diff options
Diffstat (limited to 'src/EigenUnsupported/CXX11')
92 files changed, 40984 insertions, 0 deletions
diff --git a/src/EigenUnsupported/CXX11/CMakeLists.txt b/src/EigenUnsupported/CXX11/CMakeLists.txt new file mode 100644 index 0000000..385ed24 --- /dev/null +++ b/src/EigenUnsupported/CXX11/CMakeLists.txt @@ -0,0 +1,8 @@ +set(Eigen_CXX11_HEADERS Tensor TensorSymmetry ThreadPool) + +install(FILES + ${Eigen_CXX11_HEADERS} + DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/CXX11 COMPONENT Devel + ) + +install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/CXX11 COMPONENT Devel FILES_MATCHING PATTERN "*.h") diff --git a/src/EigenUnsupported/CXX11/Tensor b/src/EigenUnsupported/CXX11/Tensor new file mode 100644 index 0000000..0938bb5 --- /dev/null +++ b/src/EigenUnsupported/CXX11/Tensor @@ -0,0 +1,137 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +//#ifndef EIGEN_CXX11_TENSOR_MODULE +//#define EIGEN_CXX11_TENSOR_MODULE + +#include "../../../Eigen/Core" + +#if EIGEN_HAS_CXX11 + +#include "../SpecialFunctions" + +#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h" +#include "src/util/CXX11Meta.h" +#include "src/util/MaxSizeVector.h" + +/** \defgroup CXX11_Tensor_Module Tensor Module + * + * This module provides a Tensor class for storing arbitrarily indexed + * objects. + * + * \code + * #include <Eigen/CXX11/Tensor> + * \endcode + * + * Much of the documentation can be found \ref eigen_tensors "here". + */ + +#include <atomic> +#include <chrono> +#include <cmath> +#include <cstddef> +#include <cstring> +#include <random> +#include <thread> + +#if defined(EIGEN_USE_THREADS) || defined(EIGEN_USE_SYCL) +#include "ThreadPool" +#endif + +#ifdef EIGEN_USE_GPU + #include <iostream> + #if defined(EIGEN_USE_HIP) + #include <hip/hip_runtime.h> + #else + #include <cuda_runtime.h> + #endif +#endif + +#include "src/Tensor/TensorMacros.h" +#include "src/Tensor/TensorForwardDeclarations.h" +#include "src/Tensor/TensorMeta.h" +#include "src/Tensor/TensorFunctors.h" +#include "src/Tensor/TensorCostModel.h" +#include "src/Tensor/TensorDeviceDefault.h" +#include "src/Tensor/TensorDeviceThreadPool.h" +#include "src/Tensor/TensorDeviceGpu.h" +#ifndef gpu_assert +#define gpu_assert(x) +#endif +#include "src/Tensor/TensorDeviceSycl.h" +#include "src/Tensor/TensorIndexList.h" +#include "src/Tensor/TensorDimensionList.h" +#include "src/Tensor/TensorDimensions.h" +#include "src/Tensor/TensorInitializer.h" +#include "src/Tensor/TensorTraits.h" +#include "src/Tensor/TensorRandom.h" +#include "src/Tensor/TensorUInt128.h" +#include "src/Tensor/TensorIntDiv.h" +#include "src/Tensor/TensorGlobalFunctions.h" + +#include "src/Tensor/TensorBase.h" +#include "src/Tensor/TensorBlock.h" + +#include "src/Tensor/TensorEvaluator.h" +#include "src/Tensor/TensorExpr.h" +#include "src/Tensor/TensorReduction.h" +#include "src/Tensor/TensorReductionGpu.h" +#include "src/Tensor/TensorArgMax.h" +#include "src/Tensor/TensorConcatenation.h" +#include "src/Tensor/TensorContractionMapper.h" +#include "src/Tensor/TensorContractionBlocking.h" +#include "src/Tensor/TensorContraction.h" +#include "src/Tensor/TensorContractionThreadPool.h" +#include "src/Tensor/TensorContractionGpu.h" +#include "src/Tensor/TensorConversion.h" +#include "src/Tensor/TensorConvolution.h" +#include "src/Tensor/TensorFFT.h" +#include "src/Tensor/TensorPatch.h" +#include "src/Tensor/TensorImagePatch.h" +#include "src/Tensor/TensorVolumePatch.h" +#include "src/Tensor/TensorBroadcasting.h" +#include "src/Tensor/TensorChipping.h" +#include "src/Tensor/TensorInflation.h" +#include "src/Tensor/TensorLayoutSwap.h" +#include "src/Tensor/TensorMorphing.h" +#include "src/Tensor/TensorPadding.h" +#include "src/Tensor/TensorReverse.h" +#include "src/Tensor/TensorShuffling.h" +#include "src/Tensor/TensorStriding.h" +#include "src/Tensor/TensorCustomOp.h" +#include "src/Tensor/TensorEvalTo.h" +#include "src/Tensor/TensorForcedEval.h" +#include "src/Tensor/TensorGenerator.h" +#include "src/Tensor/TensorAssign.h" +#include "src/Tensor/TensorScan.h" +#include "src/Tensor/TensorTrace.h" + +#ifdef EIGEN_USE_SYCL +#include "src/Tensor/TensorReductionSycl.h" +#include "src/Tensor/TensorConvolutionSycl.h" +#include "src/Tensor/TensorContractionSycl.h" +#include "src/Tensor/TensorScanSycl.h" +#endif + +#include "src/Tensor/TensorExecutor.h" +#include "src/Tensor/TensorDevice.h" + +#include "src/Tensor/TensorStorage.h" +#include "src/Tensor/Tensor.h" +#include "src/Tensor/TensorFixedSize.h" +#include "src/Tensor/TensorMap.h" +#include "src/Tensor/TensorRef.h" + +#include "src/Tensor/TensorIO.h" + +#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_HAS_CXX11 +//#endif // EIGEN_CXX11_TENSOR_MODULE diff --git a/src/EigenUnsupported/CXX11/TensorSymmetry b/src/EigenUnsupported/CXX11/TensorSymmetry new file mode 100644 index 0000000..b09c5e4 --- /dev/null +++ b/src/EigenUnsupported/CXX11/TensorSymmetry @@ -0,0 +1,42 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSORSYMMETRY_MODULE +#define EIGEN_CXX11_TENSORSYMMETRY_MODULE + +#include "Tensor" + +#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h" + +#include "src/util/CXX11Meta.h" + +/** \defgroup CXX11_TensorSymmetry_Module Tensor Symmetry Module + * + * This module provides a classes that allow for the definition of + * symmetries w.r.t. tensor indices. + * + * Including this module will implicitly include the Tensor module. + * + * \code + * #include <Eigen/TensorSymmetry> + * \endcode + */ + +#include "src/TensorSymmetry/util/TemplateGroupTheory.h" +#include "src/TensorSymmetry/Symmetry.h" +#include "src/TensorSymmetry/StaticSymmetry.h" +#include "src/TensorSymmetry/DynamicSymmetry.h" + +#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_CXX11_TENSORSYMMETRY_MODULE + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/ThreadPool b/src/EigenUnsupported/CXX11/ThreadPool new file mode 100644 index 0000000..c5cafb2 --- /dev/null +++ b/src/EigenUnsupported/CXX11/ThreadPool @@ -0,0 +1,74 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_MODULE +#define EIGEN_CXX11_THREADPOOL_MODULE + +#include "../../../Eigen/Core" + +#include "../../../Eigen/src/Core/util/DisableStupidWarnings.h" + +/** \defgroup CXX11_ThreadPool_Module C++11 ThreadPool Module + * + * This module provides 2 threadpool implementations + * - a simple reference implementation + * - a faster non blocking implementation + * + * This module requires C++11. + * + * \code + * #include <Eigen/CXX11/ThreadPool> + * \endcode + */ + + +// The code depends on CXX11, so only include the module if the +// compiler supports it. +#if (EIGEN_COMP_CXXVER >= 11) +#include <cstddef> +#include <cstring> +#include <time.h> + +#include <vector> +#include <atomic> +#include <condition_variable> +#include <deque> +#include <mutex> +#include <thread> +#include <functional> +#include <memory> +#include <utility> + +// There are non-parenthesized calls to "max" in the <unordered_map> header, +// which trigger a check in test/main.h causing compilation to fail. +// We work around the check here by removing the check for max in +// the case where we have to emulate thread_local. +#ifdef max +#undef max +#endif +#include <unordered_map> + +#include "src/util/CXX11Meta.h" +#include "src/util/MaxSizeVector.h" + +#include "src/ThreadPool/ThreadLocal.h" +#include "src/ThreadPool/ThreadYield.h" +#include "src/ThreadPool/ThreadCancel.h" +#include "src/ThreadPool/EventCount.h" +#include "src/ThreadPool/RunQueue.h" +#include "src/ThreadPool/ThreadPoolInterface.h" +#include "src/ThreadPool/ThreadEnvironment.h" +#include "src/ThreadPool/Barrier.h" +#include "src/ThreadPool/NonBlockingThreadPool.h" + +#endif + +#include "../../../Eigen/src/Core/util/ReenableStupidWarnings.h" + +#endif // EIGEN_CXX11_THREADPOOL_MODULE diff --git a/src/EigenUnsupported/CXX11/src/Tensor/README.md b/src/EigenUnsupported/CXX11/src/Tensor/README.md new file mode 100644 index 0000000..2f65b1b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/README.md @@ -0,0 +1,1815 @@ +# Eigen Tensors {#eigen_tensors} + +Tensors are multidimensional arrays of elements. Elements are typically scalars, +but more complex types such as strings are also supported. + +## Tensor Classes + +You can manipulate a tensor with one of the following classes. They all are in +the namespace `::Eigen.` + + +### Class Tensor<data_type, rank> + +This is the class to use to create a tensor and allocate memory for it. The +class is templatized with the tensor datatype, such as float or int, and the +tensor rank. The rank is the number of dimensions, for example rank 2 is a +matrix. + +Tensors of this class are resizable. For example, if you assign a tensor of a +different size to a Tensor, that tensor is resized to match its new value. + +#### Constructor Tensor<data_type, rank>(size0, size1, ...) + +Constructor for a Tensor. The constructor must be passed `rank` integers +indicating the sizes of the instance along each of the the `rank` +dimensions. + + // Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns + // memory to hold 24 floating point values (24 = 2 x 3 x 4). + Tensor<float, 3> t_3d(2, 3, 4); + + // Resize t_3d by assigning a tensor of different sizes, but same rank. + t_3d = Tensor<float, 3>(3, 4, 3); + +#### Constructor Tensor<data_type, rank>(size_array) + +Constructor where the sizes for the constructor are specified as an array of +values instead of an explicitly list of parameters. The array type to use is +`Eigen::array<Eigen::Index>`. The array can be constructed automatically +from an initializer list. + + // Create a tensor of strings of rank 2 with sizes 5, 7. + Tensor<string, 2> t_2d({5, 7}); + + +### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>> + +Class to use for tensors of fixed size, where the size is known at compile +time. Fixed sized tensors can provide very fast computations because all their +dimensions are known by the compiler. FixedSize tensors are not resizable. + +If the total number of elements in a fixed size tensor is small enough the +tensor data is held onto the stack and does not cause heap allocation and free. + + // Create a 4 x 3 tensor of floats. + TensorFixedSize<float, Sizes<4, 3>> t_4x3; + +### Class TensorMap<Tensor<data_type, rank>> + +This is the class to use to create a tensor on top of memory allocated and +owned by another part of your code. It allows to view any piece of allocated +memory as a Tensor. Instances of this class do not own the memory where the +data are stored. + +A TensorMap is not resizable because it does not own the memory where its data +are stored. + +#### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...) + +Constructor for a Tensor. The constructor must be passed a pointer to the +storage for the data, and "rank" size attributes. The storage has to be +large enough to hold all the data. + + // Map a tensor of ints on top of stack-allocated storage. + int storage[128]; // 2 x 4 x 2 x 8 = 128 + TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8); + + // The same storage can be viewed as a different tensor. + // You can also pass the sizes as an array. + TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8); + + // You can also map fixed-size tensors. Here we get a 1d view of + // the 2d fixed-size tensor. + TensorFixedSize<float, Sizes<4, 3>> t_4x3; + TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12); + + +#### Class TensorRef + +See Assigning to a TensorRef below. + +## Accessing Tensor Elements + +#### <data_type> tensor(index0, index1...) + +Return the element at position `(index0, index1...)` in tensor +`tensor`. You must pass as many parameters as the rank of `tensor`. +The expression can be used as an l-value to set the value of the element at the +specified position. The value returned is of the datatype of the tensor. + + // Set the value of the element at position (0, 1, 0); + Tensor<float, 3> t_3d(2, 3, 4); + t_3d(0, 1, 0) = 12.0f; + + // Initialize all elements to random values. + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 4; ++k) { + t_3d(i, j, k) = ...some random value...; + } + } + } + + // Print elements of a tensor. + for (int i = 0; i < 2; ++i) { + LOG(INFO) << t_3d(i, 0, 0); + } + + +## TensorLayout + +The tensor library supports 2 layouts: `ColMajor` (the default) and +`RowMajor`. Only the default column major layout is currently fully +supported, and it is therefore not recommended to attempt to use the row major +layout at the moment. + +The layout of a tensor is optionally specified as part of its type. If not +specified explicitly column major is assumed. + + Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3> + TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...); + +All the arguments to an expression must use the same layout. Attempting to mix +different layouts will result in a compilation error. + +It is possible to change the layout of a tensor or an expression using the +`swap_layout()` method. Note that this will also reverse the order of the +dimensions. + + Tensor<float, 2, ColMajor> col_major(2, 4); + Tensor<float, 2, RowMajor> row_major(2, 4); + + Tensor<float, 2> col_major_result = col_major; // ok, layouts match + Tensor<float, 2> col_major_result = row_major; // will not compile + + // Simple layout swap + col_major_result = row_major.swap_layout(); + eigen_assert(col_major_result.dimension(0) == 4); + eigen_assert(col_major_result.dimension(1) == 2); + + // Swap the layout and preserve the order of the dimensions + array<int, 2> shuffle(1, 0); + col_major_result = row_major.swap_layout().shuffle(shuffle); + eigen_assert(col_major_result.dimension(0) == 2); + eigen_assert(col_major_result.dimension(1) == 4); + + +## Tensor Operations + +The Eigen Tensor library provides a vast library of operations on Tensors: +numerical operations such as addition and multiplication, geometry operations +such as slicing and shuffling, etc. These operations are available as methods +of the Tensor classes, and in some cases as operator overloads. For example +the following code computes the elementwise addition of two tensors: + + Tensor<float, 3> t1(2, 3, 4); + ...set some values in t1... + Tensor<float, 3> t2(2, 3, 4); + ...set some values in t2... + // Set t3 to the element wise sum of t1 and t2 + Tensor<float, 3> t3 = t1 + t2; + +While the code above looks easy enough, it is important to understand that the +expression `t1 + t2` is not actually adding the values of the tensors. The +expression instead constructs a "tensor operator" object of the class +TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors +`t1` and `t2`. This is a small C++ object that knows how to add +`t1` and `t2`. It is only when the value of the expression is assigned +to the tensor `t3` that the addition is actually performed. Technically, +this happens through the overloading of `operator=()` in the Tensor class. + +This mechanism for computing tensor expressions allows for lazy evaluation and +optimizations which are what make the tensor library very fast. + +Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f` +is actually represented with the (approximate) tree of operators: + + TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f)) + + +### Tensor Operations and C++ "auto" + +Because Tensor operations create tensor operators, the C++ `auto` keyword +does not have its intuitive meaning. Consider these 2 lines of code: + + Tensor<float, 3> t3 = t1 + t2; + auto t4 = t1 + t2; + +In the first line we allocate the tensor `t3` and it will contain the +result of the addition of `t1` and `t2`. In the second line, `t4` +is actually the tree of tensor operators that will compute the addition of +`t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get +the values of its elements: + + Tensor<float, 3> t3 = t1 + t2; + cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0) + + auto t4 = t1 + t2; + cout << t4(0, 0, 0); // Compilation error! + +When you use `auto` you do not get a Tensor as a result but instead a +non-evaluated expression. So only use `auto` to delay evaluation. + +Unfortunately, there is no single underlying concrete type for holding +non-evaluated expressions, hence you have to use auto in the case when you do +want to hold non-evaluated expressions. + +When you need the results of set of tensor computations you have to assign the +result to a Tensor that will be capable of holding onto them. This can be +either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing +piece of memory. All the following will work: + + auto t4 = t1 + t2; + + Tensor<float, 3> result = t4; // Could also be: result(t4); + cout << result(0, 0, 0); + + TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4; + cout << result(0, 0, 0); + + TensorFixedSize<float, Sizes<size0, ...>> result = t4; + cout << result(0, 0, 0); + +Until you need the results, you can keep the operation around, and even reuse +it for additional operations. As long as you keep the expression as an +operation, no computation is performed. + + // One way to compute exp((t1 + t2) * 0.2f); + auto t3 = t1 + t2; + auto t4 = t3 * 0.2f; + auto t5 = t4.exp(); + Tensor<float, 3> result = t5; + + // Another way, exactly as efficient as the previous one: + Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp(); + +### Controlling When Expression are Evaluated + +There are several ways to control when expressions are evaluated: + +* Assignment to a Tensor, TensorFixedSize, or TensorMap. +* Use of the eval() method. +* Assignment to a TensorRef. + +#### Assigning to a Tensor, TensorFixedSize, or TensorMap. + +The most common way to evaluate an expression is to assign it to a Tensor. In +the example below, the `auto` declarations make the intermediate values +"Operations", not Tensors, and do not cause the expressions to be evaluated. +The assignment to the Tensor `result` causes the evaluation of all the +operations. + + auto t3 = t1 + t2; // t3 is an Operation. + auto t4 = t3 * 0.2f; // t4 is an Operation. + auto t5 = t4.exp(); // t5 is an Operation. + Tensor<float, 3> result = t5; // The operations are evaluated. + +If you know the ranks and sizes of the Operation value you can assign the +Operation to a TensorFixedSize instead of a Tensor, which is a bit more +efficient. + + // We know that the result is a 4x4x2 tensor! + TensorFixedSize<float, Sizes<4, 4, 2>> result = t5; + +Simiarly, assigning an expression to a TensorMap causes its evaluation. Like +tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to +have the rank and sizes of the expression that are assigned to them. + +#### Calling eval(). + +When you compute large composite expressions, you sometimes want to tell Eigen +that an intermediate value in the expression tree is worth evaluating ahead of +time. This is done by inserting a call to the `eval()` method of the +expression Operation. + + // The previous example could have been written: + Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp(); + + // If you want to compute (t1 + t2) once ahead of time you can write: + Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp(); + +Semantically, calling `eval()` is equivalent to materializing the value of +the expression in a temporary Tensor of the right size. The code above in +effect does: + + // .eval() knows the size! + TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2; + Tensor<float, 3> result = (tmp * 0.2f).exp(); + +Note that the return value of `eval()` is itself an Operation, so the +following code does not do what you may think: + + // Here t3 is an evaluation Operation. t3 has not been evaluated yet. + auto t3 = (t1 + t2).eval(); + + // You can use t3 in another expression. Still no evaluation. + auto t4 = (t3 * 0.2f).exp(); + + // The value is evaluated when you assign the Operation to a Tensor, using + // an intermediate tensor to represent t3.x + Tensor<float, 3> result = t4; + +While in the examples above calling `eval()` does not make a difference in +performance, in other cases it can make a huge difference. In the expression +below the `broadcast()` expression causes the `X.maximum()` expression +to be evaluated many times: + + Tensor<...> X ...; + Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast)) + * beta).exp(); + +Inserting a call to `eval()` between the `maximum()` and +`reshape()` calls guarantees that maximum() is only computed once and +greatly speeds-up execution: + + Tensor<...> Y = + ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast)) + * beta).exp(); + +In the other example below, the tensor `Y` is both used in the expression +and its assignment. This is an aliasing problem and if the evaluation is not +done in the right order Y will be updated incrementally during the evaluation +resulting in bogus results: + + Tensor<...> Y ...; + Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast)); + +Inserting a call to `eval()` between the `sum()` and `reshape()` +expressions ensures that the sum is computed before any updates to `Y` are +done. + + Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast)); + +Note that an eval around the full right hand side expression is not needed +because the generated has to compute the i-th value of the right hand side +before assigning it to the left hand side. + +However, if you were assigning the expression value to a shuffle of `Y` +then you would need to force an eval for correctness by adding an `eval()` +call for the right hand side: + + Y.shuffle(...) = + (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval(); + + +#### Assigning to a TensorRef. + +If you need to access only a few elements from the value of an expression you +can avoid materializing the value in a full tensor by using a TensorRef. + +A TensorRef is a small wrapper class for any Eigen Operation. It provides +overloads for the `()` operator that let you access individual values in +the expression. TensorRef is convenient, because the Operation themselves do +not provide a way to access individual elements. + + // Create a TensorRef for the expression. The expression is not + // evaluated yet. + TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp(); + + // Use "ref" to access individual elements. The expression is evaluated + // on the fly. + float at_0 = ref(0, 0, 0); + cout << ref(0, 1, 0); + +Only use TensorRef when you need a subset of the values of the expression. +TensorRef only computes the values you access. However note that if you are +going to access all the values it will be much faster to materialize the +results in a Tensor first. + +In some cases, if the full Tensor result would be very large, you may save +memory by accessing it as a TensorRef. But not always. So don't count on it. + + +### Controlling How Expressions Are Evaluated + +The tensor library provides several implementations of the various operations +such as contractions and convolutions. The implementations are optimized for +different environments: single threaded on CPU, multi threaded on CPU, or on a +GPU using cuda. Additional implementations may be added later. + +You can choose which implementation to use with the `device()` call. If +you do not choose an implementation explicitly the default implementation that +uses a single thread on the CPU is used. + +The default implementation has been optimized for recent Intel CPUs, taking +advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the +library on ARM CPUs. Note that you need to pass compiler-dependent flags +to enable the use of SSE, AVX, and other instructions. + +For example, the following code adds two tensors using the default +single-threaded CPU implementation: + + Tensor<float, 2> a(30, 40); + Tensor<float, 2> b(30, 40); + Tensor<float, 2> c = a + b; + +To choose a different implementation you have to insert a `device()` call +before the assignment of the result. For technical C++ reasons this requires +that the Tensor for the result be declared on its own. This means that you +have to know the size of the result. + + Eigen::Tensor<float, 2> c(30, 40); + c.device(...) = a + b; + +The call to `device()` must be the last call on the left of the operator=. + +You must pass to the `device()` call an Eigen device object. There are +presently three devices you can use: DefaultDevice, ThreadPoolDevice and +GpuDevice. + + +#### Evaluating With the DefaultDevice + +This is exactly the same as not inserting a `device()` call. + + DefaultDevice my_device; + c.device(my_device) = a + b; + +#### Evaluating with a Thread Pool + + // Create the Eigen ThreadPool + Eigen::ThreadPool pool(8 /* number of threads in pool */) + + // Create the Eigen ThreadPoolDevice. + Eigen::ThreadPoolDevice my_device(&pool, 4 /* number of threads to use */); + + // Now just use the device when evaluating expressions. + Eigen::Tensor<float, 2> c(30, 50); + c.device(my_device) = a.contract(b, dot_product_dims); + + +#### Evaluating On GPU + +This is presently a bit more complicated than just using a thread pool device. +You need to create a GPU device but you also need to explicitly allocate the +memory for tensors with cuda. + + +## API Reference + +### Datatypes + +In the documentation of the tensor methods and Operation we mention datatypes +that are tensor-type specific: + +#### <Tensor-Type>::Dimensions + +Acts like an array of ints. Has an `int size` attribute, and can be +indexed like an array to access individual values. Used to represent the +dimensions of a tensor. See `dimensions()`. + +#### <Tensor-Type>::Index + +Acts like an `int`. Used for indexing tensors along their dimensions. See +`operator()`, `dimension()`, and `size()`. + +#### <Tensor-Type>::Scalar + +Represents the datatype of individual tensor elements. For example, for a +`Tensor<float>`, `Scalar` is the type `float`. See +`setConstant()`. + +#### <Operation> + +We use this pseudo type to indicate that a tensor Operation is returned by a +method. We indicate in the text the type and dimensions of the tensor that the +Operation returns after evaluation. + +The Operation will have to be evaluated, for example by assigning it to a +tensor, before you can access the values of the resulting tensor. You can also +access the values through a TensorRef. + + +## Built-in Tensor Methods + +These are usual C++ methods that act on tensors immediately. They are not +Operations which provide delayed evaluation of their results. Unless specified +otherwise, all the methods listed below are available on all tensor classes: +Tensor, TensorFixedSize, and TensorMap. + +## Metadata + +### int NumDimensions + +Constant value indicating the number of dimensions of a Tensor. This is also +known as the tensor "rank". + + Eigen::Tensor<float, 2> a(3, 4); + cout << "Dims " << a.NumDimensions; + => Dims 2 + +### Dimensions dimensions() + +Returns an array-like object representing the dimensions of the tensor. +The actual type of the `dimensions()` result is `<Tensor-Type>::``Dimensions`. + + Eigen::Tensor<float, 2> a(3, 4); + const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions(); + cout << "Dim size: " << d.size << ", dim 0: " << d[0] + << ", dim 1: " << d[1]; + => Dim size: 2, dim 0: 3, dim 1: 4 + +If you use a C++11 compiler, you can use `auto` to simplify the code: + + const auto& d = a.dimensions(); + cout << "Dim size: " << d.size << ", dim 0: " << d[0] + << ", dim 1: " << d[1]; + => Dim size: 2, dim 0: 3, dim 1: 4 + +### Index dimension(Index n) + +Returns the n-th dimension of the tensor. The actual type of the +`dimension()` result is `<Tensor-Type>::``Index`, but you can +always use it like an int. + + Eigen::Tensor<float, 2> a(3, 4); + int dim1 = a.dimension(1); + cout << "Dim 1: " << dim1; + => Dim 1: 4 + +### Index size() + +Returns the total number of elements in the tensor. This is the product of all +the tensor dimensions. The actual type of the `size()` result is +`<Tensor-Type>::``Index`, but you can always use it like an int. + + Eigen::Tensor<float, 2> a(3, 4); + cout << "Size: " << a.size(); + => Size: 12 + + +### Getting Dimensions From An Operation + +A few operations provide `dimensions()` directly, +e.g. `TensorReslicingOp`. Most operations defer calculating dimensions +until the operation is being evaluated. If you need access to the dimensions +of a deferred operation, you can wrap it in a TensorRef (see Assigning to a +TensorRef above), which provides `dimensions()` and `dimension()` as +above. + +TensorRef can also wrap the plain Tensor types, so this is a useful idiom in +templated contexts where the underlying object could be either a raw Tensor +or some deferred operation (e.g. a slice of a Tensor). In this case, the +template code can wrap the object in a TensorRef and reason about its +dimensionality while remaining agnostic to the underlying type. + + +## Constructors + +### Tensor + +Creates a tensor of the specified size. The number of arguments must be equal +to the rank of the tensor. The content of the tensor is not initialized. + + Eigen::Tensor<float, 2> a(3, 4); + cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl; + => NumRows: 3 NumCols: 4 + +### TensorFixedSize + +Creates a tensor of the specified size. The number of arguments in the Sizes<> +template parameter determines the rank of the tensor. The content of the tensor +is not initialized. + + Eigen::TensorFixedSize<float, Sizes<3, 4>> a; + cout << "Rank: " << a.rank() << endl; + => Rank: 2 + cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl; + => NumRows: 3 NumCols: 4 + +### TensorMap + +Creates a tensor mapping an existing array of data. The data must not be freed +until the TensorMap is discarded, and the size of the data must be large enough +to accommodate the coefficients of the tensor. + + float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; + Eigen::TensorMap<Tensor<float, 2>> a(data, 3, 4); + cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl; + => NumRows: 3 NumCols: 4 + cout << "a(1, 2): " << a(1, 2) << endl; + => a(1, 2): 7 + + +## Contents Initialization + +When a new Tensor or a new TensorFixedSize are created, memory is allocated to +hold all the tensor elements, but the memory is not initialized. Similarly, +when a new TensorMap is created on top of non-initialized memory the memory its +contents are not initialized. + +You can use one of the methods below to initialize the tensor memory. These +have an immediate effect on the tensor and return the tensor itself as a +result. These are not tensor Operations which delay evaluation. + +### <Tensor-Type> setConstant(const Scalar& val) + +Sets all elements of the tensor to the constant value `val`. `Scalar` +is the type of data stored in the tensor. You can pass any value that is +convertible to that type. + +Returns the tensor itself in case you want to chain another call. + + a.setConstant(12.3f); + cout << "Constant: " << endl << a << endl << endl; + => + Constant: + 12.3 12.3 12.3 12.3 + 12.3 12.3 12.3 12.3 + 12.3 12.3 12.3 12.3 + +Note that `setConstant()` can be used on any tensor where the element type +has a copy constructor and an `operator=()`: + + Eigen::Tensor<string, 2> a(2, 3); + a.setConstant("yolo"); + cout << "String tensor: " << endl << a << endl << endl; + => + String tensor: + yolo yolo yolo + yolo yolo yolo + + +### <Tensor-Type> setZero() + +Fills the tensor with zeros. Equivalent to `setConstant(Scalar(0))`. +Returns the tensor itself in case you want to chain another call. + + a.setZero(); + cout << "Zeros: " << endl << a << endl << endl; + => + Zeros: + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + + +### <Tensor-Type> setValues({..initializer_list}) + +Fills the tensor with explicit values specified in a std::initializer_list. +The type of the initializer list depends on the type and rank of the tensor. + +If the tensor has rank N, the initializer list must be nested N times. The +most deeply nested lists must contains P scalars of the Tensor type where P is +the size of the last dimension of the Tensor. + +For example, for a `TensorFixedSize<float, 2, 3>` the initializer list must +contains 2 lists of 3 floats each. + +`setValues()` returns the tensor itself in case you want to chain another +call. + + Eigen::Tensor<float, 2> a(2, 3); + a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}}); + cout << "a" << endl << a << endl << endl; + => + a + 0 1 2 + 3 4 5 + +If a list is too short, the corresponding elements of the tensor will not be +changed. This is valid at each level of nesting. For example the following +code only sets the values of the first row of the tensor. + + Eigen::Tensor<int, 2> a(2, 3); + a.setConstant(1000); + a.setValues({{10, 20, 30}}); + cout << "a" << endl << a << endl << endl; + => + a + 10 20 30 + 1000 1000 1000 + +### <Tensor-Type> setRandom() + +Fills the tensor with random values. Returns the tensor itself in case you +want to chain another call. + + a.setRandom(); + cout << "Random: " << endl << a << endl << endl; + => + Random: + 0.680375 0.59688 -0.329554 0.10794 + -0.211234 0.823295 0.536459 -0.0452059 + 0.566198 -0.604897 -0.444451 0.257742 + +You can customize `setRandom()` by providing your own random number +generator as a template argument: + + a.setRandom<MyRandomGenerator>(); + +Here, `MyRandomGenerator` must be a struct with the following member +functions, where Scalar and Index are the same as `<Tensor-Type>::``Scalar` +and `<Tensor-Type>::``Index`. + +See `struct UniformRandomGenerator` in TensorFunctors.h for an example. + + // Custom number generator for use with setRandom(). + struct MyRandomGenerator { + // Default and copy constructors. Both are needed + MyRandomGenerator() { } + MyRandomGenerator(const MyRandomGenerator& ) { } + + // Return a random value to be used. "element_location" is the + // location of the entry to set in the tensor, it can typically + // be ignored. + Scalar operator()(Eigen::DenseIndex