Derived>
-EIGEN_DEVICE_FUNC
-inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
- return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DETERMINANT_H
diff --git a/src/Eigen/src/LU/FullPivLU.h b/src/Eigen/src/LU/FullPivLU.h
deleted file mode 100644
index ba1749f..0000000
--- a/src/Eigen/src/LU/FullPivLU.h
+++ /dev/null
@@ -1,877 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LU_H
-#define EIGEN_LU_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
- : traits<_MatrixType>
-{
- typedef MatrixXpr XprKind;
- typedef SolverStorage StorageKind;
- typedef int StorageIndex;
- enum { Flags = 0 };
-};
-
-} // end namespace internal
-
-/** \ingroup LU_Module
- *
- * \class FullPivLU
- *
- * \brief LU decomposition of a matrix with complete pivoting, and related features
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
- * zeros are at the end.
- *
- * This decomposition provides the generic approach to solving systems of linear equations, computing
- * the rank, invertibility, inverse, kernel, and determinant.
- *
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
- * working with the SVD allows to select the smallest singular values of the matrix, something that
- * the LU decomposition doesn't see.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
- * permutationP(), permutationQ().
- *
- * As an example, here is how the original matrix can be retrieved:
- * \include class_FullPivLU.cpp
- * Output: \verbinclude class_FullPivLU.out
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
- */
-template<typename _MatrixType> class FullPivLU
- : public SolverBase<FullPivLU<_MatrixType> >
-{
- public:
- typedef _MatrixType MatrixType;
- typedef SolverBase<FullPivLU> Base;
- friend class SolverBase<FullPivLU>;
-
- EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
- enum {
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
- typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LU::compute(const MatrixType&).
- */
- FullPivLU();
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa FullPivLU()
- */
- FullPivLU(Index rows, Index cols);
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- * It is required to be nonzero.
- */
- template<typename InputType>
- explicit FullPivLU(const EigenBase<InputType>& matrix);
-
- /** \brief Constructs a LU factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
- *
- * \sa FullPivLU(const EigenBase&)
- */
- template<typename InputType>
- explicit FullPivLU(EigenBase<InputType>& matrix);
-
- /** Computes the LU decomposition of the given matrix.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- * It is required to be nonzero.
- *
- * \returns a reference to *this
- */
- template<typename InputType>
- FullPivLU& compute(const EigenBase<InputType>& matrix) {
- m_lu = matrix.derived();
- computeInPlace();
- return *this;
- }
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_lu;
- }
-
- /** \returns the number of nonzero pivots in the LU decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of U.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \returns the permutation matrix P
- *
- * \sa permutationQ()
- */
- EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_p;
- }
-
- /** \returns the permutation matrix Q
- *
- * \sa permutationP()
- */
- inline const PermutationQType& permutationQ() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_q;
- }
-
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
- * will form a basis of the kernel.
- *
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- *
- * Example: \include FullPivLU_kernel.cpp
- * Output: \verbinclude FullPivLU_kernel.out
- *
- * \sa image()
- */
- inline const internal::kernel_retval<FullPivLU> kernel() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::kernel_retval<FullPivLU>(*this);
- }
-
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
- * will form a basis of the image (column-space).
- *
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
- * The reason why it is needed to pass it here, is that this allows
- * a large optimization, as otherwise this method would need to reconstruct it
- * from the LU decomposition.
- *
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- *
- * Example: \include FullPivLU_image.cpp
- * Output: \verbinclude FullPivLU_image.out
- *
- * \sa kernel()
- */
- inline const internal::image_retval<FullPivLU>
- image(const MatrixType& originalMatrix) const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
- }
-
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- * \note_about_using_kernel_to_study_multiple_solutions
- *
- * Example: \include FullPivLU_solve.cpp
- * Output: \verbinclude FullPivLU_solve.out
- *
- * \sa TriangularView::solve(), kernel(), inverse()
- */
- template<typename Rhs>
- inline const Solve<FullPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const;
- #endif
-
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
- the LU decomposition.
- */
- inline RealScalar rcond() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::rcond_estimate_helper(m_l1_norm, *this);
- }
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- typename internal::traits<MatrixType>::Scalar determinant() const;
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * LU decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- FullPivLU& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code lu.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- FullPivLU& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
- }
-
- /** \returns the rank of the matrix of which *this is the LU decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "LU is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return isInjective() && (m_lu.rows() == m_lu.cols());
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- *
- * \sa MatrixBase::inverse()
- */
- inline const Inverse<FullPivLU> inverse() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
- return Inverse<FullPivLU>(*this);
- }
-
- MatrixType reconstructedMatrix() const;
-
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
- inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
- inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
-
- template<bool Conjugate, typename RhsType, typename DstType>
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
- #endif
-
- protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- MatrixType m_lu;
- PermutationPType m_p;
- PermutationQType m_q;
- IntColVectorType m_rowsTranspositions;
- IntRowVectorType m_colsTranspositions;
- Index m_nonzero_pivots;
- RealScalar m_l1_norm;
- RealScalar m_maxpivot, m_prescribedThreshold;
- signed char m_det_pq;
- bool m_isInitialized, m_usePrescribedThreshold;
-};
-
-template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU()
- : m_isInitialized(false), m_usePrescribedThreshold(false)
-{
-}
-
-template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
- : m_lu(rows, cols),
- m_p(rows),
- m_q(cols),
- m_rowsTranspositions(rows),
- m_colsTranspositions(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
-{
-}
-
-template<typename MatrixType>
-template<typename InputType>
-FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
- : m_lu(matrix.rows(), matrix.cols()),
- m_p(matrix.rows()),
- m_q(matrix.cols()),
- m_rowsTranspositions(matrix.rows()),
- m_colsTranspositions(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
-{
- compute(matrix.derived());
-}
-
-template<typename MatrixType>
-template<typename InputType>
-FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
- : m_lu(matrix.derived()),
- m_p(matrix.rows()),
- m_q(matrix.cols()),
- m_rowsTranspositions(matrix.rows()),
- m_colsTranspositions(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
-{
- computeInPlace();
-}
-
-template<typename MatrixType>
-void FullPivLU<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- // the permutations are stored as int indices, so just to be sure:
- eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
-
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
-
- const Index size = m_lu.diagonalSize();
- const Index rows = m_lu.rows();
- const Index cols = m_lu.cols();
-
- // will store the transpositions, before we accumulate them at the end.
