summaryrefslogtreecommitdiffstats
path: root/src/Eigen/src/QR/FullPivHouseholderQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/QR/FullPivHouseholderQR.h')
-rw-r--r--src/Eigen/src/QR/FullPivHouseholderQR.h713
1 files changed, 713 insertions, 0 deletions
diff --git a/src/Eigen/src/QR/FullPivHouseholderQR.h b/src/Eigen/src/QR/FullPivHouseholderQR.h
new file mode 100644
index 0000000..d0664a1
--- /dev/null
+++ b/src/Eigen/src/QR/FullPivHouseholderQR.h
@@ -0,0 +1,713 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef MatrixXpr XprKind;
+ typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
+ enum { Flags = 0 };
+};
+
+template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
+
+template<typename MatrixType>
+struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+{
+ typedef typename MatrixType::PlainObject ReturnType;
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ * \class FullPivHouseholderQR
+ *
+ * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
+ * such that
+ * \f[
+ * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
+ * \f]
+ * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
+ * and \b R an upper triangular matrix.
+ *
+ * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
+ * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
+ *
+ * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
+ *
+ * \sa MatrixBase::fullPivHouseholderQr()
+ */
+template<typename _MatrixType> class FullPivHouseholderQR
+ : public SolverBase<FullPivHouseholderQR<_MatrixType> >
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef SolverBase<FullPivHouseholderQR> Base;
+ friend class SolverBase<FullPivHouseholderQR>;
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivHouseholderQR)
+ enum {
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef Matrix<StorageIndex, 1,
+ EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
+ EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
+ typedef typename MatrixType::PlainObject PlainObject;
+
+ /** \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
+ */
+ FullPivHouseholderQR()
+ : m_qr(),
+ m_hCoeffs(),
+ m_rows_transpositions(),
+ m_cols_transpositions(),
+ m_cols_permutation(),
+ m_temp(),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa FullPivHouseholderQR()
+ */
+ FullPivHouseholderQR(Index rows, Index cols)
+ : m_qr(rows, cols),
+ m_hCoeffs((std::min)(rows,cols)),
+ m_rows_transpositions((std::min)(rows,cols)),
+ m_cols_transpositions((std::min)(rows,cols)),
+ m_cols_permutation(cols),
+ m_temp(cols),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false) {}
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This constructor computes the QR factorization of the matrix \a matrix by calling
+ * the method compute(). It is a short cut for:
+ *
+ * \code
+ * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
+ * qr.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template<typename InputType>
+ explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_permutation(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ compute(matrix.derived());
+ }
+
+ /** \brief Constructs a QR factorization from a given matrix
+ *
+ * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
+ *
+ * \sa FullPivHouseholderQR(const EigenBase&)
+ */
+ template<typename InputType>
+ explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
+ : m_qr(matrix.derived()),
+ m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
+ m_cols_permutation(matrix.cols()),
+ m_temp(matrix.cols()),
+ m_isInitialized(false),
+ m_usePrescribedThreshold(false)
+ {
+ computeInPlace();
+ }
+
+ #ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * \c *this is the QR decomposition.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
+ * and an arbitrary solution otherwise.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ *
+ * Example: \include FullPivHouseholderQR_solve.cpp
+ * Output: \verbinclude FullPivHouseholderQR_solve.out
+ */
+ template<typename Rhs>
+ inline const Solve<FullPivHouseholderQR, Rhs>
+ solve(const MatrixBase<Rhs>& b) const;
+ #endif
+
+ /** \returns Expression object representing the matrix Q
+ */
+ MatrixQReturnType matrixQ(void) const;
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ */
+ const MatrixType& matrixQR() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_qr;
+ }
+
+ template<typename InputType>
+ FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
+
+ /** \returns a const reference to the column permutation matrix */
+ const PermutationType& colsPermutation() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_cols_permutation;
+ }
+
+ /** \returns a const reference to the vector of indices representing the rows transpositions */
+ const IntDiagSizeVectorType& rowsTranspositions() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return m_rows_transpositions;
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the QR decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's inherent
+ * to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ using std::abs;
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
+ Index result = 0;
+ for(Index i = 0; i < m_nonzero_pivots; ++i)
+ result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == cols();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return rank() == rows();
+ }
+
+ /** \returns true if the matrix of which *this is the QR decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return isInjective() && isSurjective();
+ }
+
+ /** \returns the inverse of the matrix of which *this is the QR decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ */
+ inline const Inverse<FullPivHouseholderQR> inverse() const
+ {
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return Inverse<FullPivHouseholderQR>(*this);
+ }
+
+ inline Index rows() const { return m_qr.rows(); }
+ inline Index cols() const { return m_qr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * QR decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this
+ * uses a formula to automatically determine a reasonable threshold.
+ * Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ FullPivHouseholderQR& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
+ }
+
+ /** \returns the number of nonzero pivots in the QR decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const
+ {
+ eigen_assert(m_isInitialized && "LU is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of U.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+
+ template<bool Conjugate, typename RhsType, typename DstType>
+ void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
+ #endif
+
+ protected:
+
+ static void check_template_parameters()
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ void computeInPlace();
+
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ IntDiagSizeVectorType m_rows_transpositions;
+ IntDiagSizeVectorType m_cols_transpositions;
+ PermutationType m_cols_permutation;
+ RowVectorType m_temp;
+ bool m_isInitialized, m_usePrescribedThreshold;
+ RealScalar m_prescribedThreshold, m_maxpivot;
+ Index m_nonzero_pivots;
+ RealScalar m_precision;
+ Index m_det_pq;
+};
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
+{
+ using std::abs;
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return abs(m_qr.diagonal().prod());
+}
+
+template<typename MatrixType>
+typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
+ return m_qr.diagonal().cwiseAbs().array().log().sum();
+}
+
+/** Performs the QR factorization of the given matrix \a matrix. The result of
+ * the factorization is stored into \c *this, and a reference to \c *this
+ * is returned.
+ *
+ * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
+ */
+template<typename MatrixType>
+template<typename InputType>
+FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
+{
+ m_qr = matrix.derived();
+ computeInPlace();
+ return *this;
+}
+
+template<typename MatrixType>
+void FullPivHouseholderQR<MatrixType>::computeInPlace()
+{
+ check_template_parameters();
+
+ using std::abs;
+ Index rows = m_qr.rows();
+ Index cols = m_qr.cols();
+ Index size = (std::min)(rows,cols);
+
+
+ m_hCoeffs.resize(size);
+
+ m_temp.resize(cols);
+
+ m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
+
+ m_rows_transpositions.resize(size);
+ m_cols_transpositions.resize(size);
+ Index number_of_transpositions = 0;
+
+ RealScalar biggest(0);
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+
+ for (Index k = 0; k < size; ++k)
+ {
+ Index row_of_biggest_in_corner, col_of_biggest_in_corner;
+ typedef internal::scalar_score_coeff_op<Scalar> Scoring;
+ typedef typename Scoring::result_type Score;
+
+ Score score = m_qr.bottomRightCorner(rows-k, cols-k)
+ .unaryExpr(Scoring())
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k;
+ col_of_biggest_in_corner += k;
+ RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score);
+ if(k==0) biggest = biggest_in_corner;
+
+ // if the corner is negligible, then we have less than full rank, and we can finish early
+ if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
+ {
+ m_nonzero_pivots = k;
+ for(Index i = k; i < size; i++)
+ {
+ m_rows_transpositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
+ m_cols_transpositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
+ m_hCoeffs.coeffRef(i) = Scalar(0);
+ }
+ break;
+ }
+
+ m_rows_transpositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
+ m_cols_transpositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
+ if(k != row_of_biggest_in_corner) {
+ m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+
+ RealScalar beta;
+ m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
+ m_qr.coeffRef(k,k) = beta;
+
+ // remember the maximum absolute value of diagonal coefficients
+ if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
+
+ m_qr.bottomRightCorner(rows-k, cols-k-1)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
+ }
+
+ m_cols_permutation.setIdentity(cols);
+ for(Index k = 0; k < size; ++k)
+ m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ m_isInitialized = true;
+}
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ const Index l_rank = rank();
+
+ // FIXME introduce nonzeroPivots() and use it here. and more generally,
+ // make the same improvements in this dec as in FullPivLU.