element_location, + Eigen::DenseIndex /*unused*/ = 0) const { + return <randomly generated value of type T>; + } + + // Same as above but generates several numbers at a time. + typename internal::packet_traits<Scalar>::type packetOp( + Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const { + return <a packet of randomly generated values>; + } + }; + +You can also use one of the 2 random number generators that are part of the +tensor library: +* UniformRandomGenerator +* NormalRandomGenerator + + +## Data Access + +The Tensor, TensorFixedSize, and TensorRef classes provide the following +accessors to access the tensor coefficients: + + const Scalar& operator()(const array<Index, NumIndices>& indices) + const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) + Scalar& operator()(const array<Index, NumIndices>& indices) + Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) + +The number of indices must be equal to the rank of the tensor. Moreover, these +accessors are not available on tensor expressions. In order to access the +values of a tensor expression, the expression must either be evaluated or +wrapped in a TensorRef. + + +### Scalar* data() and const Scalar* data() const + +Returns a pointer to the storage for the tensor. The pointer is const if the +tensor was const. This allows direct access to the data. The layout of the +data depends on the tensor layout: RowMajor or ColMajor. + +This access is usually only needed for special cases, for example when mixing +Eigen Tensor code with other libraries. + +Scalar is the type of data stored in the tensor. + + Eigen::Tensor<float, 2> a(3, 4); + float* a_data = a.data(); + a_data[0] = 123.45f; + cout << "a(0, 0): " << a(0, 0); + => a(0, 0): 123.45 + + +## Tensor Operations + +All the methods documented below return non evaluated tensor `Operations`. +These can be chained: you can apply another Tensor Operation to the value +returned by the method. + +The chain of Operation is evaluated lazily, typically when it is assigned to a +tensor. See "Controlling when Expression are Evaluated" for more details about +their evaluation. + +### <Operation> constant(const Scalar& val) + +Returns a tensor of the same type and dimensions as the original tensor but +where all elements have the value `val`. + +This is useful, for example, when you want to add or subtract a constant from a +tensor, or multiply every element of a tensor by a scalar. + + Eigen::Tensor<float, 2> a(2, 3); + a.setConstant(1.0f); + Eigen::Tensor<float, 2> b = a + a.constant(2.0f); + Eigen::Tensor<float, 2> c = b * b.constant(0.2f); + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + cout << "c" << endl << c << endl << endl; + => + a + 1 1 1 + 1 1 1 + + b + 3 3 3 + 3 3 3 + + c + 0.6 0.6 0.6 + 0.6 0.6 0.6 + +### <Operation> random() + +Returns a tensor of the same type and dimensions as the current tensor +but where all elements have random values. + +This is for example useful to add random values to an existing tensor. +The generation of random values can be customized in the same manner +as for `setRandom()`. + + Eigen::Tensor<float, 2> a(2, 3); + a.setConstant(1.0f); + Eigen::Tensor<float, 2> b = a + a.random(); + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 1 1 1 + 1 1 1 + + b + 1.68038 1.5662 1.82329 + 0.788766 1.59688 0.395103 + + +## Unary Element Wise Operations + +All these operations take a single input tensor as argument and return a tensor +of the same type and dimensions as the tensor to which they are applied. The +requested operations are applied to each element independently. + +### <Operation> operator-() + +Returns a tensor of the same type and dimensions as the original tensor +containing the opposite values of the original tensor. + + Eigen::Tensor<float, 2> a(2, 3); + a.setConstant(1.0f); + Eigen::Tensor<float, 2> b = -a; + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 1 1 1 + 1 1 1 + + b + -1 -1 -1 + -1 -1 -1 + +### <Operation> sqrt() + +Returns a tensor of the same type and dimensions as the original tensor +containing the square roots of the original tensor. + +### <Operation> rsqrt() + +Returns a tensor of the same type and dimensions as the original tensor +containing the inverse square roots of the original tensor. + +### <Operation> square() + +Returns a tensor of the same type and dimensions as the original tensor +containing the squares of the original tensor values. + +### <Operation> inverse() + +Returns a tensor of the same type and dimensions as the original tensor +containing the inverse of the original tensor values. + +### <Operation> exp() + +Returns a tensor of the same type and dimensions as the original tensor +containing the exponential of the original tensor. + +### <Operation> log() + +Returns a tensor of the same type and dimensions as the original tensor +containing the natural logarithms of the original tensor. + +### <Operation> abs() + +Returns a tensor of the same type and dimensions as the original tensor +containing the absolute values of the original tensor. + +### <Operation> pow(Scalar exponent) + +Returns a tensor of the same type and dimensions as the original tensor +containing the coefficients of the original tensor to the power of the +exponent. + +The type of the exponent, Scalar, is always the same as the type of the +tensor coefficients. For example, only integer exponents can be used in +conjuntion with tensors of integer values. + +You can use cast() to lift this restriction. For example this computes +cubic roots of an int Tensor: + + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{0, 1, 8}, {27, 64, 125}}); + Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0); + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 0 1 8 + 27 64 125 + + b + 0 1 2 + 3 4 5 + +### <Operation> operator * (Scalar scale) + +Multiplies all the coefficients of the input tensor by the provided scale. + +### <Operation> cwiseMax(Scalar threshold) +TODO + +### <Operation> cwiseMin(Scalar threshold) +TODO + +### <Operation> unaryExpr(const CustomUnaryOp& func) +TODO + + +## Binary Element Wise Operations + +These operations take two input tensors as arguments. The 2 input tensors should +be of the same type and dimensions. The result is a tensor of the same +dimensions as the tensors to which they are applied, and unless otherwise +specified it is also of the same type. The requested operations are applied to +each pair of elements independently. + +### <Operation> operator+(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise sums of the inputs. + +### <Operation> operator-(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise differences of the inputs. + +### <Operation> operator*(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise products of the inputs. + +### <Operation> operator/(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise quotients of the inputs. + +This operator is not supported for integer types. + +### <Operation> cwiseMax(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise maximums of the inputs. + +### <Operation> cwiseMin(const OtherDerived& other) + +Returns a tensor of the same type and dimensions as the input tensors +containing the coefficient wise mimimums of the inputs. + +### <Operation> Logical operators + +The following logical operators are supported as well: + +* operator&&(const OtherDerived& other) +* operator||(const OtherDerived& other) +* operator<(const OtherDerived& other) +* operator<=(const OtherDerived& other) +* operator>(const OtherDerived& other) +* operator>=(const OtherDerived& other) +* operator==(const OtherDerived& other) +* operator!=(const OtherDerived& other) + +They all return a tensor of boolean values. + + +## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) + +Selection is a coefficient-wise ternary operator that is the tensor equivalent +to the if-then-else operation. + + Tensor<bool, 3> if = ...; + Tensor<float, 3> then = ...; + Tensor<float, 3> else = ...; + Tensor<float, 3> result = if.select(then, else); + +The 3 arguments must be of the same dimensions, which will also be the dimension +of the result. The 'if' tensor must be of type boolean, the 'then' and the +'else' tensor must be of the same type, which will also be the type of the +result. + +Each coefficient in the result is equal to the corresponding coefficient in the +'then' tensor if the corresponding value in the 'if' tensor is true. If not, the +resulting coefficient will come from the 'else' tensor. + + +## Contraction + +Tensor *contractions* are a generalization of the matrix product to the +multidimensional case. + + // Create 2 matrices using tensors of rank 2 + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{1, 2, 3}, {6, 5, 4}}); + Eigen::Tensor<int, 2> b(3, 2); + b.setValues({{1, 2}, {4, 5}, {5, 6}}); + + // Compute the traditional matrix product + Eigen::array<Eigen::IndexPair<int>, 1> product_dims = { Eigen::IndexPair<int>(1, 0) }; + Eigen::Tensor<int, 2> AB = a.contract(b, product_dims); + + // Compute the product of the transpose of the matrices + Eigen::array<Eigen::IndexPair<int>, 1> transposed_product_dims = { Eigen::IndexPair<int>(0, 1) }; + Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims); + + // Contraction to scalar value using a double contraction. + // First coordinate of both tensors are contracted as well as both second coordinates, i.e., this computes the sum of the squares of the elements. + Eigen::array<Eigen::IndexPair<int>, 2> double_contraction_product_dims = { Eigen::IndexPair<int>(0, 0), Eigen::IndexPair<int>(1, 1) }; + Eigen::Tensor<int, 0> AdoubleContractedA = a.contract(a, double_contraction_product_dims); + + // Extracting the scalar value of the tensor contraction for further usage + int value = AdoubleContractedA(0); + +## Reduction Operations + +A *Reduction* operation returns a tensor with fewer dimensions than the +original tensor. The values in the returned tensor are computed by applying a +*reduction operator* to slices of values from the original tensor. You specify +the dimensions along which the slices are made. + +The Eigen Tensor library provides a set of predefined reduction operators such +as `maximum()` and `sum()` and lets you define additional operators by +implementing a few methods from a reductor template. + +### Reduction Dimensions + +All reduction operations take a single parameter of type +`<TensorType>::``Dimensions` which can always be specified as an array of +ints. These are called the "reduction dimensions." The values are the indices +of the dimensions of the input tensor over which the reduction is done. The +parameter can have at most as many element as the rank of the input tensor; +each element must be less than the tensor rank, as it indicates one of the +dimensions to reduce. + +Each dimension of the input tensor should occur at most once in the reduction +dimensions as the implementation does not remove duplicates. + +The order of the values in the reduction dimensions does not affect the +results, but the code may execute faster if you list the dimensions in +increasing order. + +Example: Reduction along one dimension. + + // Create a tensor of 2 dimensions + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{1, 2, 3}, {6, 5, 4}}); + // Reduce it along the second dimension (1)... + Eigen::array<int, 1> dims({1 /* dimension to reduce */}); + // ...using the "maximum" operator. + // The result is a tensor with one dimension. The size of + // that dimension is the same as the first (non-reduced) dimension of a. + Eigen::Tensor<int, 1> b = a.maximum(dims); + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 1 2 3 + 6 5 4 + + b + 3 + 6 + +Example: Reduction along two dimensions. + + Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4); + a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f}, + {7.0f, 6.0f, 5.0f, 4.0f}, + {8.0f, 9.0f, 10.0f, 11.0f}}, + {{12.0f, 13.0f, 14.0f, 15.0f}, + {19.0f, 18.0f, 17.0f, 16.0f}, + {20.0f, 21.0f, 22.0f, 23.0f}}}); + // The tensor a has 3 dimensions. We reduce along the + // first 2, resulting in a tensor with a single dimension + // of size 4 (the last dimension of a.) + // Note that we pass the array of reduction dimensions + // directly to the maximum() call. + Eigen::Tensor<float, 1, Eigen::ColMajor> b = + a.maximum(Eigen::array<int, 2>({0, 1})); + cout << "b" << endl << b << endl << endl; + => + b + 20 + 21 + 22 + 23 + +#### Reduction along all dimensions + +As a special case, if you pass no parameter to a reduction operation the +original tensor is reduced along *all* its dimensions. The result is a +scalar, represented as a zero-dimension tensor. + + Eigen::Tensor<float, 3> a(2, 3, 4); + a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f}, + {7.0f, 6.0f, 5.0f, 4.0f}, + {8.0f, 9.0f, 10.0f, 11.0f}}, + {{12.0f, 13.0f, 14.0f, 15.0f}, + {19.0f, 18.0f, 17.0f, 16.0f}, + {20.0f, 21.0f, 22.0f, 23.0f}}}); + // Reduce along all dimensions using the sum() operator. + Eigen::Tensor<float, 0> b = a.sum(); + cout << "b" << endl << b << endl << endl; + => + b + 276 + + +### <Operation> sum(const Dimensions& new_dims) +### <Operation> sum() + +Reduce a tensor using the sum() operator. The resulting values +are the sum of the reduced values. + +### <Operation> mean(const Dimensions& new_dims) +### <Operation> mean() + +Reduce a tensor using the mean() operator. The resulting values +are the mean of the reduced values. + +### <Operation> maximum(const Dimensions& new_dims) +### <Operation> maximum() + +Reduce a tensor using the maximum() operator. The resulting values are the +largest of the reduced values. + +### <Operation> minimum(const Dimensions& new_dims) +### <Operation> minimum() + +Reduce a tensor using the minimum() operator. The resulting values +are the smallest of the reduced values. + +### <Operation> prod(const Dimensions& new_dims) +### <Operation> prod() + +Reduce a tensor using the prod() operator. The resulting values +are the product of the reduced values. + +### <Operation> all(const Dimensions& new_dims) +### <Operation> all() +Reduce a tensor using the all() operator. Casts tensor to bool and then checks +whether all elements are true. Runs through all elements rather than +short-circuiting, so may be significantly inefficient. + +### <Operation> any(const Dimensions& new_dims) +### <Operation> any() +Reduce a tensor using the any() operator. Casts tensor to bool and then checks +whether any element is true. Runs through all elements rather than +short-circuiting, so may be significantly inefficient. + + +### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer) + +Reduce a tensor using a user-defined reduction operator. See `SumReducer` +in TensorFunctors.h for information on how to implement a reduction operator. + + +## Trace + +A *Trace* operation returns a tensor with fewer dimensions than the original +tensor. It returns a tensor whose elements are the sum of the elements of the +original tensor along the main diagonal for a list of specified dimensions, the +"trace dimensions". Similar to the `Reduction Dimensions`, the trace dimensions +are passed as an input parameter to the operation, are of type `<TensorType>::``Dimensions` +, and have the same requirements when passed as an input parameter. In addition, +the trace dimensions must have the same size. + +Example: Trace along 2 dimensions. + + // Create a tensor of 3 dimensions + Eigen::Tensor<int, 3> a(2, 2, 3); + a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}}); + // Specify the dimensions along which the trace will be computed. + // In this example, the trace can only be computed along the dimensions + // with indices 0 and 1 + Eigen::array<int, 2> dims({0, 1}); + // The output tensor contains all but the trace dimensions. + Tensor<int, 1> a_trace = a.trace(dims); + cout << "a_trace:" << endl; + cout << a_trace << endl; + => + a_trace: + 11 + 13 + 15 + + +### <Operation> trace(const Dimensions& new_dims) +### <Operation> trace() + +As a special case, if no parameter is passed to the operation, trace is computed +along *all* dimensions of the input tensor. + +Example: Trace along all dimensions. + + // Create a tensor of 3 dimensions, with all dimensions having the same size. + Eigen::Tensor<int, 3> a(3, 3, 3); + a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, + {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}}, + {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}}); + // Result is a zero dimension tensor + Tensor<int, 0> a_trace = a.trace(); + cout<<"a_trace:"<<endl; + cout<<a_trace<<endl; + => + a_trace: + 42 + + +## Scan Operations + +A *Scan* operation returns a tensor with the same dimensions as the original +tensor. The operation performs an inclusive scan along the specified +axis, which means it computes a running total along the axis for a given +reduction operation. +If the reduction operation corresponds to summation, then this computes the +prefix sum of the tensor along the given axis. + +Example: +dd a comment to this line + + // Create a tensor of 2 dimensions + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{1, 2, 3}, {4, 5, 6}}); + // Scan it along the second dimension (1) using summation + Eigen::Tensor<int, 2> b = a.cumsum(1); + // The result is a tensor with the same size as the input + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 1 2 3 + 4 5 6 + + b + 1 3 6 + 4 9 15 + +### <Operation> cumsum(const Index& axis) + +Perform a scan by summing consecutive entries. + +### <Operation> cumprod(const Index& axis) + +Perform a scan by multiplying consecutive entries. + + +## Convolutions + +### <Operation> convolve(const Kernel& kernel, const Dimensions& dims) + +Returns a tensor that is the output of the convolution of the input tensor with the kernel, +along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor +which were part of the convolution will be reduced by the formula: +output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size). +The dimension sizes for dimensions that were not part of the convolution will remain the same. +Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the +convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is +for the last dimension). + + // Compute convolution along the second and third dimension. + Tensor<float, 4, DataLayout> input(3, 3, 7, 11); + Tensor<float, 2, DataLayout> kernel(2, 2); + Tensor<float, 4, DataLayout> output(3, 2, 6, 11); + input.setRandom(); + kernel.setRandom(); + + Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution. + output = input.convolve(kernel, dims); + + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 2; ++j) { + for (int k = 0; k < 6; ++k) { + for (int l = 0; l < 11; ++l) { + const float result = output(i,j,k,l); + const float expected = input(i,j+0,k+0,l) * kernel(0,0) + + input(i,j+1,k+0,l) * kernel(1,0) + + input(i,j+0,k+1,l) * kernel(0,1) + + input(i,j+1,k+1,l) * kernel(1,1); + VERIFY_IS_APPROX(result, expected); + } + } + } + } + + +## Geometrical Operations + +These operations return a Tensor with different dimensions than the original +Tensor. They can be used to access slices of tensors, see them with different +dimensions, or pad tensors with additional data. + +### <Operation> reshape(const Dimensions& new_dims) + +Returns a view of the input tensor that has been reshaped to the specified +new dimensions. The argument new_dims is an array of Index values. The +rank of the resulting tensor is equal to the number of elements in new_dims. + +The product of all the sizes in the new dimension array must be equal to +the number of elements in the input tensor. + + // Increase the rank of the input tensor by introducing a new dimension + // of size 1. + Tensor<float, 2> input(7, 11); + array<int, 3> three_dims{{7, 11, 1}}; + Tensor<float, 3> result = input.reshape(three_dims); + + // Decrease the rank of the input tensor by merging 2 dimensions; + array<int, 1> one_dim{{7 * 11}}; + Tensor<float, 1> result = input.reshape(one_dim); + +This operation does not move any data in the input tensor, so the resulting +contents of a reshaped Tensor depend on the data layout of the original Tensor. + +For example this is what happens when you `reshape()` a 2D ColMajor tensor +to one dimension: + + Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3); + a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}}); + Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2}); + Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim); + cout << "b" << endl << b << endl; + => + b + 0 + 300 + 100 + 400 + 200 + 500 + +This is what happens when the 2D Tensor is RowMajor: + + Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3); + a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}}); + Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2}); + Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim); + cout << "b" << endl << b << endl; + => + b + 0 + 100 + 200 + 300 + 400 + 500 + +The reshape operation is a lvalue. In other words, it can be used on the left +side of the assignment operator. + +The previous example can be rewritten as follow: + + Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3); + a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}}); + Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3}); + Eigen::Tensor<float, 1, Eigen::ColMajor> b(6); + b.reshape(two_dim) = a; + cout << "b" << endl << b << endl; + => + b + 0 + 300 + 100 + 400 + 200 + 500 + +Note that "b" itself was not reshaped but that instead the assignment is done to +the reshape view of b. + + +### <Operation> shuffle(const Shuffle& shuffle) + +Returns a copy of the input tensor whose dimensions have been +reordered according to the specified permutation. The argument shuffle +is an array of Index values. Its size is the rank of the input +tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th +dimension of the output tensor equals to the size of the shuffle[i]-th +dimension of the input tensor. For example: + + // Shuffle all dimensions to the left by 1. + Tensor<float, 3> input(20, 30, 50); + // ... set some values in input. + Tensor<float, 3> output = input.shuffle({1, 2, 0}) + + eigen_assert(output.dimension(0) == 30); + eigen_assert(output.dimension(1) == 50); + eigen_assert(output.dimension(2) == 20); + +Indices into the output tensor are shuffled accordingly to formulate +indices into the input tensor. For example, one can assert in the above +code snippet that: + + eigen_assert(output(3, 7, 11) == input(11, 3, 7)); + +In general, one can assert that + + eigen_assert(output(..., indices[shuffle[i]], ...) == + input(..., indices[i], ...)) + +The shuffle operation results in a lvalue, which means that it can be assigned +to. In other words, it can be used on the left side of the assignment operator. + +Let's rewrite the previous example to take advantage of this feature: + + // Shuffle all dimensions to the left by 1. + Tensor<float, 3> input(20, 30, 50); + // ... set some values in input. + Tensor<float, 3> output(30, 50, 20); + output.shuffle({2, 0, 1}) = input; + + +### <Operation> stride(const Strides& strides) + +Returns a view of the input tensor that strides (skips stride-1 +elements) along each of the dimensions. The argument strides is an +array of Index values. The dimensions of the resulting tensor are +ceil(input_dimensions[i] / strides[i]). + +For example this is what happens when you `stride()` a 2D tensor: + + Eigen::Tensor<int, 2> a(4, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}}); + Eigen::array<Eigen::DenseIndex, 2> strides({3, 2}); + Eigen::Tensor<int, 2> b = a.stride(strides); + cout << "b" << endl << b << endl; + => + b + 0 200 + 900 1100 + +It is possible to assign a tensor to a stride: + Tensor<float, 3> input(20, 30, 50); + // ... set some values in input. + Tensor<float, 3> output(40, 90, 200); + output.stride({2, 3, 4}) = input; + + +### <Operation> slice(const StartIndices& offsets, const Sizes& extents) + +Returns a sub-tensor of the given tensor. For each dimension i, the slice is +made of the coefficients stored between offset[i] and offset[i] + extents[i] in +the input tensor. + + Eigen::Tensor<int, 2> a(4, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}, + {600, 700, 800}, {900, 1000, 1100}}); + Eigen::array<int, 2> offsets = {1, 0}; + Eigen::array<int, 2> extents = {2, 2}; + Eigen::Tensor<int, 1> slice = a.slice(offsets, extents); + cout << "a" << endl << a << endl; + => + a + 0 100 200 + 300 400 500 + 600 700 800 + 900 1000 1100 + cout << "slice" << endl << slice << endl; + => + slice + 300 400 + 600 700 + + +### <Operation> chip(const Index offset, const Index dim) + +A chip is a special kind of slice. It is the subtensor at the given offset in +the dimension dim. The returned tensor has one fewer dimension than the input +tensor: the dimension dim is removed. + +For example, a matrix chip would be either a row or a column of the input +matrix. + + Eigen::Tensor<int, 2> a(4, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}, + {600, 700, 800}, {900, 1000, 1100}}); + Eigen::Tensor<int, 1> row_3 = a.chip(2, 0); + Eigen::Tensor<int, 1> col_2 = a.chip(1, 1); + cout << "a" << endl << a << endl; + => + a + 0 100 200 + 300 400 500 + 600 700 800 + 900 1000 1100 + cout << "row_3" << endl << row_3 << endl; + => + row_3 + 600 700 800 + cout << "col_2" << endl << col_2 << endl; + => + col_2 + 100 400 700 1000 + +It is possible to assign values to a tensor chip since the chip operation is a +lvalue. For example: + + Eigen::Tensor<int, 1> a(3); + a.setValues({{100, 200, 300}}); + Eigen::Tensor<int, 2> b(2, 3); + b.setZero(); + b.chip(0, 0) = a; + cout << "a" << endl << a << endl; + => + a + 100 + 200 + 300 + cout << "b" << endl << b << endl; + => + b + 100 200 300 + 0 0 0 + + +### <Operation> reverse(const ReverseDimensions& reverse) + +Returns a view of the input tensor that reverses the order of the coefficients +along a subset of the dimensions. The argument reverse is an array of boolean +values that indicates whether or not the order of the coefficients should be +reversed along each of the dimensions. This operation preserves the dimensions +of the input tensor. + +For example this is what happens when you `reverse()` the first dimension +of a 2D tensor: + + Eigen::Tensor<int, 2> a(4, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}, + {600, 700, 800}, {900, 1000, 1100}}); + Eigen::array<bool, 2> reverse({true, false}); + Eigen::Tensor<int, 2> b = a.reverse(reverse); + cout << "a" << endl << a << endl << "b" << endl << b << endl; + => + a + 0 100 200 + 300 400 500 + 600 700 800 + 900 1000 1100 + b + 900 1000 1100 + 600 700 800 + 300 400 500 + 0 100 200 + + +### <Operation> broadcast(const Broadcast& broadcast) + +Returns a view of the input tensor in which the input is replicated one to many +times. +The broadcast argument specifies how many copies of the input tensor need to be +made in each of the dimensions. + + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}}); + Eigen::array<int, 2> bcast({3, 2}); + Eigen::Tensor<int, 2> b = a.broadcast(bcast); + cout << "a" << endl << a << endl << "b" << endl << b << endl; + => + a + 0 100 200 + 300 400 500 + b + 0 100 200 0 100 200 + 300 400 500 300 400 500 + 0 100 200 0 100 200 + 300 400 500 300 400 500 + 0 100 200 0 100 200 + 300 400 500 300 400 500 + +### <Operation> concatenate(const OtherDerived& other, Axis axis) + +TODO + +### <Operation> pad(const PaddingDimensions& padding) + +Returns a view of the input tensor in which the input is padded with zeros. + + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{0, 100, 200}, {300, 400, 500}}); + Eigen::array<pair<int, int>, 2> paddings; + paddings[0] = make_pair(0, 1); + paddings[1] = make_pair(2, 3); + Eigen::Tensor<int, 2> b = a.pad(paddings); + cout << "a" << endl << a << endl << "b" << endl << b << endl; + => + a + 0 100 200 + 300 400 500 + b + 0 0 0 0 + 0 0 0 0 + 0 100 200 0 + 300 400 500 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + + +### <Operation> extract_patches(const PatchDims& patch_dims) + +Returns a tensor of coefficient patches extracted from the input tensor, where +each patch is of dimension specified by 'patch_dims'. The returned tensor has +one greater dimension than the input tensor, which is used to index each patch. +The patch index in the output tensor depends on the data layout of the input +tensor: the patch index is the last dimension ColMajor layout, and the first +dimension in RowMajor layout. + +For example, given the following input tensor: + + Eigen::Tensor<float, 2, DataLayout> tensor(3,4); + tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 7.0f}, + {8.0f, 9.0f, 10.0f, 11.0f}}); + + cout << "tensor: " << endl << tensor << endl; + => + tensor: + 0 1 2 3 + 4 5 6 7 + 8 9 10 11 + +Six 2x2 patches can be extracted and indexed using the following code: + + Eigen::Tensor<float, 3, DataLayout> patch; + Eigen::array<ptrdiff_t, 2> patch_dims; + patch_dims[0] = 2; + patch_dims[1] = 2; + patch = tensor.extract_patches(patch_dims); + for (int k = 0; k < 6; ++k) { + cout << "patch index: " << k << endl; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 2; ++j) { + if (DataLayout == ColMajor) { + cout << patch(i, j, k) << " "; + } else { + cout << patch(k, i, j) << " "; + } + } + cout << endl; + } + } + +This code results in the following output when the data layout is ColMajor: + + patch index: 0 + 0 1 + 4 5 + patch index: 1 + 4 5 + 8 9 + patch index: 2 + 1 2 + 5 6 + patch index: 3 + 5 6 + 9 10 + patch index: 4 + 2 3 + 6 7 + patch index: 5 + 6 7 + 10 11 + +This code results in the following output when the data layout is RowMajor: +(NOTE: the set of patches is the same as in ColMajor, but are indexed differently). + + patch index: 0 + 0 1 + 4 5 + patch index: 1 + 1 2 + 5 6 + patch index: 2 + 2 3 + 6 7 + patch index: 3 + 4 5 + 8 9 + patch index: 4 + 5 6 + 9 10 + patch index: 5 + 6 7 + 10 11 + +### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type) + +Returns a tensor of coefficient image patches extracted from the input tensor, +which is expected to have dimensions ordered as follows (depending on the data +layout of the input tensor, and the number of additional dimensions 'N'): + +*) ColMajor +1st dimension: channels (of size d) +2nd dimension: rows (of size r) +3rd dimension: columns (of size c) +4th-Nth dimension: time (for video) or batch (for bulk processing). + +*) RowMajor (reverse order of ColMajor) +1st-Nth dimension: time (for video) or batch (for bulk processing). +N+1'th dimension: columns (of size c) +N+2'th dimension: rows (of size r) +N+3'th dimension: channels (of size d) + +The returned tensor has one greater dimension than the input tensor, which is +used to index each patch. The patch index in the output tensor depends on the +data layout of the input tensor: the patch index is the 4'th dimension in +ColMajor layout, and the 4'th from the last dimension in RowMajor layout. + +For example, given the following input tensor with the following dimension +sizes: + *) depth: 2 + *) rows: 3 + *) columns: 5 + *) batch: 7 + + Tensor<float, 4> tensor(2,3,5,7); + Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); + +2x2 image patches can be extracted and indexed using the following code: + +*) 2D patch: ColMajor (patch indexed by second-to-last dimension) + + Tensor<float, 5> twod_patch; + twod_patch = tensor.extract_image_patches<2, 2>(); + // twod_patch.dimension(0) == 2 + // twod_patch.dimension(1) == 2 + // twod_patch.dimension(2) == 2 + // twod_patch.dimension(3) == 3*5 + // twod_patch.dimension(4) == 7 + +*) 2D patch: RowMajor (patch indexed by the second dimension) + + Tensor<float, 5, RowMajor> twod_patch_row_major; + twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>(); + // twod_patch_row_major.dimension(0) == 7 + // twod_patch_row_major.dimension(1) == 3*5 + // twod_patch_row_major.dimension(2) == 2 + // twod_patch_row_major.dimension(3) == 2 + // twod_patch_row_major.dimension(4) == 2 + +## Special Operations + +### <Operation> cast<T>() + +Returns a tensor of type T with the same dimensions as the original tensor. +The returned tensor contains the values of the original tensor converted to +type T. + + Eigen::Tensor<float, 2> a(2, 3); + Eigen::Tensor<int, 2> b = a.cast<int>(); + +This can be useful for example if you need to do element-wise division of +Tensors of integers. This is not currently supported by the Tensor library +but you can easily cast the tensors to floats to do the division: + + Eigen::Tensor<int, 2> a(2, 3); + a.setValues({{0, 1, 2}, {3, 4, 5}}); + Eigen::Tensor<int, 2> b = + (a.cast<float>() / a.constant(2).cast<float>()).cast<int>(); + cout << "a" << endl << a << endl << endl; + cout << "b" << endl << b << endl << endl; + => + a + 0 1 2 + 3 4 5 + + b + 0 0 1 + 1 2 2 + + +### <Operation> eval() + +TODO + + +## Representation of scalar values + +Scalar values are often represented by tensors of size 1 and rank 0.For example +Tensor<T, N>::maximum() currently returns a Tensor<T, 0>. Similarly, the inner +product of 2 1d tensors (through contractions) returns a 0d tensor. + +## Limitations + +* The number of tensor dimensions is currently limited to 250 when using a + compiler that supports cxx11. It is limited to only 5 for older compilers. +* The IndexList class requires a cxx11 compliant compiler. You can use an + array of indices instead if you don't have access to a modern compiler. +* On GPUs only floating point values are properly tested and optimized for. +* Complex and integer values are known to be broken on GPUs. If you try to use + them you'll most likely end up triggering a static assertion failure such as + EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) + + diff --git a/src/EigenUnsupported/CXX11/src/Tensor/Tensor.h b/src/EigenUnsupported/CXX11/src/Tensor/Tensor.h new file mode 100644 index 0000000..8cac2bb --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/Tensor.h @@ -0,0 +1,554 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_H +#define EIGEN_CXX11_TENSOR_TENSOR_H + +namespace Eigen { + +/** \class Tensor + * \ingroup CXX11_Tensor_Module + * + * \brief The tensor class. + * + * The %Tensor class is the work-horse for all \em dense tensors within Eigen. + * + * The %Tensor class encompasses only dynamic-size objects so far. + * + * The first two template parameters are required: + * \tparam Scalar_ Numeric type, e.g. float, double, int or `std::complex<float>`. + * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). + * \tparam NumIndices_ Number of indices (i.e. rank of the tensor) + * + * The remaining template parameters are optional -- in most cases you don't have to worry about them. + * \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either + * \b #AutoAlign or \b #DontAlign. + * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required + * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization. + * Support for such operations (i.e. adding two tensors etc.) is planned. + * + * You can access elements of tensors using normal subscripting: + * + * \code + * Eigen::Tensor<double, 4> t(10, 10, 10, 10); + * t(0, 1, 2, 3) = 42.0; + * \endcode + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN. + * + * <i><b>Some notes:</b></i> + * + * <dl> + * <dt><b>Relation to other parts of Eigen:</b></dt> + * <dd>The midterm development goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that + * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code + * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor + * class does not provide any of these features and is only available as a stand-alone class that just allows for + * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to + * change dramatically.