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
- m_rowsTranspositions.resize(m_lu.rows());
- m_colsTranspositions.resize(m_lu.cols());
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // First, we need to find the pivot.
-
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
- typedef typename Scoring::result_type Score;
- Score biggest_in_corner;
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
- .unaryExpr(Scoring())
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
- col_of_biggest_in_corner += k; // need to add k to them.
-
- if(biggest_in_corner==Score(0))
- {
- // before exiting, make sure to initialize the still uninitialized transpositions
- // in a sane state without destroying what we already have.
- m_nonzero_pivots = k;
- for(Index i = k; i < size; ++i)
- {
- m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
- m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
- }
- break;
- }
-
- RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
- if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
-
- // Now that we've found the pivot, we need to apply the row/col swaps to
- // bring it to the location (k,k).
-
- m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
- m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
- if(k != row_of_biggest_in_corner) {
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
-
- // Now that the pivot is at the right location, we update the remaining
- // bottom-right corner by Gaussian elimination.
-
- if(k<rows-1)
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
- if(k<size-1)
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
- }
-
- // the main loop is over, we still have to accumulate the transpositions to find the
- // permutations P and Q
-
- m_p.setIdentity(rows);
- for(Index k = size-1; k >= 0; --k)
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
-
- m_q.setIdentity(cols);
- for(Index k = 0; k < size; ++k)
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
-
- m_isInitialized = true;
-}
-
-template<typename MatrixType>
-typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
- * This function is provided for debug purposes. */
-template<typename MatrixType>
-MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
- // LU
- MatrixType res(m_lu.rows(),m_lu.cols());
- // FIXME the .toDenseMatrix() should not be needed...
- res = m_lu.leftCols(smalldim)
- .template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.topRows(smalldim)
- .template triangularView<Upper>().toDenseMatrix();
-
- // P^{-1}(LU)
- res = m_p.inverse() * res;
-
- // (P^{-1}LU)Q^{-1}
- res = res * m_q.inverse();
-
- return res;
-}
-
-/********* Implementation of kernel() **************************************************/
-
-namespace internal {
-template<typename _MatrixType>
-struct kernel_retval<FullPivLU<_MatrixType> >
- : kernel_retval_base<FullPivLU<_MatrixType> >
-{
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
-
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
- MatrixType::MaxColsAtCompileTime,
- MatrixType::MaxRowsAtCompileTime)
- };
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- using std::abs;
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
- if(dimker == 0)
- {
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
- // avoid crashing/asserting as that depends on floating point calculations. Let's
- // just return a single column vector filled with zeros.
- dst.setZero();
- return;
- }
-
- /* Let us use the following lemma:
- *
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
- * then Ker A = Q(Ker U).
- *
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
- */
-
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
- *
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
- * Thus, the diagonal of U ends with exactly
- * dimKer zero's. Let us use that to construct dimKer linearly
- * independent vectors in Ker U.
- */
-
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
- Index p = 0;
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
- pivots.coeffRef(p++) = i;
- eigen_internal_assert(p == rank());
-
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
- // the main diagonal. We need that to be able to apply our triangular solvers.
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
- m(dec().matrixLU().block(0, 0, rank(), cols));
- for(Index i = 0; i < rank(); ++i)
- {
- if(i) m.row(i).head(i).setZero();
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
- }
- m.block(0, 0, rank(), rank());
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
- for(Index i = 0; i < rank(); ++i)
- m.col(i).swap(m.col(pivots.coeff(i)));
-
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
- // notice that the math behind this suggests that we should apply this to the
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
- m.topLeftCorner(rank(), rank())
- .template triangularView<Upper>().solveInPlace(
- m.topRightCorner(rank(), dimker)
- );
-
- // now we must undo the column permutation that we had applied!
- for(Index i = rank()-1; i >= 0; --i)
- m.col(i).swap(m.col(pivots.coeff(i)));
-
- // see the negative sign in the next line, that's what we were talking about above.
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
- }
-};
-
-/***** Implementation of image() *****************************************************/
-
-template<typename _MatrixType>
-struct image_retval<FullPivLU<_MatrixType> >
- : image_retval_base<FullPivLU<_MatrixType> >
-{
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
-
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
- MatrixType::MaxColsAtCompileTime,
- MatrixType::MaxRowsAtCompileTime)
- };
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- using std::abs;
- if(rank() == 0)
- {
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
- // avoid crashing/asserting as that depends on floating point calculations. Let's
- // just return a single column vector filled with zeros.