+ if(l_rank==0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(rhs);
+
+ Matrix<typename RhsType::Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
+ for (Index k = 0; k < l_rank; ++k)
+ {
+ Index remainingSize = rows()-k;
+ c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
+ c.bottomRightCorner(remainingSize, rhs.cols())
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
+ m_hCoeffs.coeff(k), &temp.coeffRef(0));
+ }
+
+ m_qr.topLeftCorner(l_rank, l_rank)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(l_rank));
+
+ for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
+ for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
+}
+
+template<typename _MatrixType>
+template<bool Conjugate, typename RhsType, typename DstType>
+void FullPivHouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
+{
+ const Index l_rank = rank();
+
+ if(l_rank == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename RhsType::PlainObject c(m_cols_permutation.transpose()*rhs);
+
+ m_qr.topLeftCorner(l_rank, l_rank)
+ .template triangularView<Upper>()
+ .transpose().template conjugateIf<Conjugate>()
+ .solveInPlace(c.topRows(l_rank));
+
+ dst.topRows(l_rank) = c.topRows(l_rank);
+ dst.bottomRows(rows()-l_rank).setZero();
+
+ Matrix<Scalar, 1, DstType::ColsAtCompileTime> temp(dst.cols());
+ const Index size = (std::min)(rows(), cols());
+ for (Index k = size-1; k >= 0; --k)
+ {
+ Index remainingSize = rows()-k;
+
+ dst.bottomRightCorner(remainingSize, dst.cols())
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1).template conjugateIf<!Conjugate>(),
+ m_hCoeffs.template conjugateIf<Conjugate>().coeff(k), &temp.coeffRef(0));
+
+ dst.row(k).swap(dst.row(m_rows_transpositions.coeff(k)));
+ }
+}
+#endif
+
+namespace internal {
+
+template<typename DstXprType, typename MatrixType>
+struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
+{
+ typedef FullPivHouseholderQR<MatrixType> QrType;
+ typedef Inverse<QrType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
+ }
+};
+
+/** \ingroup QR_Module
+ *
+ * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
+ *
+ * \tparam MatrixType type of underlying dense matrix
+ */
+template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
+ : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+{
+public:
+ typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
+ MatrixType::MaxRowsAtCompileTime> WorkVectorType;
+
+ FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
+ const HCoeffsType& hCoeffs,
+ const IntDiagSizeVectorType& rowsTranspositions)
+ : m_qr(qr),
+ m_hCoeffs(hCoeffs),
+ m_rowsTranspositions(rowsTranspositions)
+ {}
+
+ template <typename ResultType>
+ void evalTo(ResultType& result) const
+ {
+ const Index rows = m_qr.rows();
+ WorkVectorType workspace(rows);
+ evalTo(result, workspace);
+ }
+
+ template <typename ResultType>
+ void evalTo(ResultType& result, WorkVectorType& workspace) const
+ {
+ using numext::conj;
+ // compute the product H'_0 H'_1 ... H'_n-1,
+ // where H_k is the k-th Householder transformation I - h_k v_k v_k'
+ // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ const Index rows = m_qr.rows();
+ const Index cols = m_qr.cols();
+ const Index size = (std::min)(rows, cols);
+ workspace.resize(rows);
+ result.setIdentity(rows, rows);
+ for (Index k = size-1; k >= 0; k--)
+ {
+ result.block(k, k, rows-k, rows-k)
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
+ result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
+ }
+ }
+
+ Index rows() const { return m_qr.rows(); }
+ Index cols() const { return m_qr.rows(); }
+
+protected:
+ typename MatrixType::Nested m_qr;
+ typename HCoeffsType::Nested m_hCoeffs;
+ typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
+};
+
+// template<typename MatrixType>
+// struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+// : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
+// {};
+
+} // end namespace internal
+
+template<typename MatrixType>
+inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
+{
+ eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
+ return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
+}
+
+/** \return the full-pivoting Householder QR decomposition of \c *this.
+ *
+ * \sa class FullPivHouseholderQR
+ */
+template<typename Derived>
+const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::fullPivHouseholderQr() const
+{
+ return FullPivHouseholderQR<PlainObject>(eval());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H