</dd> + * </dl> + * + * \ref TopicStorageOrders + */ + +template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_> +class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > +{ + public: + typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self; + typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base; + typedef typename Eigen::internal::nested<Self>::type Nested; + typedef typename internal::traits<Self>::StorageKind StorageKind; + typedef typename internal::traits<Self>::Index Index; + typedef Scalar_ Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename Base::CoeffReturnType CoeffReturnType; + + enum { + IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign), + Layout = Options_ & RowMajor ? RowMajor : ColMajor, + CoordAccess = true, + RawAccess = true + }; + + static const int Options = Options_; + static const int NumIndices = NumIndices_; + typedef DSizes<Index, NumIndices_> Dimensions; + + protected: + TensorStorage<Scalar, Dimensions, Options> m_storage; + +#ifdef EIGEN_HAS_SFINAE + template<typename CustomIndices> + struct isOfNormalIndex{ + static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value; + static const bool is_int = NumTraits<CustomIndices>::IsInteger; + static const bool value = is_array | is_int; + }; +#endif + + public: + // Metadata + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } + + // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + // work, because that uses base().coeffRef() - and we don't yet + // implement a similar class hierarchy + inline Self& base() { return *this; } + inline const Self& base() const { return *this; } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + } +#endif + + // normal indices + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const + { + eigen_internal_assert(checkIndexRange(indices)); + return m_storage.data()[linearizedIndex(indices)]; + } + + // custom indices +#ifdef EIGEN_HAS_SFINAE + template<typename CustomIndices, + EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) + > + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const + { + return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return m_storage.data()[0]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const + { + eigen_internal_assert(index >= 0 && index < size()); + return m_storage.data()[index]; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + } +#endif + + // normal indices + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) + { + eigen_internal_assert(checkIndexRange(indices)); + return m_storage.data()[linearizedIndex(indices)]; + } + + // custom indices +#ifdef EIGEN_HAS_SFINAE + template<typename CustomIndices, + EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) + > + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices) + { + return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return m_storage.data()[0]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) + { + eigen_internal_assert(index >= 0 && index < size()); + return m_storage.data()[index]; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const + { + return coeff(array<Index, 2>(i0, i1)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const + { + return coeff(array<Index, 3>(i0, i1, i2)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const + { + return coeff(array<Index, 4>(i0, i1, i2, i3)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const + { + return coeff(array<Index, 5>(i0, i1, i2, i3, i4)); + } +#endif + + // custom indices +#ifdef EIGEN_HAS_SFINAE + template<typename CustomIndices, + EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) + > + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const + { + return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); + } +#endif + + // normal indices + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const + { + return coeff(indices); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const + { + eigen_internal_assert(index >= 0 && index < size()); + return coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeff(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const + { + // The bracket operator is only for vectors, use the parenthesis operator instead. + EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeff(index); + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) + { + return coeffRef(array<Index, 2>(i0, i1)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) + { + return coeffRef(array<Index, 3>(i0, i1, i2)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) + { + return coeffRef(array<Index, 4>(i0, i1, i2, i3)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) + { + return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4)); + } +#endif + + // normal indices + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) + { + return coeffRef(indices); + } + + // custom indices +#ifdef EIGEN_HAS_SFINAE + template<typename CustomIndices, + EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) + > + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices) + { + return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) + { + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeffRef(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index) + { + // The bracket operator is only for vectors, use the parenthesis operator instead + EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeffRef(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor() + : m_storage() + { + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor(const Self& other) + : m_storage(other.m_storage) + { + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions) + : m_storage(firstDimension, otherDimensions...) + { + // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } +#else + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1) + : m_storage(dim1, array<Index, 1>(dim1)) + { + EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2) + : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2)) + { + EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3) + : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3)) + { + EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4) + : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4)) + { + EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) + : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5)) + { + EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + } +#endif + + /** Normal Dimension */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions) + : m_storage(internal::array_prod(dimensions), dimensions) + { + EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + } + + template<typename OtherDerived> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other) + { + typedef TensorAssignOp<Tensor, const OtherDerived> Assign; + Assign assign(*this, other.derived()); + resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + } + + template<typename OtherDerived> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other) + { + typedef TensorAssignOp<Tensor, const OtherDerived> Assign; + Assign assign(*this, other.derived()); + resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + } + + #if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor(Self&& other) + : m_storage(std::move(other.m_storage)) + { + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor& operator=(Self&& other) + { + m_storage = std::move(other.m_storage); + return *this; + } + #endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other) + { + typedef TensorAssignOp<Tensor, const Tensor> Assign; + Assign assign(*this, other); + resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + return *this; + } + template<typename OtherDerived> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other) + { + typedef TensorAssignOp<Tensor, const OtherDerived> Assign; + Assign assign(*this, other); + resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + return *this; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + void resize(Index firstDimension, IndexTypes... otherDimensions) + { + // The number of dimensions used to resize a tensor must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}}); + } +#endif + + /** Normal Dimension */ + EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions) + { + int i; + Index size = Index(1); + for (i = 0; i < NumIndices; i++) { + internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]); + size *= dimensions[i]; + } + #ifdef EIGEN_INITIALIZE_COEFFS + bool size_changed = size != this->size(); + m_storage.resize(size, dimensions); + if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + #else + m_storage.resize(size, dimensions); + #endif + } + + // Why this overload, DSizes is derived from array ??? // + EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) { + array<Index, NumIndices> dims; + for (int i = 0; i < NumIndices; ++i) { + dims[i] = dimensions[i]; + } + resize(dims); + } + + EIGEN_DEVICE_FUNC + void resize() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + // Nothing to do: rank 0 tensors have fixed size + } + +#ifdef EIGEN_HAS_INDEX_LIST + template <typename FirstType, typename... OtherTypes> + EIGEN_DEVICE_FUNC + void resize(const Eigen::IndexList<FirstType, OtherTypes...>& dimensions) { + array<Index, NumIndices> dims; + for (int i = 0; i < NumIndices; ++i) { + dims[i] = static_cast<Index>(dimensions[i]); + } + resize(dims); + } +#endif + + /** Custom Dimension */ +#ifdef EIGEN_HAS_SFINAE + template<typename CustomDimension, + EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) ) + > + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions) + { + resize(internal::customIndices2Array<Index,NumIndices>(dimensions)); + } +#endif + +#ifndef EIGEN_EMULATE_CXX11_META_H + template <typename std::ptrdiff_t... Indices> + EIGEN_DEVICE_FUNC + void resize(const Sizes<Indices...>& dimensions) { + array<Index, NumIndices> dims; + for (int i = 0; i < NumIndices; ++i) { + dims[i] = static_cast<Index>(dimensions[i]); + } + resize(dims); + } +#else + template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> + EIGEN_DEVICE_FUNC + void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) { + array<Index, NumIndices> dims; + for (int i = 0; i < NumIndices; ++i) { + dims[i] = static_cast<Index>(dimensions[i]); + } + resize(dims); + } +#endif + + protected: + + bool checkIndexRange(const array<Index, NumIndices>& indices) const + { + using internal::array_apply_and_reduce; + using internal::array_zip_and_reduce; + using internal::greater_equal_zero_op; + using internal::logical_and_op; + using internal::lesser_op; + + return + // check whether the indices are all >= 0 + array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) && + // check whether the indices fit in the dimensions + array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const + { + if (Options&RowMajor) { + return m_storage.dimensions().IndexOfRowMajor(indices); + } else { + return m_storage.dimensions().IndexOfColMajor(indices); + } + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorArgMax.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorArgMax.h new file mode 100644 index 0000000..8b8fb92 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorArgMax.h @@ -0,0 +1,329 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> +// Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H +#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H + +namespace Eigen { +namespace internal { + +/** \class TensorIndexTuple + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor + Index Tuple class. + * + * + */ +template<typename XprType> +struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType> +{ + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef Tuple<Index, typename XprTraits::Scalar> Scalar; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; +}; + +template<typename XprType> +struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense> +{ + typedef const TensorIndexTupleOp<XprType>EIGEN_DEVICE_REF type; +}; + +template<typename XprType> +struct nested<TensorIndexTupleOp<XprType>, 1, + typename eval<TensorIndexTupleOp<XprType> >::type> +{ + typedef TensorIndexTupleOp<XprType> type; +}; + +} // end namespace internal + +template<typename XprType> +class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested; + typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index; + typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr) + : m_xpr(expr) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; +}; + +// Eval as rvalue +template<typename ArgType, typename Device> +struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> +{ + typedef TensorIndexTupleOp<ArgType> XprType; + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + static const int NumDims = internal::array_size<Dimensions>::value; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, + PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device) { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_impl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return CoeffReturnType(index, m_impl.coeff(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + TensorEvaluator<ArgType, Device> m_impl; +}; + +namespace internal { + +/** \class TensorTupleIndex + * \ingroup CXX11_Tensor_Module + * + * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>. + * + */ +template<typename ReduceOp, typename Dims, typename XprType> +struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType> +{ + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef Index Scalar; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; + static const int Layout = XprTraits::Layout; +}; + +template<typename ReduceOp, typename Dims, typename XprType> +struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense> +{ + typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename ReduceOp, typename Dims, typename XprType> +struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1, + typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type> +{ + typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type; +}; + +} // end namespace internal + +template<typename ReduceOp, typename Dims, typename XprType> +class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested; + typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index; + typedef Index CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr, + const ReduceOp& reduce_op, + const Index return_dim, + const Dims& reduce_dims) + : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_DEVICE_FUNC + const ReduceOp& reduce_op() const { return m_reduce_op; } + + EIGEN_DEVICE_FUNC + const Dims& reduce_dims() const { return m_reduce_dims; } + + EIGEN_DEVICE_FUNC + Index return_dim() const { return m_return_dim; } + + protected: + typename XprType::Nested m_xpr; + const ReduceOp m_reduce_op; + const Index m_return_dim; + const Dims m_reduce_dims; +}; + +// Eval as rvalue +template<typename ReduceOp, typename Dims, typename ArgType, typename Device> +struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device> +{ + typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType; + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType; + typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions; + typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions; + static const int NumDims = internal::array_size<InputDimensions>::value; + typedef array<Index, NumDims> StrideDims; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + typedef StorageMemory<TupleType, Device> TupleStorageMem; + + enum { + IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, + PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_orig_impl(op.expression(), device), + m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device), + m_return_dim(op.return_dim()) + { + gen_strides(m_orig_impl.dimensions(), m_strides); + if (Layout == static_cast<int>(ColMajor)) { + const Index total_size = internal::array_prod(m_orig_impl.dimensions()); + m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size; + } else { + const Index total_size = internal::array_prod(m_orig_impl.dimensions()); + m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size; + } + // If m_return_dim is not a valid index, returns 1 or this can crash on Windows. + m_stride_div = ((m_return_dim >= 0) && + (m_return_dim < static_cast<Index>(m_strides.size()))) + ? m_strides[m_return_dim] : 1; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_impl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + const TupleType v = m_impl.coeff(index); + return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div; + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } +#ifdef EIGEN_USE_SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + m_orig_impl.bind(cgh); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double compute_cost = 1.0 + + (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>())); + return m_orig_impl.costPerCoeff(vectorized) + + m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost); + } + + private: + EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) { + if (m_return_dim < 0) { + return; // Won't be using the strides. + } + eigen_assert(m_return_dim < NumDims && + "Asking to convert index to a dimension outside of the rank"); + + // Calculate m_stride_div and m_stride_mod, which are used to + // calculate the value of an index w.r.t. the m_return_dim. + if (Layout == static_cast<int>(ColMajor)) { + strides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + strides[i] = strides[i-1] * dims[i-1]; + } + } else { + strides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + strides[i] = strides[i+1] * dims[i+1]; + } + } + } + + protected: + TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl; + TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl; + const Index m_return_dim; + StrideDims m_strides; + Index m_stride_mod; + Index m_stride_div; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorAssign.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorAssign.h new file mode 100644 index 0000000..e5811d6 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorAssign.h @@ -0,0 +1,247 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H +#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H + +namespace Eigen { + +/** \class TensorAssign + * \ingroup CXX11_Tensor_Module + * + * \brief The tensor assignment class. + * + * This class is represents the assignment of the values resulting from the evaluation of + * the rhs expression to the memory locations denoted by the lhs expression. + */ +namespace internal { +template<typename LhsXprType, typename RhsXprType> +struct traits<TensorAssignOp<LhsXprType, RhsXprType> > +{ + typedef typename LhsXprType::Scalar Scalar; + typedef typename traits<LhsXprType>::StorageKind StorageKind; + typedef typename promote_index_type<typename traits<LhsXprType>::Index, + typename traits<RhsXprType>::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions; + static const int Layout = internal::traits<LhsXprType>::Layout; + typedef typename traits<LhsXprType>::PointerType PointerType; + + enum { + Flags = 0 + }; +}; + +template<typename LhsXprType, typename RhsXprType> +struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense> +{ + typedef const TensorAssignOp<LhsXprType, RhsXprType>& type; +}; + +template<typename LhsXprType, typename RhsXprType> +struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type> +{ + typedef TensorAssignOp<LhsXprType, RhsXprType> type; +}; + +} // end namespace internal + + + +template<typename LhsXprType, typename RhsXprType> +class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> > +{ + public: + typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename LhsXprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested; + typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index; + + static const int NumDims = Eigen::internal::traits<TensorAssignOp>::NumDimensions; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs) + : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {} + + /** \returns the nested expressions */ + EIGEN_DEVICE_FUNC + typename internal::remove_all<typename LhsXprType::Nested>::type& + lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename RhsXprType::Nested>::type& + rhsExpression() const { return m_rhs_xpr; } + + protected: + typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr; + const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr; +}; + + +template<typename LeftArgType, typename RightArgType, typename Device> +struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device> +{ + typedef TensorAssignOp<LeftArgType, RightArgType> XprType; + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + static const int NumDims = XprType::NumDims; + + enum { + IsAligned = int(TensorEvaluator<LeftArgType, Device>::IsAligned) & + int(TensorEvaluator<RightArgType, Device>::IsAligned), + PacketAccess = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) & + int(TensorEvaluator<RightArgType, Device>::PacketAccess), + BlockAccess = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) & + int(TensorEvaluator<RightArgType, Device>::BlockAccess), + PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) | + int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess), + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock + RightTensorBlock; + //===--------------------------------------------------------------------===// + + TensorEvaluator(const XprType& op, const Device& device) : + m_leftImpl(op.lhsExpression(), device), + m_rightImpl(op.rhsExpression(), device) + { + EIGEN_STATIC_ASSERT( + (static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == + static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), + YOU_MADE_A_PROGRAMMING_MISTAKE); + } + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const + { + // The dimensions of the lhs and the rhs tensors should be equal to prevent + // overflows and ensure the result is fully initialized. + // TODO: use left impl instead if right impl dimensions are known at compile time. + return m_rightImpl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); + m_leftImpl.evalSubExprsIfNeeded(NULL); + // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non + // null value), attempt to evaluate the rhs expression in place. Returns true iff in place + // evaluation isn't supported and the caller still needs to manually assign the values generated + // by the rhs to the lhs. + return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data()); + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) { + m_rightImpl.evalSubExprsIfNeededAsync( + m_leftImpl.data(), [done](bool need_assign) { done(need_assign); }); + }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_leftImpl.cleanup(); + m_rightImpl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) { + m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) { + + const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned; + const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned; + m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i)); + } + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_leftImpl.coeff(index); + } + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const + { + return m_leftImpl.template packet<LoadMode>(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + // We assume that evalPacket or evalScalar is called to perform the + // assignment and account for the cost of the write here, but reduce left + // cost by one load because we are using m_leftImpl.coeffRef. + TensorOpCost left = m_leftImpl.costPerCoeff(vectorized); + return m_rightImpl.costPerCoeff(vectorized) + + TensorOpCost( + numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)), + left.bytes_stored(), left.compute_cycles()) + + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return internal::TensorBlockResourceRequirements::merge( + m_leftImpl.getResourceRequirements(), + m_rightImpl.getResourceRequirements()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock( + TensorBlockDesc& desc, TensorBlockScratch& scratch) { + if (TensorEvaluator<LeftArgType, Device>::RawAccess && + m_leftImpl.data() != NULL) { + // If destination has raw data access, we pass it as a potential + // destination for a block descriptor evaluation. + desc.template AddDestinationBuffer<Layout>( + /*dst_base=*/m_leftImpl.data() + desc.offset(), + /*dst_strides=*/internal::strides<Layout>(m_leftImpl.dimensions())); + } + + RightTensorBlock block = m_rightImpl.block(desc, scratch, /*root_of_expr_ast=*/true); + // If block was evaluated into a destination, there is no need to do assignment. + if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) { + m_leftImpl.writeBlock(desc, block); + } + block.cleanup(); + } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_leftImpl.bind(cgh); + m_rightImpl.bind(cgh); + } +#endif + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_leftImpl.data(); } + + private: + TensorEvaluator<LeftArgType, Device> m_leftImpl; + TensorEvaluator<RightArgType, Device> m_rightImpl; +}; + +} + + +#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorBase.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorBase.h new file mode 100644 index 0000000..35b6458 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorBase.h @@ -0,0 +1,1176 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H +#define EIGEN_CXX11_TENSOR_TENSOR_BASE_H + +// clang-format off + +namespace Eigen { + +/** \class TensorBase + * \ingroup CXX11_Tensor_Module + * + * \brief The tensor base class. + * + * This class is the common parent of the Tensor and TensorMap class, thus + * making it possible to use either class interchangeably in expressions. + */ +#ifndef EIGEN_PARSED_BY_DOXYGEN +// FIXME Doxygen does not like the inheritance with different template parameters +// Since there is no doxygen documentation inside, we disable it for now +template<typename Derived> +class TensorBase<Derived, ReadOnlyAccessors> +{ + public: + typedef internal::traits<Derived> DerivedTraits; + typedef typename DerivedTraits::Scalar Scalar; + typedef typename DerivedTraits::Index Index; + typedef typename internal::remove_const<Scalar>::type CoeffReturnType; + static const int NumDimensions = DerivedTraits::NumDimensions; + + // Generic nullary operation support. + template <typename CustomNullaryOp> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<CustomNullaryOp, const Derived> + nullaryExpr(const CustomNullaryOp& func) const { + return TensorCwiseNullaryOp<CustomNullaryOp, const Derived>(derived(), func); + } + + // Coefficient-wise nullary operators + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> + constant(const Scalar& value) const { + return nullaryExpr(internal::scalar_constant_op<Scalar>(value)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived> + random() const { + return nullaryExpr(internal::UniformRandomGenerator<Scalar>()); + } + template <typename RandomGenerator> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived> + random(const RandomGenerator& gen = RandomGenerator()) const { + return nullaryExpr(gen); + } + + // Tensor generation + template <typename Generator> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived> + generate(const Generator& generator) const { + return TensorGeneratorOp<Generator, const Derived>(derived(), generator); + } + + // Generic unary operation support. + template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived> + unaryExpr(const CustomUnaryOp& func) const { + return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func); + } + + // Coefficient-wise unary operators + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived> + operator-() const { + return unaryExpr(internal::scalar_opposite_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> + sqrt() const { + return unaryExpr(internal::scalar_sqrt_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived> + sign() const { + return unaryExpr(internal::scalar_sign_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_rsqrt_op<Scalar>, const Derived> + rsqrt() const { + return unaryExpr(internal::scalar_rsqrt_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived> + square() const { + return unaryExpr(internal::scalar_square_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cube_op<Scalar>, const Derived> + cube() const { + return unaryExpr(internal::scalar_cube_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> + inverse() const { + return unaryExpr(internal::scalar_inverse_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_tanh_op<Scalar>, const Derived> + tanh() const { + return unaryExpr(internal::scalar_tanh_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived> + lgamma() const { + return unaryExpr(internal::scalar_lgamma_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived> + digamma() const { + return unaryExpr(internal::scalar_digamma_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_i0_op<Scalar>, const Derived> + bessel_i0() const { + return unaryExpr(internal::scalar_bessel_i0_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_i0e_op<Scalar>, const Derived> + bessel_i0e() const { + return unaryExpr(internal::scalar_bessel_i0e_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_i1_op<Scalar>, const Derived> + bessel_i1() const { + return unaryExpr(internal::scalar_bessel_i1_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_i1e_op<Scalar>, const Derived> + bessel_i1e() const { + return unaryExpr(internal::scalar_bessel_i1e_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_j0_op<Scalar>, const Derived> + bessel_j0() const { + return unaryExpr(internal::scalar_bessel_j0_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_y0_op<Scalar>, const Derived> + bessel_y0() const { + return unaryExpr(internal::scalar_bessel_y0_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_j1_op<Scalar>, const Derived> + bessel_j1() const { + return unaryExpr(internal::scalar_bessel_j1_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_y1_op<Scalar>, const Derived> + bessel_y1() const { + return unaryExpr(internal::scalar_bessel_y1_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_k0_op<Scalar>, const Derived> + bessel_k0() const { + return unaryExpr(internal::scalar_bessel_k0_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_k0e_op<Scalar>, const Derived> + bessel_k0e() const { + return unaryExpr(internal::scalar_bessel_k0e_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_k1_op<Scalar>, const Derived> + bessel_k1() const { + return unaryExpr(internal::scalar_bessel_k1_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_bessel_k1e_op<Scalar>, const Derived> + bessel_k1e() const { + return unaryExpr(internal::scalar_bessel_k1e_op<Scalar>()); + } + + // igamma(a = this, x = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived> + igamma(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>()); + } + + // igamma_der_a(a = this, x = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_igamma_der_a_op<Scalar>, const Derived, const OtherDerived> + igamma_der_a(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_igamma_der_a_op<Scalar>()); + } + + // gamma_sample_der_alpha(alpha = this, sample = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_gamma_sample_der_alpha_op<Scalar>, const Derived, const OtherDerived> + gamma_sample_der_alpha(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_gamma_sample_der_alpha_op<Scalar>()); + } + + // igammac(a = this, x = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived> + igammac(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>()); + } + + // zeta(x = this, q = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const OtherDerived> + zeta(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_zeta_op<Scalar>()); + } + + // polygamma(n = this, x = other) + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const Derived, const