- dst.setZero();
- return;
- }
-
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
- Index p = 0;
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
- pivots.coeffRef(p++) = i;
- eigen_internal_assert(p == rank());
-
- for(Index i = 0; i < rank(); ++i)
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
- }
-};
-
-/***** Implementation of solve() *****************************************************/
-
-} // end namespace internal
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename _MatrixType>
-template<typename RhsType, typename DstType>
-void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
-{
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = P * rhs.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
- * Step 4: result = Q * c;
- */
-
- const Index rows = this->rows(),
- cols = this->cols(),
- nonzero_pivots = this->rank();
- const Index smalldim = (std::min)(rows, cols);
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
-
- // Step 1
- c = permutationP() * rhs;
-
- // Step 2
- m_lu.topLeftCorner(smalldim,smalldim)
- .template triangularView<UnitLower>()
- .solveInPlace(c.topRows(smalldim));
- if(rows>cols)
- c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
-
- // Step 3
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- // Step 4
- for(Index i = 0; i < nonzero_pivots; ++i)
- dst.row(permutationQ().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
- dst.row(permutationQ().indices().coeff(i)).setZero();
-}
-
-template<typename _MatrixType>
-template<bool Conjugate, typename RhsType, typename DstType>
-void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
-{
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
- * and since permutations are real and unitary, we can write this
- * as A^T = Q U^T L^T P,
- * So we proceed as follows:
- * Step 1: compute c = Q^T rhs.
- * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
- * Step 3: replace c by the solution x to L^T x = c.
- * Step 4: result = P^T c.
- * If Conjugate is true, replace "^T" by "^*" above.
- */
-
- const Index rows = this->rows(), cols = this->cols(),
- nonzero_pivots = this->rank();
- const Index smalldim = (std::min)(rows, cols);
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
-
- // Step 1
- c = permutationQ().inverse() * rhs;
-
- // Step 2
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .transpose()
- .template conjugateIf<Conjugate>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- // Step 3
- m_lu.topLeftCorner(smalldim, smalldim)
- .template triangularView<UnitLower>()
- .transpose()
- .template conjugateIf<Conjugate>()
- .solveInPlace(c.topRows(smalldim));
-
- // Step 4
- PermutationPType invp = permutationP().inverse().eval();
- for(Index i = 0; i < smalldim; ++i)
- dst.row(invp.indices().coeff(i)) = c.row(i);
- for(Index i = smalldim; i < rows; ++i)
- dst.row(invp.indices().coeff(i)).setZero();
-}
-
-#endif
-
-namespace internal {
-
-
-/***** Implementation of inverse() *****************************************************/
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef FullPivLU<MatrixType> LuType;
- typedef Inverse<LuType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
-};
-} // end namespace internal
-
-/******* MatrixBase methods *****************************************************************/
-
-/** \lu_module
- *
- * \return the full-pivoting LU decomposition of \c *this.
- *
- * \sa class FullPivLU
- */
-template<typename Derived>
-inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::fullPivLu() const
-{
- return FullPivLU<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LU_H
diff --git a/src/Eigen/src/LU/InverseImpl.h b/src/Eigen/src/LU/InverseImpl.h
deleted file mode 100644
index a40cefa..0000000
--- a/src/Eigen/src/LU/InverseImpl.h
+++ /dev/null
@@ -1,432 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INVERSE_IMPL_H
-#define EIGEN_INVERSE_IMPL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************
-*** General case implementation ***
-**********************************/
-
-template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
-struct compute_inverse
-{
- EIGEN_DEVICE_FUNC
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- result = matrix.partialPivLu().inverse();
- }
-};
-
-template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
-struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
-
-/****************************
-*** Size 1 implementation ***
-****************************/
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 1>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename MatrixType::Scalar Scalar;
- internal::evaluator<MatrixType> matrixEval(matrix);
- result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& result,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- determinant = matrix.coeff(0,0);
- invertible = abs(determinant) > absDeterminantThreshold;
- if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
- }
-};
-
-/****************************
-*** Size 2 implementation ***
-****************************/
-
-template<typename MatrixType, typename ResultType>
-EIGEN_DEVICE_FUNC
-inline void compute_inverse_size2_helper(
- const MatrixType& matrix, const typename ResultType::Scalar& invdet,
- ResultType& result)
-{
- typename ResultType::Scalar temp = matrix.coeff(0,0);
- result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
- result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
- result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
- result.coeffRef(1,1) = temp * invdet;
-}
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 2>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename ResultType::Scalar Scalar;
- const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
- compute_inverse_size2_helper(matrix, invdet, result);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- typedef typename ResultType::Scalar Scalar;
- determinant = matrix.determinant();
- invertible = abs(determinant) > absDeterminantThreshold;
- if(!invertible) return;
- const Scalar invdet = Scalar(1) / determinant;
- compute_inverse_size2_helper(matrix, invdet, inverse);
- }
-};
-
-/****************************
-*** Size 3 implementation ***
-****************************/
-
-template<typename MatrixType, int i, int j>
-EIGEN_DEVICE_FUNC
-inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
-{
- enum {
- i1 = (i+1) % 3,
- i2 = (i+2) % 3,
- j1 = (j+1) % 3,
- j2 = (j+2) % 3
- };
- return m.coeff(i1, j1) * m.coeff(i2, j2)
- - m.coeff(i1, j2) * m.coeff(i2, j1);
-}
-
-template<typename MatrixType, typename ResultType>
-EIGEN_DEVICE_FUNC
-inline void compute_inverse_size3_helper(
- const MatrixType& matrix,
- const typename ResultType::Scalar& invdet,
- const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
- ResultType& result)
-{
- // Compute cofactors in a way that avoids aliasing issues.