OtherDerived> + polygamma(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_polygamma_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived> + erf() const { + return unaryExpr(internal::scalar_erf_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived> + erfc() const { + return unaryExpr(internal::scalar_erfc_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_ndtri_op<Scalar>, const Derived> + ndtri() const { + return unaryExpr(internal::scalar_ndtri_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_logistic_op<Scalar>, const Derived> + sigmoid() const { + return unaryExpr(internal::scalar_logistic_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived> + exp() const { + return unaryExpr(internal::scalar_exp_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_expm1_op<Scalar>, const Derived> + expm1() const { + return unaryExpr(internal::scalar_expm1_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived> + log() const { + return unaryExpr(internal::scalar_log_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log1p_op<Scalar>, const Derived> + log1p() const { + return unaryExpr(internal::scalar_log1p_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log2_op<Scalar>, const Derived> + log2() const { + return unaryExpr(internal::scalar_log2_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> + abs() const { + return unaryExpr(internal::scalar_abs_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_clamp_op<Scalar>, const Derived> + clip(Scalar min, Scalar max) const { + return unaryExpr(internal::scalar_clamp_op<Scalar>(min, max)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const typename internal::conditional<NumTraits<CoeffReturnType>::IsComplex, + TensorCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>, + Derived>::type + conjugate() const { + return choose(Cond<NumTraits<CoeffReturnType>::IsComplex>(), unaryExpr(internal::scalar_conjugate_op<Scalar>()), derived()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >, const Derived> + pow(Scalar exponent) const { + return unaryExpr(internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >(exponent)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived> + real() const { + return unaryExpr(internal::scalar_real_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> + imag() const { + return unaryExpr(internal::scalar_imag_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >, const Derived> + operator+ (Scalar rhs) const { + return unaryExpr(internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >(rhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE friend + const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_sum_op<Scalar> >, const Derived> + operator+ (Scalar lhs, const Derived& rhs) { + return rhs.unaryExpr(internal::bind1st_op<internal::scalar_sum_op<Scalar> >(lhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >, const Derived> + operator- (Scalar rhs) const { + EIGEN_STATIC_ASSERT((NumTraits<Scalar>::IsSigned || internal::is_same<Scalar, const std::complex<float> >::value), YOU_MADE_A_PROGRAMMING_MISTAKE); + return unaryExpr(internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >(rhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE friend + const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_difference_op<Scalar> >, const Derived> + operator- (Scalar lhs, const Derived& rhs) { + return rhs.unaryExpr(internal::bind1st_op<internal::scalar_difference_op<Scalar> >(lhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >, const Derived> + operator* (Scalar rhs) const { + return unaryExpr(internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >(rhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE friend + const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_product_op<Scalar> >, const Derived> + operator* (Scalar lhs, const Derived& rhs) { + return rhs.unaryExpr(internal::bind1st_op<internal::scalar_product_op<Scalar> >(lhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >, const Derived> + operator/ (Scalar rhs) const { + return unaryExpr(internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >(rhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE friend + const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_quotient_op<Scalar> >, const Derived> + operator/ (Scalar lhs, const Derived& rhs) { + return rhs.unaryExpr(internal::bind1st_op<internal::scalar_quotient_op<Scalar> >(lhs)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_mod_op<Scalar>, const Derived> + operator% (Scalar rhs) const { + EIGEN_STATIC_ASSERT(NumTraits<Scalar>::IsInteger, YOU_MADE_A_PROGRAMMING_MISTAKE_TRY_MOD); + return unaryExpr(internal::scalar_mod_op<Scalar>(rhs)); + } + + template <int NanPropagation=PropagateFast> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar,Scalar,NanPropagation>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + cwiseMax(Scalar threshold) const { + return cwiseMax<NanPropagation>(constant(threshold)); + } + + template <int NanPropagation=PropagateFast> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar,Scalar,NanPropagation>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + cwiseMin(Scalar threshold) const { + return cwiseMin<NanPropagation>(constant(threshold)); + } + + template<typename NewType> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const typename internal::conditional<internal::is_same<NewType, CoeffReturnType>::value, + Derived, + TensorConversionOp<NewType, const Derived> >::type + cast() const { + return choose(Cond<internal::is_same<NewType, CoeffReturnType>::value>(), derived(), TensorConversionOp<NewType, const Derived>(derived())); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_round_op<Scalar>, const Derived> + round() const { + return unaryExpr(internal::scalar_round_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_rint_op<Scalar>, const Derived> + rint() const { + return unaryExpr(internal::scalar_rint_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_ceil_op<Scalar>, const Derived> + ceil() const { + return unaryExpr(internal::scalar_ceil_op<Scalar>()); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_floor_op<Scalar>, const Derived> + floor() const { + return unaryExpr(internal::scalar_floor_op<Scalar>()); + } + + // Generic binary operation support. + template <typename CustomBinaryOp, typename OtherDerived> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> + binaryExpr(const OtherDerived& other, const CustomBinaryOp& func) const { + return TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other, func); + } + + // Coefficient-wise binary operators. + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived> + operator+(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_sum_op<Scalar>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived> + operator-(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_difference_op<Scalar>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived> + operator*(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_product_op<Scalar>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> + operator/(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_quotient_op<Scalar>()); + } + + template<int NaNPropagation=PropagateFast, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar,Scalar, NaNPropagation>, const Derived, const OtherDerived> + cwiseMax(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_max_op<Scalar,Scalar, NaNPropagation>()); + } + + template<int NaNPropagation=PropagateFast, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar,Scalar, NaNPropagation>, const Derived, const OtherDerived> + cwiseMin(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_min_op<Scalar,Scalar, NaNPropagation>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> + operator&&(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_boolean_and_op()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> + operator||(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_boolean_or_op()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived> + operator^(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_boolean_xor_op()); + } + + // Comparisons and tests. + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const OtherDerived> + operator<(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>()); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const OtherDerived> + operator<=(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>()); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const OtherDerived> + operator>(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>()); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const OtherDerived> + operator>=(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const OtherDerived> + operator==(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>()); + } + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived> + operator!=(const OtherDerived& other) const { + return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>()); + } + + // comparisons and tests for Scalars + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator<(Scalar threshold) const { + return operator<(constant(threshold)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator<=(Scalar threshold) const { + return operator<=(constant(threshold)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator>(Scalar threshold) const { + return operator>(constant(threshold)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator>=(Scalar threshold) const { + return operator>=(constant(threshold)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator==(Scalar threshold) const { + return operator==(constant(threshold)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > + operator!=(Scalar threshold) const { + return operator!=(constant(threshold)); + } + + // Checks + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isnan_op<Scalar>, const Derived> + (isnan)() const { + return unaryExpr(internal::scalar_isnan_op<Scalar>()); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isinf_op<Scalar>, const Derived> + (isinf)() const { + return unaryExpr(internal::scalar_isinf_op<Scalar>()); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isfinite_op<Scalar>, const Derived> + (isfinite)() const { + return unaryExpr(internal::scalar_isfinite_op<Scalar>()); + } + + // Coefficient-wise ternary operators. + template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived> + select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const { + return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived()); + } + + // Contractions. + typedef Eigen::IndexPair<Index> DimensionPair; + + template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel> + contract(const OtherDerived& other, const Dimensions& dims) const { + return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel>(derived(), other.derived(), dims); + } + + template<typename OtherDerived, typename Dimensions, typename OutputKernel> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel> + contract(const OtherDerived& other, const Dimensions& dims, const OutputKernel& output_kernel) const { + return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel>(derived(), other.derived(), dims, output_kernel); + } + + // Convolutions. + template<typename KernelDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived> + convolve(const KernelDerived& kernel, const Dimensions& dims) const { + return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims); + } + + // Fourier transforms + template <int FFTDataType, int FFTDirection, typename FFT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection> + fft(const FFT& dims) const { + return TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>(derived(), dims); + } + + // Scan. + typedef TensorScanOp<internal::SumReducer<CoeffReturnType>, const Derived> TensorScanSumOp; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorScanSumOp + cumsum(const Index& axis, bool exclusive = false) const { + return TensorScanSumOp(derived(), axis, exclusive); + } + + typedef TensorScanOp<internal::ProdReducer<CoeffReturnType>, const Derived> TensorScanProdOp; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorScanProdOp + cumprod(const Index& axis, bool exclusive = false) const { + return TensorScanProdOp(derived(), axis, exclusive); + } + + template <typename Reducer> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorScanOp<Reducer, const Derived> + scan(const Index& axis, const Reducer& reducer, bool exclusive = false) const { + return TensorScanOp<Reducer, const Derived>(derived(), axis, exclusive, reducer); + } + + // Reductions. + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived> + sum(const Dims& dims) const { + return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::SumReducer<CoeffReturnType>()); + } + + const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> + sum() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::SumReducer<CoeffReturnType>()); + } + + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived> + mean(const Dims& dims) const { + return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MeanReducer<CoeffReturnType>()); + } + + const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> + mean() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MeanReducer<CoeffReturnType>()); + } + + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived> + prod(const Dims& dims) const { + return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::ProdReducer<CoeffReturnType>()); + } + + const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived> + prod() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::ProdReducer<CoeffReturnType>()); + } + + template <typename Dims,int NanPropagation=PropagateFast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::MaxReducer<CoeffReturnType,NanPropagation>, const Dims, const Derived> + maximum(const Dims& dims) const { + return TensorReductionOp<internal::MaxReducer<CoeffReturnType,NanPropagation>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<CoeffReturnType,NanPropagation>()); + } + + template <int NanPropagation=PropagateFast> + const TensorReductionOp<internal::MaxReducer<CoeffReturnType,NanPropagation>, const DimensionList<Index, NumDimensions>, const Derived> + maximum() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorReductionOp<internal::MaxReducer<CoeffReturnType,NanPropagation>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MaxReducer<CoeffReturnType,NanPropagation>()); + } + + template <typename Dims,int NanPropagation=PropagateFast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::MinReducer<CoeffReturnType,NanPropagation>, const Dims, const Derived> + minimum(const Dims& dims) const { + return TensorReductionOp<internal::MinReducer<CoeffReturnType,NanPropagation>, const Dims, const Derived>(derived(), dims, internal::MinReducer<CoeffReturnType,NanPropagation>()); + } + + template <int NanPropagation=PropagateFast> + const TensorReductionOp<internal::MinReducer<CoeffReturnType,NanPropagation>, const DimensionList<Index, NumDimensions>, const Derived> + minimum() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorReductionOp<internal::MinReducer<CoeffReturnType,NanPropagation>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType,NanPropagation>()); + } + + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::AndReducer, const Dims, const typename internal::conditional<internal::is_same<bool, CoeffReturnType>::value, Derived, TensorConversionOp<bool, const Derived> >::type > + all(const Dims& dims) const { + return cast<bool>().reduce(dims, internal::AndReducer()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::AndReducer, const DimensionList<Index, NumDimensions>, const typename internal::conditional<internal::is_same<bool, CoeffReturnType>::value, Derived, TensorConversionOp<bool, const Derived> >::type > + all() const { + DimensionList<Index, NumDimensions> in_dims; + return cast<bool>().reduce(in_dims, internal::AndReducer()); + } + + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::OrReducer, const Dims, const typename internal::conditional<internal::is_same<bool, CoeffReturnType>::value, Derived, TensorConversionOp<bool, const Derived> >::type > + any(const Dims& dims) const { + return cast<bool>().reduce(dims, internal::OrReducer()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<internal::OrReducer, const DimensionList<Index, NumDimensions>, const typename internal::conditional<internal::is_same<bool, CoeffReturnType>::value, Derived, TensorConversionOp<bool, const Derived> >::type > + any() const { + DimensionList<Index, NumDimensions> in_dims; + return cast<bool>().reduce(in_dims, internal::OrReducer()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTupleReducerOp< + internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, NumDimensions>, const Derived> + argmax() const { + array<Index, NumDimensions> in_dims; + for (Index d = 0; d < NumDimensions; ++d) in_dims[d] = d; + return TensorTupleReducerOp< + internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, NumDimensions>, + const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTupleReducerOp< + internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, NumDimensions>, const Derived> + argmin() const { + array<Index, NumDimensions> in_dims; + for (Index d = 0; d < NumDimensions; ++d) in_dims[d] = d; + return TensorTupleReducerOp< + internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, NumDimensions>, + const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTupleReducerOp< + internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, 1>, const Derived> + argmax(const Index return_dim) const { + array<Index, 1> in_dims; + in_dims[0] = return_dim; + return TensorTupleReducerOp< + internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, 1>, + const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTupleReducerOp< + internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, 1>, const Derived> + argmin(const Index return_dim) const { + array<Index, 1> in_dims; + in_dims[0] = return_dim; + return TensorTupleReducerOp< + internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >, + const array<Index, 1>, + const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims); + } + + template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp<Reducer, const Dims, const Derived> + reduce(const Dims& dims, const Reducer& reducer) const { + return TensorReductionOp<Reducer, const Dims, const Derived>(derived(), dims, reducer); + } + + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTraceOp<const Dims, const Derived> + trace(const Dims& dims) const { + return TensorTraceOp<const Dims, const Derived>(derived(), dims); + } + + const TensorTraceOp<const DimensionList<Index, NumDimensions>, const Derived> + trace() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorTraceOp<const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims); + } + + template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorBroadcastingOp<const Broadcast, const Derived> + broadcast(const Broadcast& bcast) const { + return TensorBroadcastingOp<const Broadcast, const Derived>(derived(), bcast); + } + + template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorConcatenationOp<Axis, const Derived, const OtherDerived> + concatenate(const OtherDerived& other, Axis axis) const { + return TensorConcatenationOp<Axis, const Derived, const OtherDerived>(derived(), other.derived(), axis); + } + + template <typename PatchDims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorPatchOp<const PatchDims, const Derived> + extract_patches(const PatchDims& patch_dims) const { + return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorImagePatchOp<Dynamic, Dynamic, const Derived> + extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1, + const Index row_stride = 1, const Index col_stride = 1, + const Index in_row_stride = 1, const Index in_col_stride = 1, + const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const { + return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride, + in_row_stride, in_col_stride, 1, 1, padding_type, padding_value); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorImagePatchOp<Dynamic, Dynamic, const Derived> + extract_image_patches(const Index patch_rows, const Index patch_cols, + const Index row_stride, const Index col_stride, + const Index in_row_stride, const Index in_col_stride, + const Index row_inflate_stride, const Index col_inflate_stride, + const Index padding_top, const Index padding_bottom, + const Index padding_left,const Index padding_right, + const Scalar padding_value) const { + return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride, + in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride, + padding_top, padding_bottom, padding_left, padding_right, padding_value); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived> + extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols, + const Index plane_stride = 1, const Index row_stride = 1, const Index col_stride = 1, + const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const { + return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, 1, 1, 1, padding_type, padding_value); + } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived> + extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols, + const Index plane_stride, const Index row_stride, const Index col_stride, + const Index plane_inflate_stride, const Index row_inflate_stride, const Index col_inflate_stride, + const Index padding_top_z, const Index padding_bottom_z, + const Index padding_top, const Index padding_bottom, + const Index padding_left, const Index padding_right, const Scalar padding_value = Scalar(0)) const { + return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, plane_inflate_stride, row_inflate_stride, col_inflate_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right, padding_value); + } + + // Morphing operators. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorLayoutSwapOp<const Derived> + swap_layout() const { + return TensorLayoutSwapOp<const Derived>(derived()); + } + template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReshapingOp<const NewDimensions, const Derived> + reshape(const NewDimensions& newDimensions) const { + return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions); + } + template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorSlicingOp<const StartIndices, const Sizes, const Derived> + slice(const StartIndices& startIndices, const Sizes& sizes) const { + return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes); + } + template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived> + stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const { + return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, + const Derived>(derived(), startIndices, stopIndices, strides); + } + template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorChippingOp<DimId, const Derived> + chip(const Index offset) const { + return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorChippingOp<Dynamic, const Derived> + chip(const Index offset, const Index dim) const { + return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim); + } + template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReverseOp<const ReverseDimensions, const Derived> + reverse(const ReverseDimensions& rev) const { + return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev); + } + template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorPaddingOp<const PaddingDimensions, const Derived> + pad(const PaddingDimensions& padding) const { + return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, internal::scalar_cast_op<int, Scalar>()(0)); + } + template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorPaddingOp<const PaddingDimensions, const Derived> + pad(const PaddingDimensions& padding, const Scalar padding_value) const { + return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, padding_value); + } + template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorShufflingOp<const Shuffle, const Derived> + shuffle(const Shuffle& shfl) const { + return TensorShufflingOp<const Shuffle, const Derived>(derived(), shfl); + } + template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorStridingOp<const Strides, const Derived> + stride(const Strides& strides) const { + return TensorStridingOp<const Strides, const Derived>(derived(), strides); + } + template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorInflationOp<const Strides, const Derived> + inflate(const Strides& strides) const { + return TensorInflationOp<const Strides, const Derived>(derived(), strides); + } + + // Returns a tensor containing index/value tuples + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorIndexTupleOp<const Derived> + index_tuples() const { + return TensorIndexTupleOp<const Derived>(derived()); + } + + // Support for custom unary and binary operations + template <typename CustomUnaryFunc> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const { + return TensorCustomUnaryOp<const CustomUnaryFunc, const Derived>(derived(), op); + } + template <typename OtherDerived, typename CustomBinaryFunc> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived> customOp(const OtherDerived& other, const CustomBinaryFunc& op) const { + return TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived>(derived(), other, op); + } + + // Force the evaluation of the expression. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorForcedEvalOp<const Derived> eval() const { + return TensorForcedEvalOp<const Derived>(derived()); + } + + protected: + template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor; + template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize; + // the Eigen:: prefix is required to workaround a compilation issue with nvcc 9.0 + template <typename OtherDerived, int AccessLevel> friend class Eigen::TensorBase; + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); } +}; + +template<typename Derived, int AccessLevel = internal::accessors_level<Derived>::value> +class TensorBase : public TensorBase<Derived, ReadOnlyAccessors> { + public: + typedef TensorBase<Derived, ReadOnlyAccessors> Base; + typedef internal::traits<Derived> DerivedTraits; + typedef typename DerivedTraits::Scalar Scalar; + typedef typename DerivedTraits::Index Index; + typedef Scalar CoeffReturnType; + static const int NumDimensions = DerivedTraits::NumDimensions; + + template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor; + template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize; + // the Eigen:: prefix is required to workaround a compilation issue with nvcc 9.0 + template <typename OtherDerived, int OtherAccessLevel> friend class Eigen::TensorBase; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& setZero() { + return setConstant(Scalar(0)); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& setConstant(const Scalar& val) { + return derived() = this->constant(val); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& setRandom() { + return derived() = this->random(); + } + template <typename RandomGenerator> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& setRandom() { + return derived() = this->template random<RandomGenerator>(); + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& setValues( + const typename internal::Initializer<Derived, NumDimensions>::InitList& vals) { + TensorEvaluator<Derived, DefaultDevice> eval(derived(), DefaultDevice()); + internal::initialize_tensor<Derived, NumDimensions>(eval, vals); + return derived(); + } +#endif // EIGEN_HAS_VARIADIC_TEMPLATES + + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator+=(const OtherDerived& other) { + return derived() = derived() + other.derived(); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator-=(const OtherDerived& other) { + return derived() = derived() - other.derived(); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator*=(const OtherDerived& other) { + return derived() = derived() * other.derived(); + } + template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Derived& operator/=(const OtherDerived& other) { + return derived() = derived() / other.derived(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorLayoutSwapOp<const Derived> + swap_layout() const { + return TensorLayoutSwapOp<const Derived>(derived()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorLayoutSwapOp<Derived> + swap_layout() { + return TensorLayoutSwapOp<Derived>(derived()); + } + + template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorConcatenationOp<const Axis, const Derived, const OtherDerived> + concatenate(const OtherDerived& other, const Axis& axis) const { + return TensorConcatenationOp<const Axis, const Derived, const OtherDerived>(derived(), other, axis); + } + template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorConcatenationOp<const Axis, Derived, OtherDerived> + concatenate(const OtherDerived& other, const Axis& axis) { + return TensorConcatenationOp<const Axis, Derived, OtherDerived>(derived(), other, axis); + } + + template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReshapingOp<const NewDimensions, const Derived> + reshape(const NewDimensions& newDimensions) const { + return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions); + } + template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorReshapingOp<const NewDimensions, Derived> + reshape(const NewDimensions& newDimensions) { + return TensorReshapingOp<const NewDimensions, Derived>(derived(), newDimensions); + } + + template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorSlicingOp<const StartIndices, const Sizes, const Derived> + slice(const StartIndices& startIndices, const Sizes& sizes) const { + return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes); + } + template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorSlicingOp<const StartIndices, const Sizes, Derived> + slice(const StartIndices& startIndices, const Sizes& sizes) { + return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes); + } + + template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived> + stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const { + return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, + const Derived>(derived(), startIndices, stopIndices, strides); + } + template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived> + stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) { + return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, + Derived>(derived(), startIndices, stopIndices, strides); + } + + template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorChippingOp<DimId, const Derived> + chip(const Index offset) const { + return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId); + } + template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorChippingOp<DimId, Derived> + chip(const Index offset) { + return TensorChippingOp<DimId, Derived>(derived(), offset, DimId); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorChippingOp<Dynamic, const Derived> + chip(const Index offset, const Index dim) const { + return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorChippingOp<Dynamic, Derived> + chip(const Index offset, const Index dim) { + return TensorChippingOp<Dynamic, Derived>(derived(), offset, dim); + } + + template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReverseOp<const ReverseDimensions, const Derived> + reverse(const ReverseDimensions& rev) const { + return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev); + } + template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorReverseOp<const ReverseDimensions, Derived> + reverse(const ReverseDimensions& rev) { + return TensorReverseOp<const ReverseDimensions, Derived>(derived(), rev); + } + + template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorShufflingOp<const Shuffle, const Derived> + shuffle(const Shuffle& shfl) const { + return TensorShufflingOp<const Shuffle, const Derived>(derived(), shfl); + } + template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorShufflingOp<const Shuffle, Derived> + shuffle(const Shuffle& shfl) { + return TensorShufflingOp<const Shuffle, Derived>(derived(), shfl); + } + + template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorStridingOp<const Strides, const Derived> + stride(const Strides& strides) const { + return TensorStridingOp<const Strides, const Derived>(derived(), strides); + } + template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorStridingOp<const Strides, Derived> + stride(const Strides& strides) { + return TensorStridingOp<const Strides, Derived>(derived(), strides); + } + + // Select the device on which to evaluate the expression. + template <typename DeviceType> + TensorDevice<Derived, DeviceType> device(const DeviceType& dev) { + return TensorDevice<Derived, DeviceType>(dev, derived()); + } + + // Select the async device on which to evaluate the expression. + template <typename DeviceType, typename DoneCallback> + TensorAsyncDevice<Derived, DeviceType, DoneCallback> device(const DeviceType& dev, DoneCallback done) { + return TensorAsyncDevice<Derived, DeviceType, DoneCallback>(dev, derived(), std::move(done)); + } + + protected: + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TensorBase) + EIGEN_DEFAULT_COPY_CONSTRUCTOR(TensorBase) + + template<typename OtherDerived> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& operator=(const OtherDerived& other) + { + typedef TensorAssignOp<Derived, const OtherDerived> Assign; + Assign assign(derived(), other.derived()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + return derived(); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Derived& derived() { return *static_cast<Derived*>(this); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); } +}; +#endif // EIGEN_PARSED_BY_DOXYGEN +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_BASE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorBlock.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorBlock.h new file mode 100644 index 0000000..1e55d12 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorBlock.h @@ -0,0 +1,1559 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H +#define EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H + +namespace Eigen { +namespace internal { + +// -------------------------------------------------------------------------- // +// Forward declarations for templates defined below. +template <typename Scalar, typename IndexType, int NumDims, int Layout> +class TensorBlockIO; + +// -------------------------------------------------------------------------- // +// Helper function to compute strides for densely stored buffer of given +// dimensions. + +// TODO(ezhulenev): We compute strides 1000 times in different evaluators, use +// this function instead everywhere. +template <int Layout, typename IndexType, int NumDims> +EIGEN_ALWAYS_INLINE DSizes<IndexType, NumDims> strides( + const DSizes<IndexType, NumDims>& dimensions) { + DSizes<IndexType, NumDims> strides; + if (NumDims == 0) return strides; + + // TODO(ezhulenev): Use templates to unroll this loop (similar to + // h_array_reduce in CXX11meta.h)? Benchmark it. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + strides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + strides[i] = strides[i - 1] * dimensions[i - 1]; + } + } else { + strides[NumDims - 1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + strides[i] = strides[i + 1] * dimensions[i + 1]; + } + } + + return strides; +} + +template <int Layout, typename IndexType, size_t NumDims> +EIGEN_ALWAYS_INLINE DSizes<IndexType, NumDims> strides( + const Eigen::array<IndexType, NumDims>& dimensions) { + return strides<Layout>(DSizes<IndexType, NumDims>(dimensions)); +} + +template <int Layout, std::ptrdiff_t... Indices> +EIGEN_STRONG_INLINE DSizes<std::ptrdiff_t, sizeof...(Indices)> strides( + const Sizes<Indices...>& sizes) { + return strides<Layout>(DSizes<std::ptrdiff_t, sizeof...(Indices)>(sizes)); +} + +// -------------------------------------------------------------------------- // + +// Tensor block shape type defines what are the shape preference for the blocks +// extracted from the larger tensor. +// +// Example: blocks of 100 elements from the large 100x100 tensor: +// - tensor: 100x100 +// - target_block_size: 100 +// +// TensorBlockShapeType: +// - kUniformAllDims: 100 blocks of size 10x10 +// - kSkewedInnerDims: 100 blocks of size 100x1 (or 1x100 depending on a column +// or row major layout) +enum class TensorBlockShapeType { kUniformAllDims, kSkewedInnerDims }; + +struct TensorBlockResourceRequirements { + TensorBlockShapeType shape_type; // target block shape + size_t size; // target block size + TensorOpCost cost_per_coeff; // cost of computing a single block element + +#ifdef EIGEN_HIPCC + // For HIPCC, we need to explicitly declare as a "device fun", the constructor + // which is implicitly invoked in the "merge" / "any" routines. else HIPCC + // errors out complaining about the lack of a matching constructor + EIGEN_DEVICE_FUNC + TensorBlockResourceRequirements(TensorBlockShapeType shape_type_, size_t size_, + TensorOpCost cost_) + : shape_type(shape_type_), size(size_), cost_per_coeff(cost_) + {} +#endif + + template <typename Scalar> + EIGEN_DEVICE_FUNC static TensorBlockResourceRequirements withShapeAndSize( + TensorBlockShapeType shape_type, size_t size_in_bytes, + TensorOpCost cost) { + const size_t size = numext::maxi(size_t(1), size_in_bytes / sizeof(Scalar)); + return {shape_type, size, cost}; + } + + template <typename Scalar> + EIGEN_DEVICE_FUNC static TensorBlockResourceRequirements withShapeAndSize( + TensorBlockShapeType shape_type, size_t size_in_bytes) { + // This default cost per coefficient is valid for most materialized tensor + // block evaluation implementations, because they typically just read + // coefficients from the underlying tensor storage, and write to the tensor + // block buffer (scratch or destination memory, reads and writes have linear + // access pattern). We ignore the fixed cost of block evaluation, because in + // practice it should negligible. + // + // Lazy block evaluation adds the cost of calling a functor for each + // coefficient. + // + // All non-trivial block evaluation implementations must provide their own + // cost approximation (e.g. shuffling inner dimension has a much higher cost + // because it reads memory randomly, although the total number of moved + // bytes is the same). + return withShapeAndSize<Scalar>(shape_type, size_in_bytes, + {/*bytes_loaded=*/sizeof(Scalar), + /*bytes_stored=*/sizeof(Scalar), + /*compute_cycles=*/0}); + } + + template <typename Scalar> + EIGEN_DEVICE_FUNC static TensorBlockResourceRequirements skewed( + size_t size_in_bytes) { + return withShapeAndSize<Scalar>(TensorBlockShapeType::kSkewedInnerDims, + size_in_bytes); + } + + template <typename Scalar> + EIGEN_DEVICE_FUNC static TensorBlockResourceRequirements uniform( + size_t size_in_bytes) { + return withShapeAndSize<Scalar>(TensorBlockShapeType::kUniformAllDims, + size_in_bytes); + } + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE TensorBlockResourceRequirements + merge(const TensorBlockResourceRequirements& lhs, + const TensorBlockResourceRequirements& rhs) { + return {merge(lhs.shape_type, rhs.shape_type), // shape_type + merge(lhs.size, rhs.size), // size + merge(lhs.cost_per_coeff, rhs.cost_per_coeff)}; // cost_per_coeff + } + + EIGEN_DEVICE_FUNC TensorBlockResourceRequirements& addCostPerCoeff( + TensorOpCost cost) { + cost_per_coeff += cost; + return *this; + } + + // This is a resource requirement that should be returned from expressions + // that do not have any block evaluation preference (e.g. default tensor + // expression with raw buffer access). + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE TensorBlockResourceRequirements any() { + return {TensorBlockShapeType::kUniformAllDims, 1, {0, 0, 0}}; + } + + private: + using Requirements = TensorBlockResourceRequirements; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE size_t merge(size_t lhs_size, size_t rhs_size) { + return numext::maxi(lhs_size, rhs_size); + } + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE TensorBlockShapeType + merge(TensorBlockShapeType lhs, TensorBlockShapeType rhs) { + return (lhs == TensorBlockShapeType::kSkewedInnerDims || + rhs == TensorBlockShapeType::kSkewedInnerDims) + ? TensorBlockShapeType::kSkewedInnerDims + : TensorBlockShapeType::kUniformAllDims; + } + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE TensorOpCost merge(TensorOpCost lhs_cost, + TensorOpCost rhs_cost) { + return lhs_cost + rhs_cost; + } +}; + +// -------------------------------------------------------------------------- // +// TensorBlockDescriptor specifies a block offset within a tensor and the block +// sizes along each of the tensor dimensions. + +template <int NumDims, typename IndexType = Eigen::Index> +class TensorBlockDescriptor { + public: + typedef DSizes<IndexType, NumDims> Dimensions; + + // If we evaluate a Tensor assignment, and expression on the left, already has + // a memory buffer, then we might do performance optimization, and evaluate + // the root expression directly into the final output memory. Some time it's + // possible to reuse it for materializing subexpressions inside an expression + // tree, to to avoid dynamic memory allocation. + // + // The pointer type of the underlying storage is erased, because passing + // Scalar type through all the expression evaluation layers is way too many + // templates. In practice destination buffer type should always match the + // evaluated expression scalar type. + class DestinationBuffer { + public: + enum DestinationBufferKind : int { + // The above explicit specification of "int" as the enum basetype is + // needed to get around a HIPCC link error ("the field type is not + // amp-compatible") + // which is issued for class members with the enum type. + // TODO(rocm): + // remove the "int" basetype once HIPCC has been fixed to not error out + // in the above scenario. + + // Destination buffer is not defined (`m_data` == nullptr). + kEmpty, + + // Tensor block defined by an owning tensor block descriptor can fit + // contiguously into the destination buffer. In this case it's safe to + // materialize tensor block in the destination buffer, wrap it in a + // TensorMap, and use to build Eigen expression on top of it. + kContiguous, + + // Destination buffer strides do not match strides of the contiguously + // stored block, and it's impossible to define a TensorMap over this + // buffer. However if we are evaluating a root of an expression tree, we + // still can materialize an output into this destination, because we can + // guarantee that no one will ever access it through block API. + // + // In theory it is possible to build valid TensorStriding<TensorMap> + // expression on top of this destination buffer, however it has + // inefficient coeff/packet access, and defeats the purpose of fast block + // evaluation API. + kStrided + }; + + template <typename Scalar> + Scalar* data() const { + eigen_assert(m_data_type_size == sizeof(Scalar)); + return static_cast<Scalar*>(m_data); + } + + const Dimensions& strides() const { return m_strides; } + const DestinationBufferKind& kind() const { return m_kind; } + + private: + friend class TensorBlockDescriptor; + + DestinationBuffer() : m_data(NULL), m_data_type_size(0), m_kind(kEmpty) {} + + template <typename Scalar> + DestinationBuffer(Scalar* data, const Dimensions& strides, + DestinationBufferKind kind) + : m_data(static_cast<void*>(data)), + m_data_type_size(sizeof(Scalar)), + m_strides(strides), + m_kind(kind) {} + + template <int Layout, typename Scalar> + static DestinationBuffer make(const TensorBlockDescriptor& desc, + Scalar* data, const Dimensions& strides) { + return DestinationBuffer(data, strides, kind<Layout>(desc, strides)); + } + + template <int Layout> + static DestinationBufferKind kind(const TensorBlockDescriptor& desc, + const Dimensions& strides) { + const Dimensions& desc_dims = desc.dimensions(); + const Dimensions& desc_strides = internal::strides<Layout>(desc_dims); + for (int i = 0; i < NumDims; ++i) { + if (desc_dims[i] == 1) continue; + if (desc_strides[i] != strides[i]) return kStrided; + } + return kContiguous; + } + + // Storage pointer is type erased, to reduce template bloat, but we still + // keep the size of the underlying element type for error checking. + void* m_data; + size_t m_data_type_size; + + // Destination buffer dimensions always match the dimensions of a tensor + // block descriptor it belongs to, however strides might be different. + Dimensions m_strides; + + DestinationBufferKind m_kind; + }; + + TensorBlockDescriptor(const IndexType offset, const Dimensions& dimensions, + const DestinationBuffer& destination) + : m_offset(offset), + m_dimensions(dimensions), + m_destination(destination) {} + + TensorBlockDescriptor(const IndexType offset, const Dimensions& dimensions) + : m_offset(offset), + m_dimensions(dimensions), + m_destination(DestinationBuffer()) {} + + IndexType offset() const { return m_offset; } + const Dimensions& dimensions() const { return m_dimensions; } + IndexType dimension(int index) const { return m_dimensions[index]; } + IndexType size() const { return array_prod<IndexType>(m_dimensions); } + + const DestinationBuffer& destination() const { return m_destination; } + + template <int Layout, typename Scalar> + void AddDestinationBuffer(Scalar* dst_base, const Dimensions& dst_strides) { + eigen_assert(dst_base != NULL); + m_destination = + DestinationBuffer::template make<Layout>(*this, dst_base, dst_strides); + } + + template <int Layout, typename Scalar, typename DstStridesIndexType> + void AddDestinationBuffer( + Scalar* dst_base, + const DSizes<DstStridesIndexType, NumDims>& dst_strides) { + // DSizes constructor will do index type promotion if it's safe. + AddDestinationBuffer<Layout>(dst_base, Dimensions(dst_strides)); + } + + TensorBlockDescriptor& DropDestinationBuffer() { + m_destination.m_data = NULL; + m_destination.m_kind = DestinationBuffer::kEmpty; + return *this; + } + + bool HasDestinationBuffer() const { + return m_destination.kind() != DestinationBuffer::kEmpty; + } + + // Returns a copy of `*this` with updated offset. + TensorBlockDescriptor WithOffset(IndexType offset) const { + return TensorBlockDescriptor(offset, m_dimensions, m_destination); + } + + private: + // Offset and dimensions are immutable after construction. Block descriptor + // can only be mutated by adding or dropping destination. + const IndexType m_offset; + const Dimensions m_dimensions; + DestinationBuffer m_destination; +}; + +// -------------------------------------------------------------------------- // +// TensorBlockMapper is responsible for iterating over the blocks of a tensor. + +template <int NumDims, int Layout, typename IndexType = Eigen::Index> +class TensorBlockMapper { + typedef TensorBlockDescriptor<NumDims, IndexType> BlockDescriptor; + + public: + typedef DSizes<IndexType, NumDims> Dimensions; + + TensorBlockMapper() = default; + TensorBlockMapper(const DSizes<IndexType, NumDims>& dimensions, + const TensorBlockResourceRequirements& requirements) + : m_tensor_dimensions(dimensions), m_requirements(requirements) { + // Compute block dimensions and the total number of blocks. + InitializeBlockDimensions(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexType blockCount() const { + return m_total_block_count; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexType blockTotalSize() const { + return m_block_dimensions.TotalSize(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DSizes<IndexType, NumDims>& + blockDimensions() const { + return m_block_dimensions; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE BlockDescriptor + blockDescriptor(IndexType block_index) const { + static const bool isColMajor = Layout == static_cast<int>(ColMajor); + + IndexType offset = 0; + DSizes<IndexType, NumDims> dimensions; + + if (NumDims == 0) return BlockDescriptor(offset, dimensions); + + // Iterate outer -> inner dimensions. + for (int i = NumDims - 1; i >= 0; --i) { + const int dim = isColMajor ? i : NumDims - i - 1; + + const IndexType idx = block_index / m_block_strides[dim]; + block_index -= idx * m_block_strides[dim]; + + const IndexType coord = idx * m_block_dimensions[dim]; + dimensions[dim] = numext::mini(m_tensor_dimensions[dim] - coord, + m_block_dimensions[dim]); + offset += coord * m_tensor_strides[dim]; + } + + return {offset, dimensions}; + } + + private: + void InitializeBlockDimensions() { + // Requested block shape and size. + const TensorBlockShapeType shape_type = m_requirements.shape_type; + IndexType target_block_size = + numext::maxi<IndexType>(1, static_cast<IndexType>(m_requirements.size)); + + IndexType tensor_size = m_tensor_dimensions.TotalSize(); + + // Corner case: one of the dimensions is zero. Logic below is too complex + // to handle this case on a general basis, just use unit block size. + // Note: we must not yield blocks with zero dimensions (recipe for + // overflows/underflows, divisions by zero and NaNs later). + if (tensor_size == 0) { + for (int i = 0; i < NumDims; ++i) { + m_block_dimensions[i] = 1; + } + m_total_block_count = 0; + return; + } + + // If tensor fits into a target block size, evaluate it as a single block. + if (tensor_size <= target_block_size) { + m_block_dimensions = m_tensor_dimensions; + m_total_block_count = 1; + // The only valid block index is `0`, and in this case we do not need + // to compute real strides for tensor or blocks (see blockDescriptor). + for (int i = 0; i < NumDims; ++i) { + m_tensor_strides[i] = 0; + m_block_strides[i] = 1; + } + return; + } + + static const bool isColMajor = Layout == static_cast<int>(ColMajor); + + // Block shape skewed towards inner dimension. + if (shape_type == TensorBlockShapeType::kSkewedInnerDims) { + IndexType coeff_to_allocate = target_block_size; + + for (int i = 0; i < NumDims; ++i) { + const int dim = isColMajor ? i : NumDims - i - 1; + m_block_dimensions[dim] = + numext::mini(coeff_to_allocate, m_tensor_dimensions[dim]); + coeff_to_allocate = divup( + coeff_to_allocate, + numext::maxi(static_cast<IndexType>(1), m_block_dimensions[dim])); + } + eigen_assert(coeff_to_allocate == 1); + + } else if (shape_type == TensorBlockShapeType::kUniformAllDims) { + // Tensor will not fit within 'target_block_size' budget: calculate tensor + // block dimension sizes based on "square" dimension size target. + const IndexType dim_size_target = convert_index<IndexType>( + std::pow(static_cast<float>(target_block_size), + 1.0f / static_cast<float>(m_block_dimensions.rank()))); + + for (int i = 0; i < NumDims; ++i) { + // TODO(andydavis) Adjust the inner most 'block_dim_size' to make it + // a multiple of the packet size. Note that reducing + // 'block_dim_size' in this manner can increase the number of + // blocks, and so will amplify any per-block overhead. + m_block_dimensions[i] = + numext::mini(dim_size_target, m_tensor_dimensions[i]); + } + + // Add any un-allocated coefficients to inner dimension(s). + IndexType total_size = m_block_dimensions.TotalSize(); + for (int i = 0; i < NumDims; ++i) { + const int dim = isColMajor ? i : NumDims - i - 1; + + if (m_block_dimensions[dim] < m_tensor_dimensions[dim]) { + const IndexType total_size_other_dims = + total_size / m_block_dimensions[dim]; + const IndexType alloc_avail = + divup<IndexType>(target_block_size, total_size_other_dims); + if (alloc_avail == m_block_dimensions[dim]) { + // Insufficient excess coefficients to allocate. + break; + } + m_block_dimensions[dim] = + numext::mini(m_tensor_dimensions[dim], alloc_avail); + total_size = total_size_other_dims * m_block_dimensions[dim]; + } + } + + } else { + eigen_assert(false); // unknown block shape + } + + eigen_assert(m_block_dimensions.TotalSize() >= + numext::mini<IndexType>(target_block_size, + m_tensor_dimensions.TotalSize())); + + // Calculate block counts by dimension and total block count. + DSizes<IndexType, NumDims> block_count; + for (int i = 0; i < NumDims; ++i) { + block_count[i] = divup(m_tensor_dimensions[i], m_block_dimensions[i]); + } + m_total_block_count = array_prod(block_count); + + // Calculate block strides (used for enumerating blocks). + m_tensor_strides = strides<Layout>(m_tensor_dimensions); + m_block_strides = strides<Layout>(block_count); + } + + DSizes<IndexType, NumDims> m_tensor_dimensions; + TensorBlockResourceRequirements m_requirements; + + DSizes<IndexType, NumDims> m_block_dimensions; + IndexType m_total_block_count; + + DSizes<IndexType, NumDims> m_tensor_strides; + DSizes<IndexType, NumDims> m_block_strides; +}; + +// -------------------------------------------------------------------------- // +// TensorBlockScratchAllocator is responsible for allocating temporary buffers +// for block evaluation (output or input block materialization). Given that +// Eigen expression traversal order is deterministic, all temporary allocations +// are happening in the same order, and usually have exactly the same size. +// Scratch allocator keeps a trace of all dynamic allocations, and after the +// first block evaluation is completed, we should be able to reuse all the +// temporary buffers for the next block evaluation. + +template <typename Device> +class TensorBlockScratchAllocator { + public: + explicit TensorBlockScratchAllocator(const Device& device) + : m_device(device), m_allocation_index(0) {} + + ~TensorBlockScratchAllocator() { + for (size_t i = 0; i < m_allocations.size(); ++i) { + m_device.deallocate(m_allocations[i].ptr); + } + } + + void* allocate(size_t size) { + // TODO(ezhulenev): Remove when replaced with inlined vector. + if (m_allocations.capacity() == 0) m_allocations.reserve(8); + + // Check if we already have an existing allocation att current index. + const int num_allocations = static_cast<int>(m_allocations.size()); + const bool has_allocation = m_allocation_index < num_allocations; + + // Allocation index can't be larger than the number of allocations. + eigen_assert(m_allocation_index <= num_allocations); + + // If we have existing allocation, and its size is larger or equal to + // requested size, we do nothing. + + // If current allocation can't fit requested size, we deallocate it, and + // replace with a larger allocation. + if (has_allocation && m_allocations[m_allocation_index].size < size) { + m_device.deallocate(m_allocations[m_allocation_index].ptr); + m_allocations[m_allocation_index].ptr = m_device.allocate(size); + m_allocations[m_allocation_index].size = size; + } + + // Make a new allocation if we don't have and existing one. + if (!has_allocation) { + Allocation allocation; + allocation.ptr = m_device.allocate(size); + allocation.size = size; + m_allocations.push_back(allocation); + } + + eigen_assert(m_allocations[m_allocation_index].ptr != NULL); + eigen_assert(m_allocations[m_allocation_index].size >= size); + + return m_allocations[m_allocation_index++].ptr; + } + + void reset() { m_allocation_index = 0; } + + private: + struct Allocation { + void* ptr; + size_t size; + }; + + const Device& m_device; + int m_allocation_index; + // TODO(ezhulenev): This should be an inlined vector. + std::vector<Allocation> m_allocations; +}; + +// -------------------------------------------------------------------------- // +// TensorBlockKind represents all possible block kinds, that can be produced by +// TensorEvaluator::evalBlock function. +enum TensorBlockKind { + // Tensor block that is a lazy expression that must be assigned to a + // destination using TensorBlockAssign. + kExpr, + + // Tensor block that is a view into a memory buffer owned by an underlying + // Tensor expression (e.g. it can be a view into a Tensor buffer). + kView, + + // Tensor block that was materialized in a scratch memory buffer, allocated + // with TensorBlockScratchAllocator. This block must be copied to a + // destination, similar to a block of `kExpr` type. + kMaterializedInScratch, + + // Tensor block that was materialized directly into the final output memory + // buffer. For example if the left side of an assignment is a Tensor, we can + // directly materialize the block in the destination memory. + // + // If strides in the output buffer do not match tensor block strides, the + // Tensor expression will be invalid, and should not be used by + // TensorBlockAssign or for constructing another block expression. + kMaterializedInOutput +}; + +// -------------------------------------------------------------------------- // +// TensorBlockNotImplemented should be used to defined TensorBlock typedef in +// TensorEvaluators that do not support block evaluation. + +class TensorBlockNotImplemented { + public: + typedef void XprType; +}; + +// -------------------------------------------------------------------------- // +// XprScalar extracts Scalar type from the Eigen expressions (if expression type +// is not void). It's required to be able to define lazy block expression for +// argument types, that do not support block evaluation. + +template <typename XprType> +struct XprScalar { + typedef typename XprType::Scalar type; +}; +template <> +struct XprScalar<void> { + typedef void type; +}; + +// -------------------------------------------------------------------------- // +// TensorMaterializedBlock is a fully evaluated block of the original tensor, +// and XprType is just a TensorMap over the data. This block type is typically +// used to materialize blocks of tensor expressions, that can't be efficiently +// represented as lazy Tensor expressions with fast coeff/packet operations, +// e.g. we materialize all broadcasts into evaluated blocks. +// +// TensorMaterializedBlock does not own its memory buffer, it's either a memory +// buffer that backs the original expression (e.g. block is just a view into a +// Tensor), or a memory buffer allocated with scratch allocator, and in this +// case the scratch allocator will deallocate it at the end of block based +// expression execution. +// +// If the block was evaluated directly into the output buffer, and strides in +// the output buffer do not match block strides, the TensorMap expression will +// be invalid, and should never be used in block assignment or any other tensor +// expression. + +template <typename Scalar, int NumDims, int Layout, + typename IndexType = Eigen::Index> +class TensorMaterializedBlock { + public: + typedef DSizes<IndexType, NumDims> Dimensions; + typedef TensorMap<const Tensor<Scalar, NumDims, Layout> > XprType; + + TensorMaterializedBlock(TensorBlockKind kind, const Scalar* data, + const Dimensions& dimensions, bool valid_expr = true) + : m_kind(kind), + m_data(data), + m_dimensions(dimensions), + m_expr(m_data, m_dimensions), + m_valid_expr(valid_expr) { + eigen_assert(m_kind == internal::TensorBlockKind::kView || + m_kind == internal::TensorBlockKind::kMaterializedInScratch || + m_kind == internal::TensorBlockKind::kMaterializedInOutput); + } + + TensorBlockKind kind() const { return m_kind; } + // NOTE(ezhulenev): Returning XprType by value like in other block types + // causes asan failures. The theory is that XprType::Nested doesn't work + // properly for TensorMap. + const XprType& expr() const { + eigen_assert(m_valid_expr); + return m_expr; + } + const Scalar* data() const { return m_data; } + void cleanup() {} + + typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc; + + // TensorMaterializedBlock can be backed by different types of storage: + // + // (1) Contiguous block of memory allocated with scratch allocator. + // (2) Contiguous block of memory reused from tensor block descriptor + // destination buffer. + // (3) Strided block of memory reused from tensor block descriptor + // destination buffer. + // + class Storage { + public: + Scalar* data() const { return m_data; } + const Dimensions& dimensions() const { return m_dimensions; } + const Dimensions& strides() const { return m_strides; } + + TensorMaterializedBlock AsTensorMaterializedBlock() const { + return TensorMaterializedBlock( + m_materialized_in_output + ? internal::TensorBlockKind::kMaterializedInOutput + : internal::TensorBlockKind::kMaterializedInScratch, + m_data, m_dimensions, !m_strided_storage); + } + + private: + friend class TensorMaterializedBlock; + + Storage(Scalar* data, const Dimensions& dimensions, + const Dimensions& strides, bool materialized_in_output, + bool strided_storage) + : m_data(data), + m_dimensions(dimensions), + m_strides(strides), + m_materialized_in_output(materialized_in_output), + m_strided_storage(strided_storage) {} + + Scalar* m_data; + Dimensions m_dimensions; + Dimensions m_strides; + bool m_materialized_in_output; + bool m_strided_storage; + }; + + // Creates a storage for materialized block either from the block descriptor + // destination buffer, or allocates a new buffer with scratch allocator. + template <typename TensorBlockScratch> + EIGEN_STRONG_INLINE static Storage prepareStorage( + TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool allow_strided_storage = false) { + // Try to reuse destination as an output block buffer. + typedef typename TensorBlockDesc::DestinationBuffer DestinationBuffer; + + if (desc.destination().kind() == DestinationBuffer::kContiguous) { + Scalar* buffer = desc.destination().template data<Scalar>(); + desc.DropDestinationBuffer(); + return Storage(buffer, desc.dimensions(), + internal::strides<Layout>(desc.dimensions()), + /*materialized_in_output=*/true, + /*strided_storage=*/false); + + } else if (desc.destination().kind() == DestinationBuffer::kStrided && + allow_strided_storage) { + Scalar* buffer = desc.destination().template data<Scalar>(); + desc.DropDestinationBuffer(); + return Storage(buffer, desc.dimensions(), desc.destination().strides(), + /*materialized_in_output=*/true, /*strided_storage=*/true); + + } else { + void* mem = scratch.allocate(desc.size() * sizeof(Scalar)); + return Storage(static_cast<Scalar*>(mem), desc.dimensions(), + internal::strides<Layout>(desc.dimensions()), + /*materialized_in_output=*/false, + /*strided_storage=*/false); + } + } + + // Creates a materialized block for the given descriptor from a memory buffer. + template <typename DataDimensions, typename TensorBlockScratch> + EIGEN_STRONG_INLINE static TensorMaterializedBlock materialize( + const Scalar* data, const DataDimensions& data_dims, + TensorBlockDesc& desc, TensorBlockScratch& scratch) { + eigen_assert(array_size<DataDimensions>::value == desc.dimensions().size()); + + // If a tensor block dimensions covers a contiguous block of the underlying + // memory, we can skip block buffer memory allocation, and construct a block + // from existing `data` memory buffer. + // + // Example: (RowMajor layout) + // data_dims: [11, 12, 13, 14] + // desc.dimensions(): [1, 1, 3, 14] + // + // In this case we can construct a TensorBlock starting at + // `data + desc.offset()`, with a `desc.dimensions()` block sizes. + static const bool is_col_major = Layout == ColMajor; + + // Find out how many inner dimensions have a matching size. + int num_matching_inner_dims = 0; + for (int i = 0; i < NumDims; ++i) { + int dim = is_col_major ? i : NumDims - i - 1; + if (data_dims[dim] != desc.dimensions()[dim]) break; + ++num_matching_inner_dims; + } + + // All the outer dimensions must be of size `1`, except a single dimension + // before the matching inner dimension (`3` in the example above). + bool can_use_direct_access = true; + for (int i = num_matching_inner_dims + 1; i < NumDims; ++i) { + int dim = is_col_major ? i : NumDims - i - 1; + if (desc.dimension(dim) != 1) { + can_use_direct_access = false; + break; + } + } + + if (can_use_direct_access) { + const Scalar* block_start = data + desc.offset(); + return TensorMaterializedBlock(internal::TensorBlockKind::kView, + block_start, desc.dimensions()); + + } else { + // Reuse destination buffer or allocate new buffer with scratch allocator. + const Storage storage = prepareStorage(desc, scratch); + + typedef internal::TensorBlockIO<Scalar, IndexType, NumDims, Layout> + TensorBlockIO; + typedef typename TensorBlockIO::Dst TensorBlockIODst; + typedef typename TensorBlockIO::Src TensorBlockIOSrc; + + TensorBlockIOSrc src(internal::strides<Layout>(Dimensions(data_dims)), + data, desc.offset()); + TensorBlockIODst dst(storage.dimensions(), storage.strides(), + storage.data()); + + TensorBlockIO::Copy(dst, src); + return storage.AsTensorMaterializedBlock(); + } + } + + private: + TensorBlockKind m_kind; + const Scalar* m_data; + Dimensions m_dimensions; + XprType m_expr; + bool m_valid_expr; +}; + +// -------------------------------------------------------------------------- // +// TensorCwiseUnaryBlock is a lazy tensor expression block that applies UnaryOp +// functor to the blocks produced by the underlying Tensor expression. + +template <typename UnaryOp, typename ArgTensorBlock> +class TensorCwiseUnaryBlock { + static const bool NoArgBlockAccess = + internal::is_void<typename ArgTensorBlock::XprType>::value; + + public: + typedef typename conditional< + NoArgBlockAccess, void, + TensorCwiseUnaryOp<UnaryOp, const typename ArgTensorBlock::XprType> >:: + type XprType; + + typedef typename XprScalar<XprType>::type Scalar; + + TensorCwiseUnaryBlock(const ArgTensorBlock& arg_block, const UnaryOp& functor) + : m_arg_block(arg_block), m_functor(functor) {} + + TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; } + + XprType expr() const { return XprType(m_arg_block.expr(), m_functor); } + const Scalar* data() const { return NULL; } + void cleanup() { m_arg_block.cleanup(); } + + private: + ArgTensorBlock m_arg_block; + UnaryOp m_functor; +}; + +// -------------------------------------------------------------------------- // +// TensorCwiseUnaryBlock is a lazy tensor expression block that applies BinaryOp +// functor to the blocks produced by the underlying Tensor expression. + +template <typename BinaryOp, typename LhsTensorBlock, typename RhsTensorBlock> +class TensorCwiseBinaryBlock { + static const bool NoArgBlockAccess = + internal::is_void<typename LhsTensorBlock::XprType>::value || + internal::is_void<typename RhsTensorBlock::XprType>::value; + + public: + typedef typename conditional< + NoArgBlockAccess, void, + TensorCwiseBinaryOp<BinaryOp, const typename LhsTensorBlock::XprType, + const typename RhsTensorBlock::XprType> >::type + XprType; + + typedef typename XprScalar<XprType>::type Scalar; + + TensorCwiseBinaryBlock(const LhsTensorBlock& left_block, + const RhsTensorBlock& right_block, + const BinaryOp& functor) + : m_left_block(left_block), + m_right_block(right_block), + m_functor(functor) {} + + TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; } + + XprType expr() const { + return XprType(m_left_block.expr(), m_right_block.expr(), m_functor); + } + + const Scalar* data() const { return NULL; } + + void cleanup() { + m_left_block.cleanup(); + m_right_block.cleanup(); + } + + private: + LhsTensorBlock m_left_block; + RhsTensorBlock m_right_block; + BinaryOp m_functor; +}; + +// -------------------------------------------------------------------------- // +// TensorUnaryExprBlock is a lazy tensor expression block that can construct +// an arbitrary tensor expression from a block of the underlying type (this is a +// generalization of the TensorCwiseUnaryBlock for arbitrary expressions). + +template <typename BlockFactory, typename ArgTensorBlock> +class TensorUnaryExprBlock { + typedef typename