- typedef typename ResultType::Scalar Scalar;
- const Scalar c01 = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
- const Scalar c11 = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
- const Scalar c02 = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
- result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
- result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
- result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
- result.coeffRef(1,0) = c01;
- result.coeffRef(1,1) = c11;
- result.coeffRef(2,0) = c02;
- result.row(0) = cofactors_col0 * invdet;
-}
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 3>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename ResultType::Scalar Scalar;
- Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
- cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
- cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
- cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
- const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
- const Scalar invdet = Scalar(1) / det;
- compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- typedef typename ResultType::Scalar Scalar;
- Matrix<Scalar,3,1> cofactors_col0;
- cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
- cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
- cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
- determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
- invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold;
- if(!invertible) return;
- const Scalar invdet = Scalar(1) / determinant;
- compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
- }
-};
-
-/****************************
-*** Size 4 implementation ***
-****************************/
-
-template<typename Derived>
-EIGEN_DEVICE_FUNC
-inline const typename Derived::Scalar general_det3_helper
-(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
-{
- return matrix.coeff(i1,j1)
- * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
-}
-
-template<typename MatrixType, int i, int j>
-EIGEN_DEVICE_FUNC
-inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
-{
- enum {
- i1 = (i+1) % 4,
- i2 = (i+2) % 4,
- i3 = (i+3) % 4,
- j1 = (j+1) % 4,
- j2 = (j+2) % 4,
- j3 = (j+3) % 4
- };
- return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
- + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
- + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
-}
-
-template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
-struct compute_inverse_size4
-{
- EIGEN_DEVICE_FUNC
- static void run(const MatrixType& matrix, ResultType& result)
- {
- result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
- result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
- result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
- result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
- result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
- result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
- result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
- result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
- result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
- result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
- result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
- result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
- result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
- result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
- result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
- result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
- result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 4>
- : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
- MatrixType, ResultType>
-{
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- determinant = matrix.determinant();
- invertible = abs(determinant) > absDeterminantThreshold;
- if(invertible && extract_data(matrix) != extract_data(inverse)) {
- compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
- }
- else if(invertible) {
- MatrixType matrix_t = matrix;
- compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse);
- }
- }
-};
-
-/*************************
-*** MatrixBase methods ***
-*************************/
-
-} // end namespace internal
-
-namespace internal {
-
-// Specialization for "dense = dense_xpr.inverse()"
-template<typename DstXprType, typename XprType>
-struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
-{
- typedef Inverse<XprType> SrcXprType;
- EIGEN_DEVICE_FUNC
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
- {
- Index dstRows = src.rows();
- Index dstCols = src.cols();
- if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
- dst.resize(dstRows, dstCols);
-
- const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
- EIGEN_ONLY_USED_FOR_DEBUG(Size);
- eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
- && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
-
- typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
- typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
-
- ActualXprType actual_xpr(src.nestedExpression());
-
- compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
- }
-};
-
-
-} // end namespace internal
-
-/** \lu_module
- *
- * \returns the matrix inverse of this matrix.
- *
- * For small fixed sizes up to 4x4, this method uses cofactors.
- * In the general case, this method uses class PartialPivLU.
- *
- * \note This matrix must be invertible, otherwise the result is undefined. If you need an
- * invertibility check, do the following:
- * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
- * \li for the general case, use class FullPivLU.
- *
- * Example: \include MatrixBase_inverse.cpp
- * Output: \verbinclude MatrixBase_inverse.out
- *
- * \sa computeInverseAndDetWithCheck()
- */
-template<typename Derived>
-EIGEN_DEVICE_FUNC
-inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
-{
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
- eigen_assert(rows() == cols());
- return Inverse<Derived>(derived());
-}
-
-/** \lu_module
- *
- * Computation of matrix inverse and determinant, with invertibility check.
- *
- * This is only for fixed-size square matrices of size up to 4x4.
- *
- * Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
- *
- * \param inverse Reference to the matrix in which to store the inverse.
- * \param determinant Reference to the variable in which to store the determinant.
- * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
- * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
- * The matrix will be declared invertible if the absolute value of its
- * determinant is greater than this threshold.
- *
- * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
- * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
- *
- * \sa inverse(), computeInverseWithCheck()
- */
-template<typename Derived>
-template<typename ResultType>
-inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible,
- const RealScalar& absDeterminantThreshold
- ) const
-{
- // i'd love to put some static assertions there, but SFINAE means that they have no effect...
- eigen_assert(rows() == cols());
- // for 2x2, it's worth giving a chance to avoid evaluating.
- // for larger sizes, evaluating has negligible cost and limits code size.
- typedef typename internal::conditional<
- RowsAtCompileTime == 2,
- typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
- PlainObject
- >::type MatrixType;
- internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
- (derived(), absDeterminantThreshold, inverse, determinant, invertible);
-}
-
-/** \lu_module
- *
- * Computation of matrix inverse, with invertibility check.
- *
- * This is only for fixed-size square matrices of size up to 4x4.
- *
- * Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
- *
- * \param inverse Reference to the matrix in which to store the inverse.
- * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
- * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
- * The matrix will be declared invertible if the absolute value of its
- * determinant is greater than this threshold.
- *
- * Example: \include MatrixBase_computeInverseWithCheck.cpp
- * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
- *
- * \sa inverse(), computeInverseAndDetWithCheck()
- */
-template<typename Derived>
-template<typename ResultType>
-inline void MatrixBase<Derived>::computeInverseWithCheck(
- ResultType& inverse,
- bool& invertible,
- const RealScalar& absDeterminantThreshold
- ) const
-{
- Scalar determinant;
- // i'd love to put some static assertions there, but SFINAE means that they have no effect...