ArgTensorBlock::XprType ArgXprType; + static const bool NoArgBlockAccess = internal::is_void<ArgXprType>::value; + + public: + typedef typename conditional< + NoArgBlockAccess, void, + typename BlockFactory::template XprType<ArgXprType>::type>::type XprType; + + typedef typename XprScalar<XprType>::type Scalar; + + TensorUnaryExprBlock(const ArgTensorBlock& arg_block, + const BlockFactory& factory) + : m_arg_block(arg_block), m_factory(factory) {} + + TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; } + XprType expr() const { return m_factory.expr(m_arg_block.expr()); } + const Scalar* data() const { return NULL; } + void cleanup() { m_arg_block.cleanup(); } + + private: + ArgTensorBlock m_arg_block; + BlockFactory m_factory; +}; + +// -------------------------------------------------------------------------- // +// TensorTernaryExprBlock is a lazy tensor expression block that can construct +// an arbitrary tensor expression from three blocks of the underlying type. + +template <typename BlockFactory, typename Arg1TensorBlock, + typename Arg2TensorBlock, typename Arg3TensorBlock> +class TensorTernaryExprBlock { + typedef typename Arg1TensorBlock::XprType Arg1XprType; + typedef typename Arg2TensorBlock::XprType Arg2XprType; + typedef typename Arg3TensorBlock::XprType Arg3XprType; + + static const bool NoArgBlockAccess = internal::is_void<Arg1XprType>::value || + internal::is_void<Arg2XprType>::value || + internal::is_void<Arg3XprType>::value; + + public: + typedef typename conditional< + NoArgBlockAccess, void, + typename BlockFactory::template XprType<Arg1XprType, Arg2XprType, + Arg3XprType>::type>::type XprType; + + typedef typename XprScalar<XprType>::type Scalar; + + TensorTernaryExprBlock(const Arg1TensorBlock& arg1_block, + const Arg2TensorBlock& arg2_block, + const Arg3TensorBlock& arg3_block, + const BlockFactory& factory) + : m_arg1_block(arg1_block), + m_arg2_block(arg2_block), + m_arg3_block(arg3_block), + m_factory(factory) {} + + TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; } + XprType expr() const { + return m_factory.expr(m_arg1_block.expr(), m_arg2_block.expr(), + m_arg3_block.expr()); + } + const Scalar* data() const { return NULL; } + void cleanup() { + m_arg1_block.cleanup(); + m_arg2_block.cleanup(); + m_arg3_block.cleanup(); + } + + private: + Arg1TensorBlock m_arg1_block; + Arg2TensorBlock m_arg2_block; + Arg3TensorBlock m_arg3_block; + BlockFactory m_factory; +}; + +// -------------------------------------------------------------------------- // +// StridedLinearBufferCopy provides a method to copy data between two linear +// buffers with different strides, with optimized paths for scatter/gather. + +template <typename Scalar, typename IndexType> +class StridedLinearBufferCopy { + typedef typename packet_traits<Scalar>::type Packet; + enum { + Vectorizable = packet_traits<Scalar>::Vectorizable, + PacketSize = packet_traits<Scalar>::size + }; + + public: + // Specifying linear copy kind statically gives ~30% speedup for small sizes. + enum class Kind { + Linear = 0, // src_stride == 1 && dst_stride == 1 + Scatter = 1, // src_stride == 1 && dst_stride != 1 + FillLinear = 2, // src_stride == 0 && dst_stride == 1 + FillScatter = 3, // src_stride == 0 && dst_stride != 1 + Gather = 4, // dst_stride == 1 + Random = 5 // everything else + }; + + struct Dst { + Dst(IndexType o, IndexType s, Scalar* d) : offset(o), stride(s), data(d) {} + + IndexType offset; + IndexType stride; + Scalar* data; + }; + + struct Src { + Src(IndexType o, IndexType s, const Scalar* d) + : offset(o), stride(s), data(d) {} + + IndexType offset; + IndexType stride; + const Scalar* data; + }; + + template <typename StridedLinearBufferCopy::Kind kind> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(const Dst& dst, + const Src& src, + const size_t count) { + Run<kind>(count, dst.offset, dst.stride, dst.data, src.offset, src.stride, + src.data); + } + + private: + template <typename StridedLinearBufferCopy::Kind kind> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( + const IndexType count, const IndexType dst_offset, + const IndexType dst_stride, Scalar* EIGEN_RESTRICT dst_data, + const IndexType src_offset, const IndexType src_stride, + const Scalar* EIGEN_RESTRICT src_data) { + const Scalar* src = &src_data[src_offset]; + Scalar* dst = &dst_data[dst_offset]; + + if (!Vectorizable) { + for (Index i = 0; i < count; ++i) { + dst[i * dst_stride] = src[i * src_stride]; + } + return; + } + + const IndexType vectorized_size = count - PacketSize; + IndexType i = 0; + + if (kind == StridedLinearBufferCopy::Kind::Linear) { + // ******************************************************************** // + // Linear copy from `src` to `dst`. + const IndexType unrolled_size = count - 4 * PacketSize; + eigen_assert(src_stride == 1 && dst_stride == 1); + for (; i <= unrolled_size; i += 4 * PacketSize) { + for (int j = 0; j < 4; ++j) { + Packet p = ploadu<Packet>(src + i + j * PacketSize); + pstoreu<Scalar, Packet>(dst + i + j * PacketSize, p); + } + } + for (; i <= vectorized_size; i += PacketSize) { + Packet p = ploadu<Packet>(src + i); + pstoreu<Scalar, Packet>(dst + i, p); + } + for (; i < count; ++i) { + dst[i] = src[i]; + } + // ******************************************************************** // + } else if (kind == StridedLinearBufferCopy::Kind::Scatter) { + // Scatter from `src` to `dst`. + eigen_assert(src_stride == 1 && dst_stride != 1); + for (; i <= vectorized_size; i += PacketSize) { + Packet p = ploadu<Packet>(src + i); + pscatter<Scalar, Packet>(dst + i * dst_stride, p, dst_stride); + } + for (; i < count; ++i) { + dst[i * dst_stride] = src[i]; + } + // ******************************************************************** // + } else if (kind == StridedLinearBufferCopy::Kind::FillLinear) { + // Fill `dst` with value at `*src`. + eigen_assert(src_stride == 0 && dst_stride == 1); + const IndexType unrolled_size = count - 4 * PacketSize; + Packet p = pload1<Packet>(src); + for (; i <= unrolled_size; i += 4 * PacketSize) { + for (int j = 0; j < 4; ++j) { + pstoreu<Scalar, Packet>(dst + i + j * PacketSize, p); + } + } + for (; i <= vectorized_size; i += PacketSize) { + pstoreu<Scalar, Packet>(dst + i, p); + } + for (; i < count; ++i) { + dst[i] = *src; + } + // ******************************************************************** // + } else if (kind == StridedLinearBufferCopy::Kind::FillScatter) { + // Scatter `*src` into `dst`. + eigen_assert(src_stride == 0 && dst_stride != 1); + Packet p = pload1<Packet>(src); + for (; i <= vectorized_size; i += PacketSize) { + pscatter<Scalar, Packet>(dst + i * dst_stride, p, dst_stride); + } + for (; i < count; ++i) { + dst[i * dst_stride] = *src; + } + // ******************************************************************** // + } else if (kind == StridedLinearBufferCopy::Kind::Gather) { + // Gather from `src` into `dst`. + eigen_assert(dst_stride == 1); + for (; i <= vectorized_size; i += PacketSize) { + Packet p = pgather<Scalar, Packet>(src + i * src_stride, src_stride); + pstoreu<Scalar, Packet>(dst + i, p); + } + for (; i < count; ++i) { + dst[i] = src[i * src_stride]; + } + // ******************************************************************** // + } else if (kind == StridedLinearBufferCopy::Kind::Random) { + // Random. + for (; i < count; ++i) { + dst[i * dst_stride] = src[i * src_stride]; + } + } else { + eigen_assert(false); + } + } +}; + +// -------------------------------------------------------------------------- // +// TensorBlockIO copies data from `src` tensor block, to the `dst` tensor block. +// It's possible to specify src->dst dimension mapping for the copy operation. +// Dimensions of `dst` specify how many elements have to be copied, for the +// `src` we need to know only stride to navigate through source memory buffer. + +template <typename Scalar, typename IndexType, int NumDims, int Layout> +class TensorBlockIO { + static const bool IsColMajor = (Layout == ColMajor); + + typedef StridedLinearBufferCopy<Scalar, IndexType> LinCopy; + + public: + typedef DSizes<IndexType, NumDims> Dimensions; + typedef DSizes<int, NumDims> DimensionsMap; + + struct Dst { + Dst(const Dimensions& dst_dims, const Dimensions& dst_strides, Scalar* dst, + IndexType dst_offset = 0) + : dims(dst_dims), strides(dst_strides), data(dst), offset(dst_offset) {} + + Dimensions dims; + Dimensions strides; + Scalar* data; + IndexType offset; + }; + + struct Src { + Src(const Dimensions& src_strides, const Scalar* src, + IndexType src_offset = 0) + : strides(src_strides), data(src), offset(src_offset) {} + + Dimensions strides; + const Scalar* data; + IndexType offset; + }; + + // Copies data to `dst` from `src`, using provided dimensions mapping: + // + // src_dimension_index = dst_to_src_dim_map[dst_dimension_index] + // + // Returns the number of copied elements. + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexType Copy( + const Dst& dst, const Src& src, const DimensionsMap& dst_to_src_dim_map) { + // Copy single scalar value from `src` to `dst`. + if (NumDims == 0) { + *(dst.data + dst.offset) = *(src.data + src.offset); + return 1; + } + + // Both `dst` and `src` must have contiguous innermost dimension. We also + // accept the special case with stride '0', because it's used as a trick to + // implement broadcasting. + { + int inner_dim = IsColMajor ? 0 : NumDims - 1; + EIGEN_UNUSED_VARIABLE(inner_dim); + eigen_assert(dst.strides[inner_dim] == 1 || dst.strides[inner_dim] == 0); + eigen_assert(src.strides[inner_dim] == 1 || src.strides[inner_dim] == 0); + } + + // Give a shorter name to `dst_to_src_dim_map`. + const DimensionsMap& dim_map = dst_to_src_dim_map; + + // Do not squeeze reordered inner dimensions. + int num_squeezable_dims = NumSqueezableInnerDims(dim_map); + + // NOTE: We find the innermost dimension (contiguous in memory) in the dst + // block, and we write data linearly into that dimension, reading it from + // the src. If dimensions are reordered, we might end up reading data from + // the src with `stride != 1`. + // + // NOTE: Random-Read/Linear-Write can be up to ~2X faster than + // Linear-Read/Random-Write: https://stackoverflow.com/a/54935680 + + // Find the innermost dimension in the dst whose size is not 1. This is the + // effective inner dim. + int num_size_one_inner_dims = 0; + for (int i = 0; i < num_squeezable_dims; ++i) { + const int dst_dim = IsColMajor ? i : NumDims - i - 1; + if (dst.dims[dst_dim] != 1) break; + num_size_one_inner_dims++; + } + + // If all dimensions are of size 1, just copy a scalar from `src` to `dst`. + if (num_size_one_inner_dims == NumDims) { + *(dst.data + dst.offset) = *(src.data + src.offset); + return 1; + } + + // Outermost dimension in the dst with `stride == 1` (contiguous in memory). + const int dst_stride1_dim = IsColMajor + ? num_size_one_inner_dims + : NumDims - num_size_one_inner_dims - 1; + + // Dimension in the src that corresponds to the dst innermost dimension. + const int src_dim_for_dst_stride1_dim = + NumDims == 0 ? 1 : dim_map[dst_stride1_dim]; + + // Size of the innermost dimension (length of contiguous blocks of memory). + IndexType dst_inner_dim_size = NumDims == 0 ? 1 : dst.dims[dst_stride1_dim]; + + // Squeeze multiple inner dims into one if they are contiguous in `dst` and + // `src` memory, so we can do less linear copy calls. + for (int i = num_size_one_inner_dims + 1; i < num_squeezable_dims; ++i) { + const int dst_dim = IsColMajor ? i : NumDims - i - 1; + const IndexType dst_stride = dst.strides[dst_dim]; + const IndexType src_stride = src.strides[dim_map[dst_dim]]; + if (dst_inner_dim_size == dst_stride && dst_stride == src_stride) { + dst_inner_dim_size *= dst.dims[dst_dim]; + ++num_size_one_inner_dims; + } else { + break; + } + } + + // Setup strides to read data from `src` and write to `dst`. + IndexType input_offset = src.offset; + IndexType output_offset = dst.offset; + IndexType input_stride = + NumDims == 0 ? 1 : src.strides[src_dim_for_dst_stride1_dim]; + IndexType output_stride = NumDims == 0 ? 1 : dst.strides[dst_stride1_dim]; + + const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1; + array<BlockIteratorState, at_least_1_dim> it; + + // Initialize block iterator state. Squeeze away any dimension of size 1. + int idx = 0; // currently initialized iterator state index + for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) { + const int dst_dim = IsColMajor ? i + 1 : NumDims - i - 2; + if (dst.dims[dst_dim] == 1) continue; + + it[idx].size = dst.dims[dst_dim]; + it[idx].input_stride = src.strides[dim_map[dst_dim]]; + it[idx].output_stride = dst.strides[dst_dim]; + + it[idx].input_span = it[idx].input_stride * (it[idx].size - 1); + it[idx].output_span = it[idx].output_stride * (it[idx].size - 1); + + idx++; + } + + // Iterate copying data from src to dst. + const IndexType block_total_size = NumDims == 0 ? 1 : dst.dims.TotalSize(); + +#define COPY_INNER_DIM(KIND) \ + IndexType num_copied = 0; \ + for (num_copied = 0; num_copied < block_total_size; \ + num_copied += dst_inner_dim_size) { \ + LinCopy::template Run<KIND>( \ + typename LinCopy::Dst(output_offset, output_stride, dst.data), \ + typename LinCopy::Src(input_offset, input_stride, src.data), \ + dst_inner_dim_size); \ + \ + for (int j = 0; j < idx; ++j) { \ + if (++it[j].count < it[j].size) { \ + input_offset += it[j].input_stride; \ + output_offset += it[j].output_stride; \ + break; \ + } \ + it[j].count = 0; \ + input_offset -= it[j].input_span; \ + output_offset -= it[j].output_span; \ + } \ + } \ + return num_copied; + + if (input_stride == 1 && output_stride == 1) { + COPY_INNER_DIM(LinCopy::Kind::Linear); + } else if (input_stride == 1 && output_stride != 1) { + COPY_INNER_DIM(LinCopy::Kind::Scatter); + } else if (input_stride == 0 && output_stride == 1) { + COPY_INNER_DIM(LinCopy::Kind::FillLinear); + } else if (input_stride == 0 && output_stride != 1) { + COPY_INNER_DIM(LinCopy::Kind::FillScatter); + } else if (output_stride == 1) { + COPY_INNER_DIM(LinCopy::Kind::Gather); + } else { + COPY_INNER_DIM(LinCopy::Kind::Random); + } + +#undef COPY_INNER_DIM + } + + // Copy from `src` to `dst` with an identity src->dst dimension map. Returns + // the number of copied elements. + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexType Copy(const Dst& dst, + const Src& src) { + DimensionsMap dst_to_src_map; + for (int i = 0; i < NumDims; ++i) dst_to_src_map[i] = i; + return Copy(dst, src, dst_to_src_map); + } + + private: + struct BlockIteratorState { + BlockIteratorState() + : size(0), + count(0), + input_stride(0), + output_stride(0), + input_span(0), + output_span(0) {} + + IndexType size; + IndexType count; + IndexType input_stride; + IndexType output_stride; + IndexType input_span; + IndexType output_span; + }; + + // Compute how many inner dimensions it's allowed to squeeze when doing IO + // between two tensor blocks. It's safe to squeeze inner dimensions, only + // if they are not reordered. + static int NumSqueezableInnerDims(const DimensionsMap& dim_map) { + int num_squeezable_dims = 0; + for (int i = 0; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + if (dim_map[dim] != dim) break; + num_squeezable_dims++; + } + return num_squeezable_dims; + } +}; + +// -------------------------------------------------------------------------- // +// TensorBlockAssignment assigns a block expression of type `TensorBlockExpr` to +// a Tensor block defined by `desc`, backed by a memory buffer at `target`. +// +// Currently there is no way to write from a Tensor expression to a block of +// memory, if dimensions are reordered. If you need to do that, you should +// materialize a Tensor block expression into a memory buffer, and then use +// TensorBlockIO to copy data between two memory buffers with a custom +// `target->src` dimension map (see definition above). +// +// Also currently the innermost dimension of `target` must have a stride '1' +// (contiguous in memory). This restriction could be lifted with a `pscatter`, +// but in practice it's never needed, and there is a similar TensorBlockIO +// workaround for that. +// +// TODO(ezhulenev): TensorBlockAssignment is a special case of TensorBlockIO +// where `src` is a tensor expression. Explore if it is possible to rewrite IO +// to use expressions instead of pointers, and after that TensorBlockAssignment +// will become an alias to IO. +template <typename Scalar, int NumDims, typename TensorBlockExpr, + typename IndexType = Eigen::Index> +class TensorBlockAssignment { + // We will use coeff/packet path to evaluate block expressions. + typedef TensorEvaluator<const TensorBlockExpr, DefaultDevice> + TensorBlockEvaluator; + + typedef DSizes<IndexType, NumDims> Dimensions; + + enum { + Vectorizable = packet_traits<Scalar>::Vectorizable, + PacketSize = packet_traits<Scalar>::size + }; + + template <bool Vectorizable, typename Evaluator> + struct InnerDimAssign { + EIGEN_ALWAYS_INLINE static void Run(Scalar* target, IndexType count, + const Evaluator& eval, + IndexType eval_offset) { + for (IndexType i = 0; i < count; ++i) { + target[i] = eval.coeff(eval_offset + i); + } + } + }; + + template <typename Evaluator> + struct InnerDimAssign<true, Evaluator> { + EIGEN_ALWAYS_INLINE static void Run(Scalar* target, IndexType count, + const Evaluator& eval, + IndexType eval_offset) { + typedef typename packet_traits<Scalar>::type Packet; + + const IndexType unrolled_size = count - 4 * PacketSize; + const IndexType vectorized_size = count - PacketSize; + IndexType i = 0; + + for (; i <= unrolled_size; i += 4 * PacketSize) { + for (int j = 0; j < 4; ++j) { + const IndexType idx = eval_offset + i + j * PacketSize; + Packet p = eval.template packet<Unaligned>(idx); + pstoreu<Scalar>(target + i + j * PacketSize, p); + } + } + + for (; i <= vectorized_size; i += PacketSize) { + Packet p = eval.template packet<Unaligned>(eval_offset + i); + pstoreu<Scalar>(target + i, p); + } + + for (; i < count; ++i) { + target[i] = eval.coeff(eval_offset + i); + } + } + }; + + public: + struct Target { + Target(const Dimensions& target_dims, const Dimensions& target_strides, + Scalar* target_data, IndexType target_offset = 0) + : dims(target_dims), + strides(target_strides), + data(target_data), + offset(target_offset) {} + + Dimensions dims; + Dimensions strides; + Scalar* data; + IndexType offset; + }; + + static Target target(const Dimensions& target_dims, + const Dimensions& target_strides, Scalar* target_data, + IndexType target_offset = 0) { + return Target(target_dims, target_strides, target_data, target_offset); + } + + template <typename TargetDimsIndexType, typename TargetStridesIndexType> + static Target target( + const DSizes<TargetDimsIndexType, NumDims>& target_dims, + const DSizes<TargetStridesIndexType, NumDims>& target_strides, + Scalar* target_data, IndexType target_offset = 0) { + // DSizes constructor will do index type promotion if it's safe. + return Target(Dimensions(target_dims), Dimensions(target_strides), + target_data, target_offset); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( + const Target& target, const TensorBlockExpr& expr) { + // Prepare evaluator for block expression. + DefaultDevice default_device; + TensorBlockEvaluator eval(expr, default_device); + + // Tensor block expression dimension should match destination dimensions. + eigen_assert(dimensions_match(target.dims, eval.dimensions())); + + static const int Layout = TensorBlockEvaluator::Layout; + static const bool is_col_major = Layout == ColMajor; + + // Initialize output inner dimension size based on a layout. + const IndexType output_size = NumDims == 0 ? 1 : target.dims.TotalSize(); + const int inner_dim_idx = is_col_major ? 0 : NumDims - 1; + IndexType output_inner_dim_size = target.dims[inner_dim_idx]; + + // Target inner dimension stride must be '1'. + eigen_assert(target.strides[inner_dim_idx] == 1); + + // Squeeze multiple inner dims into one if they are contiguous in `target`. + IndexType num_squeezed_dims = 0; + for (Index i = 1; i < NumDims; ++i) { + const Index dim = is_col_major ? i : NumDims - i - 1; + const IndexType target_stride = target.strides[dim]; + + if (output_inner_dim_size == target_stride) { + output_inner_dim_size *= target.dims[dim]; + num_squeezed_dims++; + } else { + break; + } + } + + // Initialize output block iterator state. Dimension in this array are + // always in inner_most -> outer_most order (col major layout). + array<BlockIteratorState, NumDims> it; + + int idx = 0; // currently initialized iterator state index + for (Index i = num_squeezed_dims; i < NumDims - 1; ++i) { + const Index dim = is_col_major ? i + 1 : NumDims - i - 2; + + it[idx].count = 0; + it[idx].size = target.dims[dim]; + it[idx].output_stride = target.strides[dim]; + it[idx].output_span = it[idx].output_stride * (it[idx].size - 1); + idx++; + } + + // We read block expression from the beginning, and start writing data to + // `target` at given offset. + IndexType input_offset = 0; + IndexType output_offset = target.offset; + + // Iterate copying data from `eval` to `target`. + for (IndexType i = 0; i < output_size; i += output_inner_dim_size) { + // Assign to `target` at current offset. + InnerDimAssign<Vectorizable && TensorBlockEvaluator::PacketAccess, + TensorBlockEvaluator>::Run(target.data + output_offset, + output_inner_dim_size, eval, + input_offset); + + // Move input offset forward by the number of assigned coefficients. + input_offset += output_inner_dim_size; + + // Update index. + for (int j = 0; j < idx; ++j) { + if (++it[j].count < it[j].size) { + output_offset += it[j].output_stride; + break; + } + it[j].count = 0; + output_offset -= it[j].output_span; + } + } + } + + private: + struct BlockIteratorState { + BlockIteratorState() + : count(0), size(0), output_stride(0), output_span(0) {} + + IndexType count; + IndexType size; + IndexType output_stride; + IndexType output_span; + }; +}; + +// -------------------------------------------------------------------------- // + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorBroadcasting.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorBroadcasting.h new file mode 100644 index 0000000..a354132 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorBroadcasting.h @@ -0,0 +1,1093 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H +#define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H + +namespace Eigen { + +/** \class TensorBroadcasting + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor broadcasting class. + * + * + */ +namespace internal { +template<typename Broadcast, typename XprType> +struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Broadcast, typename XprType> +struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense> +{ + typedef const TensorBroadcastingOp<Broadcast, XprType> EIGEN_DEVICE_REF type; +}; + +template<typename Broadcast, typename XprType> +struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type> +{ + typedef TensorBroadcastingOp<Broadcast, XprType> type; +}; + +template <typename Dims> +struct is_input_scalar { + static const bool value = false; +}; +template <> +struct is_input_scalar<Sizes<> > { + static const bool value = true; +}; +#ifndef EIGEN_EMULATE_CXX11_META_H +template <typename std::ptrdiff_t... Indices> +struct is_input_scalar<Sizes<Indices...> > { + static const bool value = (Sizes<Indices...>::total_size == 1); +}; +#endif + +} // end namespace internal + + + +template<typename Broadcast, typename XprType> +class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast) + : m_xpr(expr), m_broadcast(broadcast) {} + + EIGEN_DEVICE_FUNC + const Broadcast& broadcast() const { return m_broadcast; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const Broadcast m_broadcast; +}; + + +// Eval as rvalue +template<typename Broadcast, typename ArgType, typename Device> +struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device> +{ + typedef TensorBroadcastingOp<Broadcast, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + protected: // all the non-static fields must have the same access control, otherwise the TensorEvaluator wont be standard layout; + bool isCopy, nByOne, oneByN; + public: + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + // We do block based broadcasting using a trick with 2x tensor rank and 0 + // strides. See block method implementation for details. + typedef DSizes<Index, 2 * NumDims> BroadcastDimensions; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : isCopy(false), nByOne(false), oneByN(false), + m_device(device), m_broadcast(op.broadcast()), m_impl(op.expression(), device) + { + + // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar + // and store the result in a scalar. Instead one should reshape the scalar into a a N-D + // tensor with N >= 1 of 1 element first and then broadcast. + EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + const InputDimensions& input_dims = m_impl.dimensions(); + isCopy = true; + for (int i = 0; i < NumDims; ++i) { + eigen_assert(input_dims[i] > 0); + m_dimensions[i] = input_dims[i] * m_broadcast[i]; + if (m_broadcast[i] != 1) { + isCopy = false; + } + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputStrides[0] = 1; + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + } + } else { + m_inputStrides[NumDims-1] = 1; + m_outputStrides[NumDims-1] = 1; + for (int i = NumDims-2; i >= 0; --i) { + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; + } + } + + if (input_dims[0] == 1) { + oneByN = true; + for (int i = 1; i < NumDims; ++i) { + if (m_broadcast[i] != 1) { + oneByN = false; + break; + } + } + } else if (input_dims[NumDims-1] == 1) { + nByOne = true; + for (int i = 0; i < NumDims-1; ++i) { + if (m_broadcast[i] != 1) { + nByOne = false; + break; + } + } + } + + // Handle special format like NCHW, its input shape is '[1, N..., 1]' and + // broadcast shape is '[N, 1..., N]' + if (!oneByN && !nByOne) { + if (input_dims[0] == 1 && input_dims[NumDims-1] == 1 && NumDims > 2) { + nByOne = true; + oneByN = true; + for (int i = 1; i < NumDims-1; ++i) { + if (m_broadcast[i] != 1) { + nByOne = false; + oneByN = false; + break; + } + } + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const + { + if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) { + return m_impl.coeff(0); + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + if (isCopy) { + return m_impl.coeff(index); + } else { + return coeffColMajor(index); + } + } else { + if (isCopy) { + return m_impl.coeff(index); + } else { + return coeffRowMajor(index); + } + } + } + + // TODO: attempt to speed this up. The integer divisions and modulo are slow + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexColMajor(Index index) const { + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + if (internal::index_statically_eq<Broadcast>(i, 1)) { + eigen_assert(idx < m_impl.dimensions()[i]); + inputIndex += idx * m_inputStrides[i]; + } else { + if (internal::index_statically_eq<InputDimensions>(i, 1)) { + eigen_assert(idx % m_impl.dimensions()[i] == 0); + } else { + inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; + } + } + index -= idx * m_outputStrides[i]; + } + if (internal::index_statically_eq<Broadcast>(0, 1)) { + eigen_assert(index < m_impl.dimensions()[0]); + inputIndex += index; + } else { + if (internal::index_statically_eq<InputDimensions>(0, 1)) { + eigen_assert(index % m_impl.dimensions()[0] == 0); + } else { + inputIndex += (index % m_impl.dimensions()[0]); + } + } + return inputIndex; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const + { + return m_impl.coeff(indexColMajor(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexRowMajor(Index index) const { + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + if (internal::index_statically_eq<Broadcast>(i, 1)) { + eigen_assert(idx < m_impl.dimensions()[i]); + inputIndex += idx * m_inputStrides[i]; + } else { + if (internal::index_statically_eq<InputDimensions>(i, 1)) { + eigen_assert(idx % m_impl.dimensions()[i] == 0); + } else { + inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; + } + } + index -= idx * m_outputStrides[i]; + } + if (internal::index_statically_eq<Broadcast>(NumDims - 1, 1)) { + eigen_assert(index < m_impl.dimensions()[NumDims - 1]); + inputIndex += index; + } else { + if (internal::index_statically_eq<InputDimensions>(NumDims - 1, 1)) { + eigen_assert(index % m_impl.dimensions()[NumDims - 1] == 0); + } else { + inputIndex += (index % m_impl.dimensions()[NumDims - 1]); + } + } + return inputIndex; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const + { + return m_impl.coeff(indexRowMajor(index)); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const + { + if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) { + return internal::pset1<PacketReturnType>(m_impl.coeff(0)); + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + if (isCopy) { + #ifdef EIGEN_GPU_COMPILE_PHASE + // See PR 437: on NVIDIA P100 and K20m we observed a x3-4 speed up by enforcing + // unaligned loads here. The reason is unclear though. + return m_impl.template packet<Unaligned>(index); + #else + return m_impl.template packet<LoadMode>(index); + #endif + } else if (oneByN && !nByOne) { + return packetNByOne<LoadMode>(index); + } else if (!oneByN && nByOne) { + return packetOneByN<LoadMode>(index); + } else if (oneByN && nByOne) { + return packetOneByNByOne<LoadMode>(index); + } else { + return packetColMajor<LoadMode>(index); + } + } else { + if (isCopy) { + #ifdef EIGEN_GPU_COMPILE_PHASE + // See above. + return m_impl.template packet<Unaligned>(index); + #else + return m_impl.template packet<LoadMode>(index); + #endif + } else if (oneByN && !nByOne) { + return packetOneByN<LoadMode>(index); + } else if (!oneByN && nByOne) { + return packetNByOne<LoadMode>(index); + } else if (oneByN && nByOne) { + return packetOneByNByOne<LoadMode>(index); + } else { + return packetRowMajor<LoadMode>(index); + } + } + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByNByOne + (Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + Index startDim, endDim; + Index inputIndex, outputOffset, batchedIndex; + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + startDim = NumDims - 1; + endDim = 1; + } else { + startDim = 0; + endDim = NumDims - 2; + } + + batchedIndex = index % m_outputStrides[startDim]; + inputIndex = batchedIndex / m_outputStrides[endDim]; + outputOffset = batchedIndex % m_outputStrides[endDim]; + + if (outputOffset + PacketSize <= m_outputStrides[endDim]) { + values[0] = m_impl.coeff(inputIndex); + return internal::pload1<PacketReturnType>(values); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) { + if (outputOffset + cur < m_outputStrides[endDim]) { + values[i] = m_impl.coeff(inputIndex); + } else { + ++inputIndex; + inputIndex = (inputIndex == m_inputStrides[startDim] ? 