- eigen_assert(rows() == cols());
- computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_INVERSE_IMPL_H
diff --git a/src/Eigen/src/LU/PartialPivLU.h b/src/Eigen/src/LU/PartialPivLU.h
deleted file mode 100644
index 34aed72..0000000
--- a/src/Eigen/src/LU/PartialPivLU.h
+++ /dev/null
@@ -1,624 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARTIALLU_H
-#define EIGEN_PARTIALLU_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
- : traits<_MatrixType>
-{
- typedef MatrixXpr XprKind;
- typedef SolverStorage StorageKind;
- typedef int StorageIndex;
- typedef traits<_MatrixType> BaseTraits;
- enum {
- Flags = BaseTraits::Flags & RowMajorBit,
- CoeffReadCost = Dynamic
- };
-};
-
-template<typename T,typename Derived>
-struct enable_if_ref;
-// {
-// typedef Derived type;
-// };
-
-template<typename T,typename Derived>
-struct enable_if_ref<Ref<T>,Derived> {
- typedef Derived type;
-};
-
-} // end namespace internal
-
-/** \ingroup LU_Module
- *
- * \class PartialPivLU
- *
- * \brief LU decomposition of a matrix with partial pivoting, and related features
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
- * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
- * is a permutation matrix.
- *
- * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
- * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
- * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
- * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
- *
- * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
- * by class FullPivLU.
- *
- * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
- * such as rank computation. If you need these features, use class FullPivLU.
- *
- * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
- * in the general case.
- * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
- */
-template<typename _MatrixType> class PartialPivLU
- : public SolverBase<PartialPivLU<_MatrixType> >
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef SolverBase<PartialPivLU> Base;
- friend class SolverBase<PartialPivLU>;
-
- EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
- enum {
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via PartialPivLU::compute(const MatrixType&).
- */
- PartialPivLU();
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa PartialPivLU()
- */
- explicit PartialPivLU(Index size);
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- template<typename InputType>
- explicit PartialPivLU(const EigenBase<InputType>& matrix);
-
- /** Constructor for \link InplaceDecomposition inplace decomposition \endlink
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- template<typename InputType>
- explicit PartialPivLU(EigenBase<InputType>& matrix);
-
- template<typename InputType>
- PartialPivLU& compute(const EigenBase<InputType>& matrix) {
- m_lu = matrix.derived();
- compute();
- return *this;
- }
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_lu;
- }
-
- /** \returns the permutation matrix P.
- */
- inline const PermutationType& permutationP() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_p;
- }
-
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns the solution.
- *
- * Example: \include PartialPivLU_solve.cpp
- * Output: \verbinclude PartialPivLU_solve.out
- *
- * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
- * theoretically exists and is unique regardless of b.
- *
- * \sa TriangularView::solve(), inverse(), computeInverse()
- */
- template<typename Rhs>
- inline const Solve<PartialPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const;
- #endif
-
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
- the LU decomposition.
- */
- inline RealScalar rcond() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::rcond_estimate_helper(m_l1_norm, *this);
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
- * invertibility, use class FullPivLU instead.
- *
- * \sa MatrixBase::inverse(), LU::inverse()
- */
- inline const Inverse<PartialPivLU> inverse() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Inverse<PartialPivLU>(*this);
- }
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- Scalar determinant() const;
-
- MatrixType reconstructedMatrix() const;
-
- EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
- EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const {
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
-
- // Step 1
- dst = permutationP() * rhs;
-
- // Step 2
- m_lu.template triangularView<UnitLower>().solveInPlace(dst);
-
- // Step 3
- m_lu.template triangularView<Upper>().solveInPlace(dst);
- }
-
- template<bool Conjugate, typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
- /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P.
- * So we proceed as follows:
- * Step 1: compute c as the solution to L^T c = b
- * Step 2: replace c by the solution x to U^T x = c.
- * Step 3: update c = P^-1 c.
- */
-
- eigen_assert(rhs.rows() == m_lu.cols());
-
- // Step 1
- dst = m_lu.template triangularView<Upper>().transpose()
- .template conjugateIf<Conjugate>().solve(rhs);
- // Step 2
- m_lu.template triangularView<UnitLower>().transpose()
- .template conjugateIf<Conjugate>().solveInPlace(dst);
- // Step 3
- dst = permutationP().transpose() * dst;
- }
- #endif
-
- protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void compute();
-
- MatrixType m_lu;
- PermutationType m_p;
- TranspositionType m_rowsTranspositions;
- RealScalar m_l1_norm;
- signed char m_det_p;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU()
- : m_lu(),
- m_p(),
- m_rowsTranspositions(),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(Index size)
- : m_lu(size, size),
- m_p(size),
- m_rowsTranspositions(size),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-template<typename InputType>
-PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
- : m_lu(matrix.rows(),matrix.cols()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
-{
- compute(matrix.derived());
-}
-
-template<typename MatrixType>
-template<typename InputType>
-PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
- : m_lu(matrix.derived()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
-{
- compute();
-}
-
-namespace internal {
-
-/** \internal This is the blocked version of fullpivlu_unblocked() */
-template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic>
-struct partial_lu_impl
-{
- static const int UnBlockedBound = 16;
- static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound;
- static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic;
- // Remaining rows and columns at compile-time:
- static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic;
- static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic;
- typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType;
- typedef Ref<MatrixType> MatrixTypeRef;
- typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType;
- typedef typename MatrixType::RealScalar RealScalar;
-
- /** \internal performs the LU decomposition in-place of the matrix \a lu
- * using an unblocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- */
- static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
- {
- typedef scalar_score_coeff_op<Scalar> Scoring;
- typedef typename Scoring::result_type Score;
- const Index rows = lu.rows();
- const Index cols = lu.cols();
- const Index size = (std::min)(rows,cols);
- // For small compile-time matrices it is worth processing the last row separately:
- // speedup: +100% for 2x2, +10% for others.
- const Index endk = UnBlockedAtCompileTime ? size-1 : size;
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < endk; ++k)
- {
- int rrows = internal::convert_index<int>(rows-k-1);
- int rcols = internal::convert_index<int>(cols-k-1);
-
- Index row_of_biggest_in_col;
- Score biggest_in_corner
- = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
- row_of_biggest_in_col += k;
-
- row_transpositions[k] = PivIndex(row_of_biggest_in_col);
-
- if(biggest_in_corner != Score(0))
- {
- if(k != row_of_biggest_in_col)
- {
- lu.row(k).swap(lu.row(row_of_biggest_in_col));
- ++nb_transpositions;
- }
-
- lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k);
- }
- else if(first_zero_pivot==-1)
- {
- // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
- // and continue the factorization such we still have A = PLU
- first_zero_pivot = k;
- }
-
- if(k<rows-1)
- lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols));
- }
-
- // special handling of the last entry
- if(UnBlockedAtCompileTime)
- {
- Index k = endk;
- row_transpositions[k] = PivIndex(k);
- if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
- first_zero_pivot = k;
- }
-
- return first_zero_pivot;
- }
-
- /** \internal performs the LU decomposition in-place of the matrix represented
- * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
- * recursive, blocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- *
- * \note This very low level interface using pointers, etc. is to:
- * 1 - reduce the number of instantiations to the strict minimum
- * 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > >
- */
- static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
- {
- MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride));
-
- const Index size = (std::min)(rows,cols);
-
- // if the matrix is too small, no blocking:
- if(UnBlockedAtCompileTime || size<=UnBlockedBound)
- {
- return unblocked_lu(lu, row_transpositions, nb_transpositions);
- }
-
- // automatically adjust the number of subdivisions to the size
- // of the matrix so that there is enough sub blocks:
- Index blockSize;
- {
- blockSize = size/8;
- blockSize = (blockSize/16)*16;
- blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
- }
-
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; k+=blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index trows = rows - k - bs; // trailing rows
- Index tsize = size - k - bs; // trailing size
-
- // partition the matrix:
- // A00 | A01 | A02
- // lu = A_0 | A_1 | A_2 = A10 | A11 | A12
- // A20 | A21 | A22
- BlockType A_0 = lu.block(0,0,rows,k);
- BlockType A_2 = lu.block(0,k+bs,rows,tsize);
- BlockType A11 = lu.block(k,k,bs,bs);
- BlockType A12 = lu.block(k,k+bs,bs,tsize);
- BlockType A21 = lu.block(k+bs,k,trows,bs);
- BlockType A22 = lu.block(k+bs,k+bs,trows,tsize);
-
- PivIndex nb_transpositions_in_panel;
- // recursively call the blocked LU algorithm on [A11^T A21^T]^T
- // with a very small blocking size:
- Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
- row_transpositions+k, nb_transpositions_in_panel, 16);
- if(ret>=0 && first_zero_pivot==-1)
- first_zero_pivot = k+ret;
-
- nb_transpositions += nb_transpositions_in_panel;
- // update permutations and apply them to A_0
- for(Index i=k; i<k+bs; ++i)
- {
- Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
- A_0.row(i).swap(A_0.row(piv));
- }
-
- if(trows)
- {
- // apply permutations to A_2
- for(Index i=k;i<k+bs; ++i)
- A_2.row(i).swap(A_2.row(row_transpositions[i]));
-
- // A12 = A11^-1 A12
- A11.template triangularView<UnitLower>().solveInPlace(A12);
-
- A22.noalias() -= A21 * A12;
- }
- }
- return first_zero_pivot;
- }
-};
-
-/** \internal performs the LU decomposition with partial pivoting in-place.
- */
-template<typename MatrixType, typename TranspositionType>
-void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
-{
- // Special-case of zero matrix.
- if (lu.rows() == 0 || lu.cols() == 0) {
- nb_transpositions = 0;
- return;
- }
- eigen_assert(lu.cols() == row_transpositions.size());
- eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
-
- partial_lu_impl
- < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor,
- typename TranspositionType::StorageIndex,
- EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)>
- ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
-}
-
-} // end namespace internal
-
-template<typename MatrixType>
-void PartialPivLU<MatrixType>::compute()
-{
- check_template_parameters();
-
- // the row permutation is stored as int indices, so just to be sure:
- eigen_assert(m_lu.rows()<NumTraits<int>::highest());
-
- if(m_lu.cols()>0)
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
- else
- m_l1_norm = RealScalar(0);
-
- eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
- const Index size = m_lu.rows();
-
- m_rowsTranspositions.resize(size);
-
- typename TranspositionType::StorageIndex nb_transpositions;
- internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
- m_det_p = (nb_transpositions%2) ? -1 : 1;
-
- m_p = m_rowsTranspositions;
-
- m_isInitialized = true;
-}
-
-template<typename MatrixType>
-typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
-{
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Scalar(m_det_p) * m_lu.diagonal().prod();
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^{-1} L U.
- * This function is provided for debug purpose. */
-template<typename MatrixType>
-MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- // LU
- MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.template triangularView<Upper>();
-
- // P^{-1}(LU)
- res = m_p.inverse() * res;
-
- return res;
-}
-
-/***** Implementation details *****************************************************/
-
-namespace internal {
-
-/***** Implementation of inverse() *****************************************************/
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef PartialPivLU<MatrixType> LuType;
- typedef Inverse<LuType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
-};
-} // end namespace internal
-
-/******** MatrixBase methods *******/
-
-/** \lu_module
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::partialPivLu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::lu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIALLU_H
diff --git a/src/Eigen/src/LU/PartialPivLU_LAPACKE.h b/src/Eigen/src/LU/PartialPivLU_LAPACKE.h
deleted file mode 100644
index 755168a..0000000
--- a/src/Eigen/src/LU/PartialPivLU_LAPACKE.h
+++ /dev/null
@@ -1,83 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to LAPACKe
- * LU decomposition with partial pivoting based on LAPACKE_?getrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_PARTIALLU_LAPACK_H
-#define EIGEN_PARTIALLU_LAPACK_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Specialization for the data types supported by LAPACKe */
-
-#define EIGEN_LAPACKE_LU_PARTPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \
-template<int StorageOrder> \
-struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
-{ \
- /* \internal performs the LU decomposition in-place of the matrix represented */ \
- static lapack_int blocked_lu(Index rows, Index cols, EIGTYPE* lu_data, Index luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \
- { \
- EIGEN_UNUSED_VARIABLE(maxBlockSize);\
- lapack_int matrix_order, first_zero_pivot; \
- lapack_int m, n, lda, *ipiv, info; \
- EIGTYPE* a; \
-/* Set up parameters for ?getrf */ \
- matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- lda = convert_index<lapack_int>(luStride); \
- a = lu_data; \
- ipiv = row_transpositions; \
- m = convert_index<lapack_int>(rows); \
- n = convert_index<lapack_int>(cols); \
- nb_transpositions = 0; \
-\
- info = LAPACKE_##LAPACKE_PREFIX##getrf( matrix_order, m, n, (LAPACKE_TYPE*)a, lda, ipiv ); \
-\
- for(int i=0;i<m;i++) { ipiv[i]--; if (ipiv[i]!=i) nb_transpositions++; } \
-\
- eigen_assert(info >= 0); \
-/* something should be done with nb_transpositions */ \
-\
- first_zero_pivot = info; \
- return first_zero_pivot; \
- } \
-};
-
-EIGEN_LAPACKE_LU_PARTPIV(double, double, d)
-EIGEN_LAPACKE_LU_PARTPIV(float, float, s)
-EIGEN_LAPACKE_LU_PARTPIV(dcomplex, lapack_complex_double, z)
-EIGEN_LAPACKE_LU_PARTPIV(scomplex, lapack_complex_float, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIALLU_LAPACK_H
diff --git a/src/Eigen/src/LU/arch/InverseSize4.h b/src/Eigen/src/LU/arch/InverseSize4.h
deleted file mode 100644
index a232ffc..0000000
--- a/src/Eigen/src/LU/arch/InverseSize4.h
+++ /dev/null
@@ -1,351 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2001 Intel Corporation
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-//
-// The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
-// inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
-// adjugate of M and determinant of M respectively. M# is computed block-wise
-// using specific formulae. For proof, see:
-// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
-// Variable names are adopted from \src\LU\Inverse_SSE.h.
-//
-// The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
-// comes from the following Intel's library:
-// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
-//
-// Here is the respective copyright and license statement:
-//
-// Copyright (c) 2001 Intel Corporation.
-//
-// Permition is granted to use, copy, distribute and prepare derivative works
-// of this library for any purpose and without fee, provided, that the above
-// copyright notice and this statement appear in all copies.
-// Intel makes no representations about the suitability of this software for
-// any purpose, and specifically disclaims all warranties.
-// See LEGAL.TXT for all the legal information.
-//
-// TODO: Unify implementations of different data types (i.e. float and double).
-#ifndef EIGEN_INVERSE_SIZE_4_H
-#define EIGEN_INVERSE_SIZE_4_H
-
-namespace Eigen
-{
-namespace internal
-{
-template <typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
-{
- enum
- {
- MatrixAlignment = traits<MatrixType>::Alignment,
- ResultAlignment = traits<ResultType>::Alignment,
- StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
- };
- typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
-
- static void run(const MatrixType &mat, ResultType &result)
- {
- ActualMatrixType matrix(mat);
-
- const float* data = matrix.data();
- const Index stride = matrix.innerStride();
- Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data);
- Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4);
- Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8);
- Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12);
-
- // Four 2x2 sub-matrices of the input matrix
- // input = [[A, B],
- // [C, D]]
- Packet4f A, B, C, D;
-
- if (!StorageOrdersMatch)
- {
- A = vec4f_unpacklo(_L1, _L2);
- B = vec4f_unpacklo(_L3, _L4);
- C = vec4f_unpackhi(_L1, _L2);
- D = vec4f_unpackhi(_L3, _L4);
- }
- else
- {
- A = vec4f_movelh(_L1, _L2);
- B = vec4f_movehl(_L2, _L1);
- C = vec4f_movelh(_L3, _L4);
- D = vec4f_movehl(_L4, _L3);
- }
-
- Packet4f AB, DC;
-
- // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
- AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
- AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
-
- // DC = D#*C
- DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
- DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
-
- // determinants of the sub-matrices
- Packet4f dA, dB, dC, dD;
-
- dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
- dA = psub(dA, vec4f_movehl(dA, dA));
-
- dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
- dB = psub(dB, vec4f_movehl(dB, dB));
-
- dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
- dC = psub(dC, vec4f_movehl(dC, dC));
-
- dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
- dD = psub(dD, vec4f_movehl(dD, dD));
-
- Packet4f d, d1, d2;
-
- d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
- d = padd(d, vec4f_movehl(d, d));
- d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
- d1 = pmul(dA, dD);
- d2 = pmul(dB, dC);
-
- // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
- Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
-
- // reciprocal of the determinant of the input matrix, rd = 1/det
- Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
-
- // Four sub-matrices of the inverse
- Packet4f iA, iB, iC, iD;
-
- // iD = D*|A| - C*A#*B
- iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
- iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
- iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
-
- // iA = A*|D| - B*D#*C
- iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
- iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
- iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
-
- // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
- iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
- iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
- iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
-
- // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
- iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
- iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
- iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
-
- const float sign_mask[4] = {0.0f, numext::bit_cast<float>(0x80000000u), numext::bit_cast<float>(0x80000000u), 0.0f};
- const Packet4f p4f_sign_PNNP = ploadu<Packet4f>(sign_mask);
- rd = pxor(rd, p4f_sign_PNNP);
- iA = pmul(iA, rd);
- iB = pmul(iB, rd);
- iC = pmul(iC, rd);
- iD = pmul(iD, rd);
-
- Index res_stride = result.outerStride();
- float *res = result.data();
-
- pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
- pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
- pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
- pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
- }
-};
-
-#if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
-// same algorithm as above, except that each operand is split into
-// halves for two registers to hold.
-template <typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
-{
- enum
- {
- MatrixAlignment = traits<MatrixType>::Alignment,
- ResultAlignment = traits<ResultType>::Alignment,
- StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
- };
- typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
- MatrixType const &,
- typename MatrixType::PlainObject>::type
- ActualMatrixType;
-
- static void run(const MatrixType &mat, ResultType &result)
- {
- ActualMatrixType matrix(mat);
-
- // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
- // row e.g. A1, upper row of A, A2, lower row of A
- // input = [[A, B], = [[[A1, [B1,
- // [C, D]] A2], B2]],
- // [[C1, [D1,
- // C2], D2]]]
-
- Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
-
- const double* data = matrix.data();
- const Index stride = matrix.innerStride();
- if (StorageOrdersMatch)
- {
- A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
- B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
- A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
- B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
- C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
- D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
- C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
- D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
- }
- else
- {
- Packet2d temp;
- A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
- C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
- A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
- C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
- temp = A1;
- A1 = vec2d_unpacklo(A1, A2);
- A2 = vec2d_unpackhi(temp, A2);
-
- temp = C1;
- C1 = vec2d_unpacklo(C1, C2);
- C2 = vec2d_unpackhi(temp, C2);
-
- B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
- D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
- B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
- D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
-
- temp = B1;
- B1 = vec2d_unpacklo(B1, B2);
- B2 = vec2d_unpackhi(temp, B2);
-
- temp = D1;
- D1 = vec2d_unpacklo(D1, D2);
- D2 = vec2d_unpackhi(temp, D2);
- }
-
- // determinants of the sub-matrices
- Packet2d dA, dB, dC, dD;
-
- dA = vec2d_swizzle2(A2, A2, 1);
- dA = pmul(A1, dA);
- dA = psub(dA, vec2d_duplane(dA, 1));
-
- dB = vec2d_swizzle2(B2, B2, 1);
- dB = pmul(B1, dB);
- dB = psub(dB, vec2d_duplane(dB, 1));
-
- dC = vec2d_swizzle2(C2, C2, 1);
- dC = pmul(C1, dC);
- dC = psub(dC, vec2d_duplane(dC, 1));
-
- dD = vec2d_swizzle2(D2, D2, 1);
- dD = pmul(D1, dD);
- dD = psub(dD, vec2d_duplane(dD, 1));
-
- Packet2d DC1, DC2, AB1, AB2;
-
- // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
- AB1 = pmul(B1, vec2d_duplane(A2, 1));
- AB2 = pmul(B2, vec2d_duplane(A1, 0));
- AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
- AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
-
- // DC = D#*C
- DC1 = pmul(C1, vec2d_duplane(D2, 1));
- DC2 = pmul(C2, vec2d_duplane(D1, 0));
- DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
- DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
-
- Packet2d d1, d2;
-
- // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
- Packet2d det;
-
- // reciprocal of the determinant of the input matrix, rd = 1/det
- Packet2d rd;
-
- d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
- d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
- rd = padd(d1, d2);
- rd = padd(rd, vec2d_duplane(rd, 1));
-
- d1 = pmul(dA, dD);
- d2 = pmul(dB, dC);
-
- det = padd(d1, d2);
- det = psub(det, rd);
- det = vec2d_duplane(det, 0);
- rd = pdiv(pset1<Packet2d>(1.0), det);
-
- // rows of four sub-matrices of the inverse
- Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
-
- // iD = D*|A| - C*A#*B
- iD1 = pmul(AB1, vec2d_duplane(C1, 0));
- iD2 = pmul(AB1, vec2d_duplane(C2, 0));
- iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
- iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
- dA = vec2d_duplane(dA, 0);
- iD1 = psub(pmul(D1, dA), iD1);
- iD2 = psub(pmul(D2, dA), iD2);
-
- // iA = A*|D| - B*D#*C
- iA1 = pmul(DC1, vec2d_duplane(B1, 0));
- iA2 = pmul(DC1, vec2d_duplane(B2, 0));
- iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
- iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
- dD = vec2d_duplane(dD, 0);
- iA1 = psub(pmul(A1, dD), iA1);
- iA2 = psub(pmul(A2, dD), iA2);
-
- // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
- iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
- iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
- iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
- iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
- dB = vec2d_duplane(dB, 0);
- iB1 = psub(pmul(C1, dB), iB1);
- iB2 = psub(pmul(C2, dB), iB2);
-
- // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
- iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
- iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
- iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
- iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
- dC = vec2d_duplane(dC, 0);
- iC1 = psub(pmul(B1, dC), iC1);
- iC2 = psub(pmul(B2, dC), iC2);
-
- const double sign_mask1[2] = {0.0, numext::bit_cast<double>(0x8000000000000000ull)};
- const double sign_mask2[2] = {numext::bit_cast<double>(0x8000000000000000ull), 0.0};
- const Packet2d sign_PN = ploadu<Packet2d>(sign_mask1);
- const Packet2d sign_NP = ploadu<Packet2d>(sign_mask2);
- d1 = pxor(rd, sign_PN);
- d2 = pxor(rd, sign_NP);
-
- Index res_stride = result.outerStride();
- double *res = result.data();
- pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
- pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
- pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
- pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
- pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
- pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
- pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
- pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
- }
-};
-#endif
-} // namespace internal
-} // namespace Eigen
-#endif