0 : inputIndex); + values[i] = m_impl.coeff(inputIndex); + outputOffset = 0; + cur = 0; + } + } + return internal::pload<PacketReturnType>(values); + } + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByN(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + Index dim, inputIndex; + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + dim = NumDims - 1; + } else { + dim = 0; + } + + inputIndex = index % m_inputStrides[dim]; + if (inputIndex + PacketSize <= m_inputStrides[dim]) { + return m_impl.template packet<Unaligned>(inputIndex); + } else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + if (inputIndex > m_inputStrides[dim]-1) { + inputIndex = 0; + } + values[i] = m_impl.coeff(inputIndex++); + } + return internal::pload<PacketReturnType>(values); + } + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetNByOne(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + Index dim, inputIndex, outputOffset; + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + dim = 1; + } else { + dim = NumDims - 2; + } + + inputIndex = index / m_outputStrides[dim]; + outputOffset = index % m_outputStrides[dim]; + if (outputOffset + PacketSize <= m_outputStrides[dim]) { + values[0] = m_impl.coeff(inputIndex); + return internal::pload1<PacketReturnType>(values); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) { + if (outputOffset + cur < m_outputStrides[dim]) { + values[i] = m_impl.coeff(inputIndex); + } else { + values[i] = m_impl.coeff(++inputIndex); + outputOffset = 0; + cur = 0; + } + } + return internal::pload<PacketReturnType>(values); + } + } + + // Ignore the LoadMode and always use unaligned loads since we can't guarantee + // the alignment at compile time. + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + const Index originalIndex = index; + + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + if (internal::index_statically_eq<Broadcast>(i, 1)) { + eigen_assert(idx < m_impl.dimensions()[i]); + inputIndex += idx * m_inputStrides[i]; + } else { + if (internal::index_statically_eq<InputDimensions>(i, 1)) { + eigen_assert(idx % m_impl.dimensions()[i] == 0); + } else { + inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; + } + } + index -= idx * m_outputStrides[i]; + } + Index innermostLoc; + if (internal::index_statically_eq<Broadcast>(0, 1)) { + eigen_assert(index < m_impl.dimensions()[0]); + innermostLoc = index; + } else { + if (internal::index_statically_eq<InputDimensions>(0, 1)) { + eigen_assert(index % m_impl.dimensions()[0] == 0); + innermostLoc = 0; + } else { + innermostLoc = index % m_impl.dimensions()[0]; + } + } + inputIndex += innermostLoc; + + // Todo: this could be extended to the second dimension if we're not + // broadcasting alongside the first dimension, and so on. + if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) { + return m_impl.template packet<Unaligned>(inputIndex); + } else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + values[0] = m_impl.coeff(inputIndex); + EIGEN_UNROLL_LOOP + for (int i = 1; i < PacketSize; ++i) { + if (innermostLoc + i < m_impl.dimensions()[0]) { + values[i] = m_impl.coeff(inputIndex+i); + } else { + values[i] = coeffColMajor(originalIndex+i); + } + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + const Index originalIndex = index; + + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + if (internal::index_statically_eq<Broadcast>(i, 1)) { + eigen_assert(idx < m_impl.dimensions()[i]); + inputIndex += idx * m_inputStrides[i]; + } else { + if (internal::index_statically_eq<InputDimensions>(i, 1)) { + eigen_assert(idx % m_impl.dimensions()[i] == 0); + } else { + inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; + } + } + index -= idx * m_outputStrides[i]; + } + Index innermostLoc; + if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) { + eigen_assert(index < m_impl.dimensions()[NumDims-1]); + innermostLoc = index; + } else { + if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) { + eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0); + innermostLoc = 0; + } else { + innermostLoc = index % m_impl.dimensions()[NumDims-1]; + } + } + inputIndex += innermostLoc; + + // Todo: this could be extended to the second dimension if we're not + // broadcasting alongside the first dimension, and so on. + if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) { + return m_impl.template packet<Unaligned>(inputIndex); + } else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + values[0] = m_impl.coeff(inputIndex); + EIGEN_UNROLL_LOOP + for (int i = 1; i < PacketSize; ++i) { + if (innermostLoc + i < m_impl.dimensions()[NumDims-1]) { + values[i] = m_impl.coeff(inputIndex+i); + } else { + values[i] = coeffRowMajor(originalIndex+i); + } + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + double compute_cost = TensorOpCost::AddCost<Index>(); + if (!isCopy && NumDims > 0) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + compute_cost += TensorOpCost::DivCost<Index>(); + if (internal::index_statically_eq<Broadcast>(i, 1)) { + compute_cost += + TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); + } else { + if (!internal::index_statically_eq<InputDimensions>(i, 1)) { + compute_cost += TensorOpCost::MulCost<Index>() + + TensorOpCost::ModCost<Index>() + + TensorOpCost::AddCost<Index>(); + } + } + compute_cost += + TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); + } + } + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + // TODO(wuke): Targeting L1 size is 30% faster than targeting L{-1} on large + // tensors. But this might need further tuning. + const size_t target_size = m_device.firstLevelCacheSize(); + return internal::TensorBlockResourceRequirements::merge( + m_impl.getResourceRequirements(), + internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + BlockBroadcastingParams params = blockBroadcastingParams(desc); + + if (params.inner_dim_size == 0 || params.bcast_dim_size == 0) { + return emptyBlock(); + } + + // Prepare storage for the materialized broadcasting result. + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage(desc, scratch); + ScalarNoConst* materialized_output = block_storage.data(); + + // We potentially will need to materialize input blocks. + size_t materialized_input_size = 0; + ScalarNoConst* materialized_input = NULL; + + // Initialize block broadcating iterator state for outer dimensions (outer + // with regard to bcast dimension). Dimension in this array are always in + // inner_most -> outer_most order (col major layout). + array<BlockBroadcastingIteratorState, NumDims> it; + int idx = 0; + + for (int i = params.inner_dim_count + 1; i < NumDims; ++i) { + const Index dim = IsColMajor ? i : NumDims - 1 - i; + it[idx].size = params.output_dims[dim]; + it[idx].count = 0; + it[idx].output_stride = m_outputStrides[dim]; + it[idx].output_span = it[idx].output_stride * (it[idx].size - 1); + idx++; + } + + // Write output into the beginning of `materialized_output`. + Index output_offset = 0; + + // We will fill output block by broadcasting along the bcast dim, and + // iterating over outer dimension. + const Index output_size = NumDims == 0 ? 1 : params.output_dims.TotalSize(); + + for (Index num_output_coeffs = 0; num_output_coeffs < output_size;) { + ScalarNoConst* bcast_output = materialized_output + num_output_coeffs; + Index bcast_offset = desc.offset() + output_offset; + + // Broadcast along the bcast dimension. + num_output_coeffs += BroadcastBlockAlongBcastDim( + params, bcast_offset, scratch, bcast_output, &materialized_input, + &materialized_input_size); + + // Switch to the next outer dimension. + for (int j = 0; j < idx; ++j) { + if (++it[j].count < it[j].size) { + output_offset += it[j].output_stride; + break; + } + it[j].count = 0; + output_offset -= it[j].output_span; + } + } + + return block_storage.AsTensorMaterializedBlock(); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + + Broadcast functor() const { return m_broadcast; } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind( + cl::sycl::handler& cgh) const { + m_impl.bind(cgh); + } +#endif + private: + static const bool IsColMajor = + static_cast<int>(Layout) == static_cast<int>(ColMajor); + + // We will build a general case block broadcasting on top of broadcasting + // primitive that will do broadcasting only for the inner dimension(s) along + // the first dimension smaller than the input size (it's called `bcast_dim`). + // + // Example: + // dim: 0 1 2 (ColMajor) + // input size: [9, 3, 6] + // block size: [9, 2, 6] + // + // We will compute broadcasted block by iterating over the outer dimensions + // before `bcast_dim` (only dimension `2` in this example) and computing + // broadcasts along the `bcast_dim` (dimension `1` in this example). + + // BlockBroadcastingParams holds precomputed parameters for broadcasting a + // single block along the broadcasting dimension. Sizes and strides along the + // `bcast_dim` might be invalid, they will be adjusted later in + // `BroadcastBlockAlongBcastDim`. + struct BlockBroadcastingParams { + Dimensions input_dims; // input expression dimensions + Dimensions output_dims; // output block sizes + Dimensions output_strides; // output block strides + + int inner_dim_count; // count inner dimensions matching in size + int bcast_dim; // broadcasting dimension index + Index bcast_dim_size; // broadcasting dimension size + Index inner_dim_size; // inner dimensions size + + // Block sizes and strides for the input block where all dimensions before + // `bcast_dim` are equal to `1`. + Dimensions input_block_sizes; + Dimensions input_block_strides; + + // Block sizes and strides for blocks with extra dimensions and strides `0`. + BroadcastDimensions bcast_block_sizes; + BroadcastDimensions bcast_block_strides; + BroadcastDimensions bcast_input_strides; + }; + + struct BlockBroadcastingIteratorState { + Index size; + Index count; + Index output_stride; + Index output_span; + }; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlockBroadcastingParams + blockBroadcastingParams(TensorBlockDesc& desc) const { + BlockBroadcastingParams params; + + params.input_dims = Dimensions(m_impl.dimensions()); + + // Output block sizes and strides. + params.output_dims = desc.dimensions(); + params.output_strides = internal::strides<Layout>(params.output_dims); + + // Find the broadcasting dimension (first dimension with output size smaller + // that the input size). + params.bcast_dim = 0; + params.bcast_dim_size = 1; + params.inner_dim_size = 1; + + // Count the number of inner dimensions that have the same size in the block + // and in the broadcast expression. + params.inner_dim_count = 0; + + for (int i = 0; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + + if (params.output_dims[dim] == m_dimensions[dim]) { + params.inner_dim_size *= params.output_dims[dim]; + ++params.inner_dim_count; + continue; + } + + // First non-matching dimension is the broadcasting dimension. + eigen_assert(params.output_dims[dim] < m_dimensions[dim]); + params.bcast_dim = dim; + params.bcast_dim_size = params.output_dims[dim]; + break; + } + + // Calculate the input block size for looking into the input. + for (int i = 0; i < params.inner_dim_count; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + params.input_block_sizes[dim] = params.input_dims[dim]; + } + for (int i = params.inner_dim_count; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + params.input_block_sizes[dim] = 1; + } + params.input_block_strides = + internal::strides<Layout>(params.input_block_sizes); + + // Broadcast with the 0-stride trick: Create 1 extra dim for each + // broadcast, set the input stride to 0. + // + // When ColMajor: + // + // - bcast_block_sizes: + // [d_0, b_0, d_1, b_1, ...] + // + // - bcast_block_strides: + // [output_block_strides[0], output_block_strides[0] * d_0, + // output_block_strides[1], output_block_strides[1] * d_1, + // ...] + // + // - bcast_input_strides: + // [input_block_strides[0], 0, + // input_block_strides[1], 0, + // ...]. + // + for (int i = 0; i < params.inner_dim_count; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + + const int copy_dim = IsColMajor ? 2 * i : 2 * NumDims - 2 * i - 1; + const int broadcast_dim = IsColMajor ? copy_dim + 1 : copy_dim - 1; + + params.bcast_block_sizes[copy_dim] = params.input_dims[dim]; + params.bcast_block_sizes[broadcast_dim] = m_broadcast[dim]; + params.bcast_block_strides[copy_dim] = params.output_strides[dim]; + params.bcast_block_strides[broadcast_dim] = + params.output_strides[dim] * params.input_dims[dim]; + params.bcast_input_strides[copy_dim] = params.input_block_strides[dim]; + params.bcast_input_strides[broadcast_dim] = 0; + } + + for (int i = 2 * params.inner_dim_count; i < 2 * NumDims; ++i) { + const int dim = IsColMajor ? i : 2 * NumDims - i - 1; + params.bcast_block_sizes[dim] = 1; + params.bcast_block_strides[dim] = 0; + params.bcast_input_strides[dim] = 0; + } + + return params; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock emptyBlock() const { + DSizes<Index, NumDims> dimensions; + for (int i = 0; i < NumDims; ++i) dimensions[i] = 0; + return TensorBlock(internal::TensorBlockKind::kView, NULL, dimensions); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlockAlongBcastDim( + BlockBroadcastingParams params, Index bcast_offset, + TensorBlockScratch& scratch, ScalarNoConst* materialized_output, + ScalarNoConst** materialized_input, + size_t* materialized_input_size) const { + if (params.bcast_dim_size == 1) { + // We just need one block read using the ready-set values above. + return BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, 0, scratch, + materialized_output, materialized_input, materialized_input_size); + + } else if (params.input_dims[params.bcast_dim] == 1) { + // Broadcast bcast dimension (< NumDims) by bcast_dim_size. + const int broadcast_bcast_dim = + IsColMajor ? 2 * params.inner_dim_count + 1 + : 2 * NumDims - 2 * params.inner_dim_count - 2; + + params.bcast_block_sizes[broadcast_bcast_dim] = params.bcast_dim_size; + params.bcast_input_strides[broadcast_bcast_dim] = 0; + params.bcast_block_strides[broadcast_bcast_dim] = + params.output_strides[params.bcast_dim]; + + return BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, 0, scratch, + materialized_output, materialized_input, materialized_input_size); + + } else { + // Keep track of the total number of the coefficients written to the + // output block. + Index num_output_coeffs = 0; + + // The general case. Let's denote the output block as + // + // x[..., a:a+bcast_dim_size, :, ..., :] + // + // where a:a+bcast_dim_size is a slice on the bcast_dim dimension + // (< NumDims). We need to split the a:a+bcast_dim_size into possibly 3 + // sub-blocks: + // + // (1) a:b, where b is the smallest multiple of + // input_dims[bcast_dim_start] in [a, a+bcast_dim_size]. + // + // (2) b:c, where c is the largest multiple of input_dims[bcast_dim_start] + // in [a, a+bcast_dim_size]. + // + // (3) c:a+bcast_dim_size . + // + // Or, when b and c do not exist, we just need to process the whole block + // together. + + // Find a. + const Index bcast_dim_left_index = + bcast_offset / m_outputStrides[params.bcast_dim]; + + // Find b and c. + const Index input_bcast_dim_size = params.input_dims[params.bcast_dim]; + + // First multiple after a. This is b when <= bcast_dim_left_index + + // bcast_dim_size. + const Index first_multiple = + divup<Index>(bcast_dim_left_index, input_bcast_dim_size) * + input_bcast_dim_size; + + if (first_multiple <= bcast_dim_left_index + params.bcast_dim_size) { + // b exists, so does c. Find it. + const Index last_multiple = + (bcast_dim_left_index + params.bcast_dim_size) / + input_bcast_dim_size * input_bcast_dim_size; + const int copy_bcast_dim = + IsColMajor ? 2 * params.inner_dim_count + : 2 * NumDims - 2 * params.inner_dim_count - 1; + const int broadcast_bcast_dim = + IsColMajor ? 2 * params.inner_dim_count + 1 + : 2 * NumDims - 2 * params.inner_dim_count - 2; + + if (first_multiple > bcast_dim_left_index) { + const Index head_size = first_multiple - bcast_dim_left_index; + params.input_block_sizes[params.bcast_dim] = head_size; + params.bcast_block_sizes[copy_bcast_dim] = head_size; + params.bcast_input_strides[copy_bcast_dim] = + params.input_block_strides[params.bcast_dim]; + params.bcast_block_strides[copy_bcast_dim] = + params.output_strides[params.bcast_dim]; + params.bcast_block_sizes[broadcast_bcast_dim] = 1; + params.bcast_input_strides[broadcast_bcast_dim] = 0; + params.bcast_block_strides[broadcast_bcast_dim] = + params.output_strides[params.bcast_dim] * + params.input_dims[params.bcast_dim]; + + num_output_coeffs += BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, 0, scratch, + materialized_output, materialized_input, materialized_input_size); + } + if (first_multiple < last_multiple) { + params.input_block_sizes[params.bcast_dim] = input_bcast_dim_size; + params.bcast_block_sizes[copy_bcast_dim] = input_bcast_dim_size; + params.bcast_input_strides[copy_bcast_dim] = + params.input_block_strides[params.bcast_dim]; + params.bcast_block_strides[copy_bcast_dim] = + params.output_strides[params.bcast_dim]; + params.bcast_block_sizes[broadcast_bcast_dim] = + (last_multiple - first_multiple) / input_bcast_dim_size; + params.bcast_input_strides[broadcast_bcast_dim] = 0; + params.bcast_block_strides[broadcast_bcast_dim] = + params.output_strides[params.bcast_dim] * + params.input_dims[params.bcast_dim]; + const Index offset = (first_multiple - bcast_dim_left_index) * + m_outputStrides[params.bcast_dim]; + + num_output_coeffs += BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, offset, scratch, + materialized_output, materialized_input, materialized_input_size); + } + if (last_multiple < bcast_dim_left_index + params.bcast_dim_size) { + const Index tail_size = + bcast_dim_left_index + params.bcast_dim_size - last_multiple; + params.input_block_sizes[params.bcast_dim] = tail_size; + params.bcast_block_sizes[copy_bcast_dim] = tail_size; + params.bcast_input_strides[copy_bcast_dim] = + params.input_block_strides[params.bcast_dim]; + params.bcast_block_strides[copy_bcast_dim] = + params.output_strides[params.bcast_dim]; + params.bcast_block_sizes[broadcast_bcast_dim] = 1; + params.bcast_input_strides[broadcast_bcast_dim] = 0; + params.bcast_block_strides[broadcast_bcast_dim] = + params.output_strides[params.bcast_dim] * + params.input_dims[params.bcast_dim]; + const Index offset = (last_multiple - bcast_dim_left_index) * + m_outputStrides[params.bcast_dim]; + + num_output_coeffs += BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, offset, scratch, + materialized_output, materialized_input, materialized_input_size); + } + } else { + // b and c do not exist. + const int copy_bcast_dim = + IsColMajor ? 2 * params.inner_dim_count + : 2 * NumDims - 2 * params.inner_dim_count - 1; + params.input_block_sizes[params.bcast_dim] = params.bcast_dim_size; + params.bcast_block_sizes[copy_bcast_dim] = params.bcast_dim_size; + params.bcast_input_strides[copy_bcast_dim] = + params.input_block_strides[params.bcast_dim]; + params.bcast_block_strides[copy_bcast_dim] = + params.output_strides[params.bcast_dim]; + + num_output_coeffs += BroadcastBlock( + params.input_block_sizes, params.input_block_strides, + params.bcast_block_sizes, params.bcast_block_strides, + params.bcast_input_strides, bcast_offset, 0, scratch, + materialized_output, materialized_input, materialized_input_size); + } + + return num_output_coeffs; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlock( + const Dimensions& input_block_sizes, + const Dimensions& input_block_strides, + const BroadcastDimensions& bcast_block_sizes, + const BroadcastDimensions& bcast_block_strides, + const BroadcastDimensions& bcast_input_strides, Index bcast_offset, + Index offset, TensorBlockScratch& scratch, + ScalarNoConst* materialized_output, ScalarNoConst** materialized_input, + size_t* materialized_input_size) const { + // ---------------------------------------------------------------------- // + // Tensor block descriptor for reading block from the input. + const Index input_offset = bcast_offset + offset; + TensorBlockDesc input_desc( + IsColMajor ? indexColMajor(input_offset) : indexRowMajor(input_offset), + input_block_sizes); + + ArgTensorBlock input_block = m_impl.block(input_desc, scratch); + + // ---------------------------------------------------------------------- // + // Materialize input block into a temporary memory buffer only if it's not + // already available in the arg block. + const ScalarNoConst* input_buffer = NULL; + + if (input_block.data() != NULL) { + // Input block already has raw data, there is no need to materialize it. + input_buffer = input_block.data(); + + } else { + // Otherwise we have to do block assignment into a temporary buffer. + + // Maybe reuse previously allocated buffer, or allocate a new one with a + // scratch allocator. + const size_t input_total_size = input_block_sizes.TotalSize(); + if (*materialized_input == NULL || + *materialized_input_size < input_total_size) { + *materialized_input_size = input_total_size; + void* mem = scratch.allocate(*materialized_input_size * sizeof(Scalar)); + *materialized_input = static_cast<ScalarNoConst*>(mem); + } + + typedef internal::TensorBlockAssignment< + ScalarNoConst, NumDims, typename ArgTensorBlock::XprType, Index> + TensorBlockAssignment; + + TensorBlockAssignment::Run( + TensorBlockAssignment::target(input_block_sizes, input_block_strides, + *materialized_input), + input_block.expr()); + + input_buffer = *materialized_input; + } + + // ---------------------------------------------------------------------- // + // Copy data from materialized input block to the materialized output, using + // given broadcast strides (strides with zeroes). + typedef internal::TensorBlockIO<ScalarNoConst, Index, 2 * NumDims, Layout> + TensorBlockIO; + + typename TensorBlockIO::Src src(bcast_input_strides, input_buffer); + typename TensorBlockIO::Dst dst(bcast_block_sizes, bcast_block_strides, + materialized_output + offset); + + return TensorBlockIO::Copy(dst, src); + } + +protected: + const Device EIGEN_DEVICE_REF m_device; + const typename internal::remove_reference<Broadcast>::type m_broadcast; + Dimensions m_dimensions; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims> m_inputStrides; + TensorEvaluator<ArgType, Device> m_impl; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorChipping.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorChipping.h new file mode 100644 index 0000000..3764573 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorChipping.h @@ -0,0 +1,518 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H +#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H + +namespace Eigen { + +/** \class TensorKChippingReshaping + * \ingroup CXX11_Tensor_Module + * + * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor. + * + * + */ + +namespace internal { +template<DenseIndex DimId, typename XprType> +struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions - 1; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<DenseIndex DimId, typename XprType> +struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> +{ + typedef const TensorChippingOp<DimId, XprType> EIGEN_DEVICE_REF type; +}; + +template<DenseIndex DimId, typename XprType> +struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> +{ + typedef TensorChippingOp<DimId, XprType> type; +}; + +template <DenseIndex DimId> +struct DimensionId +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) { + EIGEN_UNUSED_VARIABLE(dim); + eigen_assert(dim == DimId); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { + return DimId; + } +}; +template <> +struct DimensionId<Dynamic> +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { + eigen_assert(dim >= 0); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { + return actual_dim; + } + private: + const DenseIndex actual_dim; +}; + + +} // end namespace internal + + + +template<DenseIndex DimId, typename XprType> +class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > +{ + public: + typedef TensorBase<TensorChippingOp<DimId, XprType> > Base; + typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim) + : m_xpr(expr), m_offset(offset), m_dim(dim) { + } + + EIGEN_DEVICE_FUNC + const Index offset() const { return m_offset; } + EIGEN_DEVICE_FUNC + const Index dim() const { return m_dim.actualDim(); } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorChippingOp) + + protected: + typename XprType::Nested m_xpr; + const Index m_offset; + const internal::DimensionId<DimId> m_dim; +}; + + +// Eval as rvalue +template<DenseIndex DimId, typename ArgType, typename Device> +struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> +{ + typedef TensorChippingOp<DimId, ArgType> XprType; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumDims = NumInputDims-1; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + // Alignment can't be guaranteed at compile time since it depends on the + // slice offsets. + IsAligned = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, + // Chipping of outer-most dimension is a trivial operation, because we can + // read and write directly from the underlying tensor using single offset. + IsOuterChipping = (static_cast<int>(Layout) == ColMajor && DimId == NumInputDims - 1) || + (static_cast<int>(Layout) == RowMajor && DimId == 0), + // Chipping inner-most dimension. + IsInnerChipping = (static_cast<int>(Layout) == ColMajor && DimId == 0) || + (static_cast<int>(Layout) == RowMajor && DimId == NumInputDims - 1), + // Prefer block access if the underlying expression prefers it, otherwise + // only if chipping is not trivial. + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess || + !IsOuterChipping, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef internal::TensorBlockDescriptor<NumInputDims, Index> + ArgTensorBlockDesc; + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) + { + EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(NumInputDims > m_dim.actualDim()); + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + eigen_assert(op.offset() < input_dims[m_dim.actualDim()]); + + int j = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (i != m_dim.actualDim()) { + m_dimensions[j] = input_dims[i]; + ++j; + } + } + + m_stride = 1; + m_inputStride = 1; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < m_dim.actualDim(); ++i) { + m_stride *= input_dims[i]; + m_inputStride *= input_dims[i]; + } + } else { + for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) { + m_stride *= input_dims[i]; + m_inputStride *= input_dims[i]; + } + } + m_inputStride *= input_dims[m_dim.actualDim()]; + m_inputOffset = m_stride * op.offset(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_impl.coeff(srcCoeff(index)); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + if (isInnerChipping()) { + // m_stride is equal to 1, so let's avoid the integer division. + eigen_assert(m_stride == 1); + Index inputIndex = index * m_inputStride + m_inputOffset; + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = m_impl.coeff(inputIndex); + inputIndex += m_inputStride; + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } else if (isOuterChipping()) { + // m_stride is always greater than index, so let's avoid the integer division. + eigen_assert(m_stride > index); + return m_impl.template packet<LoadMode>(index + m_inputOffset); + } else { + const Index idx = index / m_stride; + const Index rem = index - idx * m_stride; + if (rem + PacketSize <= m_stride) { + Index inputIndex = idx * m_inputStride + m_inputOffset + rem; + return m_impl.template packet<LoadMode>(inputIndex); + } else { + // Cross the stride boundary. Fallback to slow path. + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index); + ++index; + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + double cost = 0; + if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && + m_dim.actualDim() == 0) || + (static_cast<int>(Layout) == static_cast<int>(RowMajor) && + m_dim.actualDim() == NumInputDims - 1)) { + cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>(); + } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && + m_dim.actualDim() == NumInputDims - 1) || + (static_cast<int>(Layout) == static_cast<int>(RowMajor) && + m_dim.actualDim() == 0)) { + cost += TensorOpCost::AddCost<Index>(); + } else { + cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + + 3 * TensorOpCost::AddCost<Index>(); + } + + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + const size_t target_size = m_device.lastLevelCacheSize(); + return internal::TensorBlockResourceRequirements::merge( + internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), + m_impl.getResourceRequirements()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool root_of_expr_ast = false) const { + const Index chip_dim = m_dim.actualDim(); + + DSizes<Index, NumInputDims> input_block_dims; + for (int i = 0; i < NumInputDims; ++i) { + input_block_dims[i] + = i < chip_dim ? desc.dimension(i) + : i > chip_dim ? desc.dimension(i - 1) + : 1; + } + + ArgTensorBlockDesc arg_desc(srcCoeff(desc.offset()), input_block_dims); + + // Try to reuse destination buffer for materializing argument block. + if (desc.HasDestinationBuffer()) { + DSizes<Index, NumInputDims> arg_destination_strides; + for (int i = 0; i < NumInputDims; ++i) { + arg_destination_strides[i] + = i < chip_dim ? desc.destination().strides()[i] + : i > chip_dim ? desc.destination().strides()[i - 1] + : 0; // for dimensions of size `1` stride should never be used. + } + + arg_desc.template AddDestinationBuffer<Layout>( + desc.destination().template data<ScalarNoConst>(), + arg_destination_strides); + } + + ArgTensorBlock arg_block = m_impl.block(arg_desc, scratch, root_of_expr_ast); + if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer(); + + if (arg_block.data() != NULL) { + // Forward argument block buffer if possible. + return TensorBlock(arg_block.kind(), arg_block.data(), + desc.dimensions()); + + } else { + // Assign argument block expression to a buffer. + + // Prepare storage for the materialized chipping result. + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage(desc, scratch); + + typedef internal::TensorBlockAssignment< + ScalarNoConst, NumInputDims, typename ArgTensorBlock::XprType, Index> + TensorBlockAssignment; + + TensorBlockAssignment::Run( + TensorBlockAssignment::target( + arg_desc.dimensions(), + internal::strides<Layout>(arg_desc.dimensions()), + block_storage.data()), + arg_block.expr()); + + return block_storage.AsTensorMaterializedBlock(); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { + typename Storage::Type result = constCast(m_impl.data()); + if (isOuterChipping() && result) { + return result + m_inputOffset; + } else { + return NULL; + } + } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const + { + Index inputIndex; + if (isInnerChipping()) { + // m_stride is equal to 1, so let's avoid the integer division. + eigen_assert(m_stride == 1); + inputIndex = index * m_inputStride + m_inputOffset; + } else if (isOuterChipping()) { + // m_stride is always greater than index, so let's avoid the integer + // division. + eigen_assert(m_stride > index); + inputIndex = index + m_inputOffset; + } else { + const Index idx = index / m_stride; + inputIndex = idx * m_inputStride + m_inputOffset; + index -= idx * m_stride; + inputIndex += index; + } + return inputIndex; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isInnerChipping() const { + return IsInnerChipping || + (static_cast<int>(Layout) == ColMajor && m_dim.actualDim() == 0) || + (static_cast<int>(Layout) == RowMajor && m_dim.actualDim() == NumInputDims - 1); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isOuterChipping() const { + return IsOuterChipping || + (static_cast<int>(Layout) == ColMajor && m_dim.actualDim() == NumInputDims-1) || + (static_cast<int>(Layout) == RowMajor && m_dim.actualDim() == 0); + } + + Dimensions m_dimensions; + Index m_stride; + Index m_inputOffset; + Index m_inputStride; + TensorEvaluator<ArgType, Device> m_impl; + const internal::DimensionId<DimId> m_dim; + const Device EIGEN_DEVICE_REF m_device; +}; + + +// Eval as lvalue +template<DenseIndex DimId, typename ArgType, typename Device> +struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device> + : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> +{ + typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base; + typedef TensorChippingOp<DimId, ArgType> XprType; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumDims = NumInputDims-1; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + return this->m_impl.coeffRef(this->srcCoeff(index)); + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + + if (this->isInnerChipping()) { + // m_stride is equal to 1, so let's avoid the integer division. + eigen_assert(this->m_stride == 1); + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + Index inputIndex = index * this->m_inputStride + this->m_inputOffset; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + this->m_impl.coeffRef(inputIndex) = values[i]; + inputIndex += this->m_inputStride; + } + } else if (this->isOuterChipping()) { + // m_stride is always greater than index, so let's avoid the integer division. + eigen_assert(this->m_stride > index); + this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x); + } else { + const Index idx = index / this->m_stride; + const Index rem = index - idx * this->m_stride; + if (rem + PacketSize <= this->m_stride) { + const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem; + this->m_impl.template writePacket<StoreMode>(inputIndex, x); + } else { + // Cross stride boundary. Fallback to slow path. + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + this->coeffRef(index) = values[i]; + ++index; + } + } + } + } + + template <typename TensorBlock> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( + const TensorBlockDesc& desc, const TensorBlock& block) { + assert(this->m_impl.data() != NULL); + + const Index chip_dim = this->m_dim.actualDim(); + + DSizes<Index, NumInputDims> input_block_dims; + for (int i = 0; i < NumInputDims; ++i) { + input_block_dims[i] = i < chip_dim ? desc.dimension(i) + : i > chip_dim ? desc.dimension(i - 1) + : 1; + } + + typedef TensorReshapingOp<const DSizes<Index, NumInputDims>, + const typename TensorBlock::XprType> + TensorBlockExpr; + + typedef internal::TensorBlockAssignment<Scalar, NumInputDims, + TensorBlockExpr, Index> + TensorBlockAssign; + + TensorBlockAssign::Run( + TensorBlockAssign::target( + input_block_dims, + internal::strides<Layout>(this->m_impl.dimensions()), + this->m_impl.data(), this->srcCoeff(desc.offset())), + block.expr().reshape(input_block_dims)); + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorConcatenation.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorConcatenation.h new file mode 100644 index 0000000..5235a8e --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorConcatenation.h @@ -0,0 +1,377 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H + +namespace Eigen { + +/** \class TensorConcatenationOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor concatenation class. + * + * + */ +namespace internal { +template<typename Axis, typename LhsXprType, typename RhsXprType> +struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename promote_storage_type<typename LhsXprType::Scalar, + typename RhsXprType::Scalar>::ret Scalar; + typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, + typename traits<RhsXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type<typename traits<LhsXprType>::Index, + typename traits<RhsXprType>::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + static const int NumDimensions = traits<LhsXprType>::NumDimensions; + static const int Layout = traits<LhsXprType>::Layout; + enum { Flags = 0 }; + typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val, + typename traits<LhsXprType>::PointerType, typename traits<RhsXprType>::PointerType>::type PointerType; +}; + +template<typename Axis, typename LhsXprType, typename RhsXprType> +struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense> +{ + typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type; +}; + +template<typename Axis, typename LhsXprType, typename RhsXprType> +struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type> +{ + typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type; +}; + +} // end namespace internal + + +template<typename Axis, typename LhsXprType, typename RhsXprType> +class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> +{ + public: + typedef TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> Base; + typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar; + typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind; + typedef typename internal::traits<TensorConcatenationOp>::Index Index; + typedef typename internal::nested<TensorConcatenationOp>::type Nested; + typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType, + typename RhsXprType::CoeffReturnType>::ret CoeffReturnType; + typedef typename NumTraits<Scalar>::Real RealScalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis) + : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename LhsXprType::Nested>::type& + lhsExpression() const { return m_lhs_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename RhsXprType::Nested>::type& + rhsExpression() const { return m_rhs_xpr; } + + EIGEN_DEVICE_FUNC const Axis& axis() const { return m_axis; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorConcatenationOp) + protected: + typename LhsXprType::Nested m_lhs_xpr; + typename RhsXprType::Nested m_rhs_xpr; + const Axis m_axis; +}; + + +// Eval as rvalue +template<typename Axis, typename LeftArgType, typename RightArgType, typename Device> +struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> +{ + typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value; + static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess && + TensorEvaluator<RightArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<LeftArgType, Device>::PreferBlockAccess || + TensorEvaluator<RightArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis()) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + + eigen_assert(0 <= m_axis && m_axis < NumDims); + const Dimensions& lhs_dims = m_leftImpl.dimensions(); + const Dimensions& rhs_dims = m_rightImpl.dimensions(); + { + int i = 0; + for (; i < m_axis; ++i) { + eigen_assert(lhs_dims[i] > 0); + eigen_assert(lhs_dims[i] == rhs_dims[i]); + m_dimensions[i] = lhs_dims[i]; + } + eigen_assert(lhs_dims[i] > 0); // Now i == m_axis. + eigen_assert(rhs_dims[i] > 0); + m_dimensions[i] = lhs_dims[i] + rhs_dims[i]; + for (++i; i < NumDims; ++i) { + eigen_assert(lhs_dims[i] > 0); + eigen_assert(lhs_dims[i] == rhs_dims[i]); + m_dimensions[i] = lhs_dims[i]; + } + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_leftStrides[0] = 1; + m_rightStrides[0] = 1; + m_outputStrides[0] = 1; + + for (int j = 1; j < NumDims; ++j) { + m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1]; + m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1]; + m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1]; + } + } else { + m_leftStrides[NumDims - 1] = 1; + m_rightStrides[NumDims - 1] = 1; + m_outputStrides[NumDims - 1] = 1; + + for (int j = NumDims - 2; j >= 0; --j) { + m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1]; + m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1]; + m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear? + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) + { + m_leftImpl.evalSubExprsIfNeeded(NULL); + m_rightImpl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() + { + m_leftImpl.cleanup(); + m_rightImpl.cleanup(); + } + + // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow. + // See CL/76180724 comments for more ideas. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Collect dimension-wise indices (subs). + array<Index, NumDims> subs; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + subs[i] = index / m_outputStrides[i]; + index -= subs[i] * m_outputStrides[i]; + } + subs[0] = index; + } else { + for (int i = 0; i < NumDims - 1; ++i) { + subs[i] = index / m_outputStrides[i]; + index -= subs[i] * m_outputStrides[i]; + } + subs[NumDims - 1] = index; + } + + const Dimensions& left_dims = m_leftImpl.dimensions(); + if (subs[m_axis] < left_dims[m_axis]) { + Index left_index; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + left_index = subs[0]; + EIGEN_UNROLL_LOOP + for (int i = 1; i < NumDims; ++i) { + left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; + } + } else { + left_index = subs[NumDims - 1]; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 2; i >= 0; --i) { + left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; + } + } + return m_leftImpl.coeff(left_index); + } else { + subs[m_axis] -= left_dims[m_axis]; + const Dimensions& right_dims = m_rightImpl.dimensions(); + Index right_index; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + right_index = subs[0]; + EIGEN_UNROLL_LOOP + for (int i = 1; i < NumDims; ++i) { + right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; + } + } else { + right_index = subs[NumDims - 1]; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 2; i >= 0; --i) { + right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; + } + } + return m_rightImpl.coeff(right_index); + } + } + + // TODO(phli): Add a real vectorization. + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + const int packetSize = PacketType<CoeffReturnType, Device>::size; + EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < packetSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + + 2 * TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>() + + TensorOpCost::ModCost<Index>()); + const double lhs_size = m_leftImpl.dimensions().TotalSize(); + const double rhs_size = m_rightImpl.dimensions().TotalSize(); + return (lhs_size / (lhs_size + rhs_size)) * + m_leftImpl.costPerCoeff(vectorized) + + (rhs_size / (lhs_size + rhs_size)) * + m_rightImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + #ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_leftImpl.bind(cgh); + m_rightImpl.bind(cgh); + } + #endif + + protected: + Dimensions m_dimensions; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims> m_leftStrides; + array<Index, NumDims> m_rightStrides; + TensorEvaluator<LeftArgType, Device> m_leftImpl; + TensorEvaluator<RightArgType, Device> m_rightImpl; + const Axis m_axis; +}; + +// Eval as lvalue +template<typename Axis, typename LeftArgType, typename RightArgType, typename Device> + struct TensorEvaluator<TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> + : public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> +{ + typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base; + typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType; + typedef typename Base::Dimensions Dimensions; + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess && + TensorEvaluator<RightArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<LeftArgType, Device>::PreferBlockAccess || + TensorEvaluator<RightArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(XprType& op, const Device& device) + : Base(op, device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(Layout) == static_cast<int>(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE); + } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + // Collect dimension-wise indices (subs). + array<Index, Base::NumDims> subs; + for (int i = Base::NumDims - 1; i > 0; --i) { + subs[i] = index / this->m_outputStrides[i]; + index -= subs[i] * this->m_outputStrides[i]; + } + subs[0] = index; + + const Dimensions& left_dims = this->m_leftImpl.dimensions(); + if (subs[this->m_axis] < left_dims[this->m_axis]) { + Index left_index = subs[0]; + for (int i = 1; i < Base::NumDims; ++i) { + left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i]; + } + return this->m_leftImpl.coeffRef(left_index); + } else { + subs[this->m_axis] -= left_dims[this->m_axis]; + const Dimensions& right_dims = this->m_rightImpl.dimensions(); + Index right_index = subs[0]; + for (int i = 1; i < Base::NumDims; ++i) { + right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i]; + } + return this->m_rightImpl.coeffRef(right_index); + } + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + const int packetSize = PacketType<CoeffReturnType, Device>::size; + EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize()); + + EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + for (int i = 0; i < packetSize; ++i) { + coeffRef(index+i) = values[i]; + } + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContraction.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContraction.h new file mode 100644 index 0000000..8b35f79 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContraction.h @@ -0,0 +1,1023 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H + +namespace Eigen { + +/** \class TensorContraction + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor contraction class. + * + * + */ +namespace internal { + +template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> +struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type, + typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar; + + typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, + typename traits<RhsXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type<typename traits<LhsXprType>::Index, + typename traits<RhsXprType>::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + + // From NumDims below. + static const int NumDimensions = traits<LhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value; + static const int Layout = traits<LhsXprType>::Layout; + typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val, + typename traits<LhsXprType>::PointerType, + typename traits<RhsXprType>::PointerType>::type + PointerType; + + enum { + Flags = 0 + }; +}; + +template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> +struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense> +{ + typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type; +}; + +template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> +struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type> +{ + typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type; +}; + +template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_> +struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > { + typedef Indices_ Indices; + typedef LeftArgType_ LeftArgType; + typedef RightArgType_ RightArgType; + typedef OutputKernelType_ OutputKernelType; + typedef Device_ Device; + + // From NumDims below. + static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value; +}; + +// Helper class to allocate and deallocate temporary memory for packed buffers. +template <typename LhsScalar, typename RhsScalar> +struct TensorContractionBlockMemAllocator { + typedef void* BlockMemHandle; + + template <typename Device> + EIGEN_DEVICE_FUNC static BlockMemHandle allocate(Device& d, const Index bm, + const Index bk, + const Index bn, + LhsScalar** lhs_block, + RhsScalar** rhs_block) { + eigen_assert(lhs_block); + eigen_assert(rhs_block); + BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn); + char* block_mem = static_cast<char*>(d.allocate(sz.lhs_size + sz.rhs_size)); + eigen_assert(block_mem); + *lhs_block = reinterpret_cast<LhsScalar*>(block_mem); + *rhs_block = reinterpret_cast<RhsScalar*>(block_mem + sz.lhs_size); + return block_mem; + } + + template <typename Device> + EIGEN_DEVICE_FUNC static BlockMemHandle allocateSlices( + Device& d, const Index bm, const Index bk, const Index bn, + const Index num_lhs, const Index num_rhs, const Index num_slices, + std::vector<LhsScalar*>* lhs_blocks, + std::vector<RhsScalar*>* rhs_blocks) { + eigen_assert(num_slices > 0); + eigen_assert(num_lhs >= 0 && num_rhs >= 0); + eigen_assert(num_lhs == 0 || lhs_blocks); + eigen_assert(num_rhs == 0 || rhs_blocks); + BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn); + void* block_mem = d.allocate( + (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices); + eigen_assert(block_mem); + char* mem = static_cast<char*>(block_mem); + + for (Index x = 0; x < num_slices; x++) { + if (num_lhs > 0) lhs_blocks[x].resize(num_lhs); + for (Index m = 0; m < num_lhs; m++) { + lhs_blocks[x][m] = reinterpret_cast<LhsScalar*>(mem); + mem += sz.lhs_size; + } + if (num_rhs > 0) rhs_blocks[x].resize(num_rhs); + for (Index n = 0; n < num_rhs; n++) { + rhs_blocks[x][n] = reinterpret_cast<RhsScalar*>(mem); + mem += sz.rhs_size; + } + } + + return block_mem; + } + + template <typename Device> + EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) { + d.deallocate(handle); + } + + private: + struct BlockSizes { + Index lhs_size; + Index rhs_size; + }; + EIGEN_DEVICE_FUNC static BlockSizes ComputeLhsRhsBlockSizes(const Index bm, + const Index bk, + const Index bn) { + Index align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1); + BlockSizes sz; + sz.lhs_size = divup<Index>(bm * bk * sizeof(LhsScalar), align) * align; + sz.rhs_size = divup<Index>(bn * bk * sizeof(RhsScalar), align) * align; + return sz; + } +}; + +// WARNING: In this code we assume that Lhs and Rhs tensor expressions are in +// ColMajor storage order. This property is guaranteed by the +// TensorContractionOp evaluator. TensorContractionKernel specifies how we pack +// blocks of Lhs and Rhs tensor expressions, and how we invoke matrix +// multiplication for these blocks. Default tensor contraction uses +// gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see +// GeneralBlocPanelKernel.h for details). +// +// By specializing contraction kernels we can use other low level libraries to +// perform matrix multiplication, and still rely on Eigen contraction evaluator. +// This also includes full support in TensorContractionThreadPool, assuming that +// underlying gemm do not use it's own threading. +// +// - ResScalar/LhsScalar/RhsScalar - scalar type for the result of +// multiplication, lhs tensor and rhs tensor respectively. +// +// - StorageIndex - index type for the tensor expressions. In practice almost +// always is Eigen::Index. +// +// - OutputMapper provides access to the memory of the output matrix. In +// practice it's always column major blas_data_mapper (it must be of ResScalar +// type). +// +// - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional +// view into the Lhs/Rhs tensor expressions. In practice it's +// TensorContractionInputMapper, or some specialization of it based on the +// type of tensor expression (e.g. TensorImagePatchOp has optimized input +// mapper). +template <typename ResScalar, typename LhsScalar, typename RhsScalar, + typename StorageIndex, typename OutputMapper, typename LhsMapper, + typename RhsMapper> +struct TensorContractionKernel { + // True if `invoke()` supports `beta` in `C <- alpha * A * B + beta * C` + // (otherwise beta should be always equal to 1). + enum { HasBeta = false }; + + EIGEN_DEVICE_FUNC + TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_, + StorageIndex bm_, StorageIndex bk_, StorageIndex bn_) + : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {} + + // Pack blocks of Lhs and Rhs into contiguous blocks in memory. + typedef LhsScalar* LhsBlock; + typedef RhsScalar* RhsBlock; + + // Packed Lhs/Rhs block memory allocator. + typedef TensorContractionBlockMemAllocator<LhsScalar, RhsScalar> + BlockMemAllocator; + typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle; + + typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits; + + typedef internal::gemm_pack_lhs< + LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr, + Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> + LhsPacker; + + typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex, + typename RhsMapper::SubMapper, Traits::nr, + ColMajor> + RhsPacker; + + typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex, + OutputMapper, Traits::mr, Traits::nr, + /*ConjugateLhs*/ false, /*ConjugateRhs*/ false> + GebpKernel; + + template <typename Device> + EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device& d, LhsBlock* lhs_block, + RhsBlock* rhs_block) { + return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block); + } + + template <typename Device> + EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices( + Device& d, const StorageIndex num_lhs, const StorageIndex num_rhs, + const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks, + std::vector<RhsBlock>* rhs_blocks) { + return BlockMemAllocator::allocateSlices( + d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks); + } + + template <typename Device> + EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) { + BlockMemAllocator::deallocate(d, handle); + } + + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packLhs( + LhsBlock* lhsBlock, const typename LhsMapper::SubMapper& data_mapper, + const StorageIndex depth, const StorageIndex rows) { + LhsPacker()(*lhsBlock, data_mapper, depth, rows, /*stride*/ 0, + /*offset*/ 0); + } + + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packRhs( + RhsBlock* rhsBlock, const typename RhsMapper::SubMapper& data_mapper, + const StorageIndex depth, const StorageIndex cols) { + RhsPacker()(*rhsBlock, data_mapper, depth, cols); + } + + EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void invoke( + const OutputMapper& output_mapper, const LhsBlock& lhsBlock, + const RhsBlock& rhsBlock, const StorageIndex rows, + const StorageIndex depth, const StorageIndex cols, + const ResScalar alpha, const ResScalar beta) { + // Default GEBP kernel does not support beta. + eigen_assert(beta == ResScalar(1)); + static const int kComputeStrideFromBlockDimensions = -1; + GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha, + /*strideA*/ kComputeStrideFromBlockDimensions, + /*strideB*/ kComputeStrideFromBlockDimensions, + /*offsetA*/ 0, /*offsetB*/ 0); + } + + private: + // These are dimensions of the original Tensors, and selected block sizes. The + // actual block sizes passed to all function above might be smaller because of + // the partial blocks at the end. + const StorageIndex m; + const StorageIndex k; + const StorageIndex n; + const StorageIndex bm; + const StorageIndex bk; + const StorageIndex bn; +}; + +} // end namespace internal + +// Tensor contraction params that should enable to get from output matrix +// 2-dimensional coordinates to the output tensor dimensions. +struct TensorContractionParams { + // TensorContraction evaluator assumes that both tensors are in ColMajor + // layout, if tensors are in RowMajor evaluator swap lhs with rhs. + bool swapped_arguments; +}; + +// Output kernel allows to fuse operations into the tensor contraction. +// +// Examples: +// 1. Elementwise Relu transformation following Conv2D. +// 2. AddBias to the Conv2D output channels dimension. +// +// The NoOpOutputKernel implements an output kernel that does absolutely nothing. +struct NoOpOutputKernel { + /** + * Tensor contraction evaluator calls this kernel after finishing each block + * of output matrix. Output blocks belong to the 2-dimensional output tensor. + * + * TensorContractionParams contains contraction dimensions information + * required to map output 2-d space into the expected output tensor space + * (potentially higher dimensional). + * + * \param[in] output_mapper Access to output tensor memory + * \param[in] params Tensor contraction parameters + * \param[in] i Index of a first row available through output_mapper + * \param[in] j Index of a first column available through output_mapper + * \param[in] num_rows Number of available rows + * \param[in] num_cols Number of available columns + */ + template <typename Index, typename Scalar> + EIGEN_ALWAYS_INLINE void operator()( + const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper, + const TensorContractionParams& params, Index i, + Index j, Index num_rows, Index num_cols) const { + EIGEN_UNUSED_VARIABLE(output_mapper); + EIGEN_UNUSED_VARIABLE(params); + EIGEN_UNUSED_VARIABLE(i); + EIGEN_UNUSED_VARIABLE(j); + EIGEN_UNUSED_VARIABLE(num_rows); + EIGEN_UNUSED_VARIABLE(num_cols); + } +}; + +template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType = const NoOpOutputKernel> +class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar; + typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType, + typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType; + typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested; + typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp( + const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims, + const OutputKernelType& output_kernel = OutputKernelType()) + : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims), + m_output_kernel(output_kernel) {} + + EIGEN_DEVICE_FUNC + const Indices& indices() const { return m_indices; } + + /** \returns the nested expressions */ + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename LhsXprType::Nested>::type& + lhsExpression() const { return m_lhs_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename RhsXprType::Nested>::type& + rhsExpression() const { return m_rhs_xpr; } + + EIGEN_DEVICE_FUNC + const OutputKernelType& outputKernel() const { return m_output_kernel; } + + protected: + typename LhsXprType::Nested m_lhs_xpr; + typename RhsXprType::Nested m_rhs_xpr; + const Indices m_indices; + const OutputKernelType m_output_kernel; +}; + + +template<typename Derived> +struct TensorContractionEvaluatorBase : internal::no_assignment_operator +{ + typedef typename internal::traits<Derived>::Indices Indices; + typedef typename internal::traits<Derived>::LeftArgType LeftArgType; + typedef typename internal::traits<Derived>::RightArgType RightArgType; + typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType; + typedef typename internal::traits<Derived>::Device Device; + + typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::Index Index; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = true, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = true + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + // Most of the code is assuming that both input tensors are ColMajor. If the + // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: + // If we want to compute A * B = C, where A is LHS and B is RHS, the code + // will pretend B is LHS and A is RHS. + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; + + typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluatorType; + typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluatorType; + + static const int LDims = + internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; + static const int RDims = + internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; + static const int ContractDims = internal::array_size<Indices>::value; + static const int NumDims = LDims + RDims - 2 * ContractDims; + + typedef array<Index, ContractDims> contract_t; + typedef array<Index, LDims - ContractDims> left_nocontract_t; + typedef array<Index, RDims - ContractDims> right_nocontract_t; + + typedef DSizes<Index, NumDims> Dimensions; + + EIGEN_STRONG_INLINE + TensorContractionEvaluatorBase(const XprType& op, const Device& device) + : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), + op.lhsExpression(), op.rhsExpression()), device), + m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), + op.rhsExpression(), op.lhsExpression()), device), + m_device(device), + m_output_kernel(op.outputKernel()), + m_result(NULL) { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == + static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), + YOU_MADE_A_PROGRAMMING_MISTAKE); + + + DSizes<Index, LDims> eval_left_dims; + DSizes<Index, RDims> eval_right_dims; + array<IndexPair<Index>, ContractDims> eval_op_indices; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + // For ColMajor, we keep using the existing dimensions + for (int i = 0; i < LDims; i++) { + eval_left_dims[i] = m_leftImpl.dimensions()[i]; + } + for (int i = 0; i < RDims; i++) { + eval_right_dims[i] = m_rightImpl.dimensions()[i]; + } + // We keep the pairs of contracting indices. + for (int i = 0; i < ContractDims; i++) { + eval_op_indices[i].first = op.indices()[i].first; + eval_op_indices[i].second = op.indices()[i].second; + } + } else { + // For RowMajor, we need to reverse the existing dimensions + for (int i = 0; i < LDims; i++) { + eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1]; + } + for (int i = 0; i < RDims; i++) { + eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1]; + } + // We need to flip all the pairs of contracting indices as well as + // reversing the dimensions. + for (int i = 0; i < ContractDims; i++) { + eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second; + eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first; + } + } + + // Check for duplicate axes and make sure the first index in eval_op_indices + // is increasing. Using O(n^2) sorting is OK since ContractDims is small + for (int i = 0; i < ContractDims; i++) { + for (int j = i + 1; j < ContractDims; j++) { + eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first && + eval_op_indices[j].second != eval_op_indices[i].second && + "contraction axes should be unique"); + if (eval_op_indices[j].first < eval_op_indices[i].first) { + numext::swap(eval_op_indices[j], eval_op_indices[i]); + } + } + } + + array<Index, LDims> lhs_strides; + lhs_strides[0] = 1; + for (int i = 0; i < LDims-1; ++i) { + lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i]; + } + + array<Index, RDims> rhs_strides; + rhs_strides[0] = 1; + for (int i = 0; i < RDims-1; ++i) { + rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i]; + } + + if (m_i_strides.size() > 0) m_i_strides[0] = 1; + if (m_j_strides.size() > 0) m_j_strides[0] = 1; + if (m_k_strides.size() > 0) m_k_strides[0] = 1; + + m_i_size = 1; + m_j_size = 1; + m_k_size = 1; + + // To compute the dimension, we simply concatenate the non-contracting + // dimensions of the left and then the right tensor. Additionally, we also + // compute the strides corresponding to the left non-contracting + // dimensions and right non-contracting dimensions. + m_lhs_inner_dim_contiguous = true; + int dim_idx = 0; + Index nocontract_idx = 0; + + for (int i = 0; i < LDims; i++) { + // find if we are contracting on index i of left tensor + bool contracting = false; + for (int j = 0; j < ContractDims; j++) { + if (eval_op_indices[j].first == i) { + contracting = true; + break; + } + } + if (!contracting) { + // add dimension size to output dimensions + m_dimensions[dim_idx] = eval_left_dims[i]; + m_left_nocontract_strides[nocontract_idx] = lhs_strides[i]; + if (dim_idx != i) { + m_lhs_inner_dim_contiguous = false; + } + if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) { + m_i_strides[nocontract_idx+1] = + m_i_strides[nocontract_idx] * eval_left_dims[i]; + } else { + m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i]; + } + dim_idx++; + nocontract_idx++; + } + } + + nocontract_idx = 0; + for (int i = 0; i < RDims; i++) { + bool contracting = false; + // find if we are contracting on index i of right tensor + for (int j = 0; j < ContractDims; j++) { + if (eval_op_indices[j].second == i) { + contracting = true; + break; + } + } + if (!contracting) { + m_dimensions[dim_idx] = eval_right_dims[i]; + if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) { + m_j_strides[nocontract_idx+1] = + m_j_strides[nocontract_idx] * eval_right_dims[i]; + } else { + m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i]; + } + m_right_nocontract_strides[nocontract_idx] = rhs_strides[i]; + dim_idx++; + nocontract_idx++; + } + } + + // Now compute the strides corresponding to the contracting dimensions. We + // assumed above that non-contracting axes are represented in the same order + // in the matrix as they are in the tensor. This is not the case for + // contracting axes. As the contracting axes must be of the same size in + // each tensor, we'll only look at the first tensor here. + m_rhs_inner_dim_contiguous = true; + m_rhs_inner_dim_reordered = false; + for (int i = 0; i < ContractDims; i++) { + Index left = eval_op_indices[i].first; + Index right = eval_op_indices[i].second; + + Index size = eval_left_dims[left]; + eigen_assert(size == eval_right_dims[right] && + "Contraction axes must be same size"); + + if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) { + m_k_strides[i+1] = m_k_strides[i] * size; + } else { + m_k_size = m_k_strides[i] * size; + } + m_left_contracting_strides[i] = lhs_strides[left]; + m_right_contracting_strides[i] = rhs_strides[right]; + + if (i > 0 && right < eval_op_indices[i-1].second) { + m_rhs_inner_dim_reordered = true; + } + if (right != i) { + m_rhs_inner_dim_contiguous = false; + } + } + + // If the layout is RowMajor, we need to reverse the m_dimensions + if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) { + for (int i = 0, j = NumDims - 1; i < j; i++, j--) { + numext::swap(m_dimensions[i], m_dimensions[j]); + } + } + + // A set of parameters that will allow output kernel to get from output + // tensor dimensions (i, j) into the original tensor dimensions. + // TODO(ezhulenev): Add parameters required to infer output tensor index for + // more complex contractions than 2x2 on internal dimension. + m_tensor_contraction_params.swapped_arguments = static_cast<int>(Layout) == RowMajor; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + m_leftImpl.evalSubExprsIfNeeded(NULL); + m_rightImpl.evalSubExprsIfNeeded(NULL); + if (data) { + evalTo(data); + return false; + } else { + m_result = static_cast<EvaluatorPointerType>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); + evalTo(m_result); + return true; + } + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType dest, EvalSubExprsCallback done) { + m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) { + m_rightImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) { + if (dest) { + evalToAsync(dest, [done]() { done(false); }); + } else { + m_result = static_cast<EvaluatorPointerType>( + m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); + evalToAsync(m_result, [done]() { done(true); }); + } + }); + }); + } +#endif // EIGEN_USE_THREADS + +#ifndef TENSOR_CONTRACTION_DISPATCH +#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \ + if (this->m_lhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_reordered) { \ + METHOD<true, true, true, ALIGNMENT> ARGS; \ + } else { \ + METHOD<true, true, false, ALIGNMENT> ARGS; \ + } \ + } else { \ + if (this->m_rhs_inner_dim_reordered) { \ + METHOD<true, false, true, ALIGNMENT> ARGS; \ + } else { \ + METHOD<true, false, false, ALIGNMENT> ARGS; \ + } \ + } \ + } else { \ + if (this->m_rhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_reordered) { \ + METHOD<false, true, true, ALIGNMENT> ARGS; \ + } else { \ + METHOD<false, true, false, ALIGNMENT> ARGS; \ + } \ + } else { \ + if (this->m_rhs_inner_dim_reordered) { \ + METHOD<false, false, true, ALIGNMENT> ARGS; \ + } else { \ + METHOD<false, false, false, ALIGNMENT> ARGS; \ + } \ + } \ + } +#endif + +#ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH +#define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \ + if (this->m_lhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_reordered) { \ + (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \ + } else { \ + (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \ + } \ + } else { \ + if (this->m_rhs_inner_dim_reordered) { \ + (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \ + } else { \ + (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \ + } \ + } \ + } else { \ + if (this->m_rhs_inner_dim_contiguous) { \ + if (this->m_rhs_inner_dim_reordered) { \ + (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \ + } else { \ + (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \ + } \ + } else { \ + if (this->m_rhs_inner_dim_reordered) { \ + (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \ + } else { \ + (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \ + } \ + } \ + } +#endif + + EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const { + static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer); + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalToCallback> + void evalToAsync(Scalar* buffer, EvalToCallback done) const { + static_cast<const Derived*>(this) + ->template evalProductAsync<EvalToCallback, Unaligned>(buffer, + std::move(done)); + } +#endif // EIGEN_USE_THREADS + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, + bool rhs_inner_dim_reordered, int Alignment> + void evalProductSequential(Scalar* buffer) const { + if (this->m_j_size == 1) { + this->template evalGemv<lhs_inner_dim_contiguous, + rhs_inner_dim_contiguous, rhs_inner_dim_reordered, + Alignment>(buffer); + } else { + this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, Alignment>(buffer); + } + } + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> + #if !defined(EIGEN_HIPCC) + EIGEN_DEVICE_FUNC + #endif + void evalGemv(Scalar* buffer) const { + const Index rows = m_i_size; + const Index cols = m_k_size; + + typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; + typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; + typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; + typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; + const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; + const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; + const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned; + const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned; + typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, + LeftEvaluator, left_nocontract_t, + contract_t, lhs_packet_size, + lhs_inner_dim_contiguous, + false, lhs_alignment> LhsMapper; + + typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, + RightEvaluator, right_nocontract_t, + contract_t, rhs_packet_size, + rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, rhs_alignment> RhsMapper; + + LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides, + m_left_contracting_strides, m_k_strides); + RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides, + m_right_contracting_strides, m_k_strides); + + const Scalar alpha(1); + const Index resIncr(1); + + // zero out the result buffer (which must be of size at least rows * sizeof(Scalar) + m_device.memset(buffer, 0, rows * sizeof(Scalar)); + + internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run( + rows, cols, lhs, rhs, + buffer, resIncr, alpha); + + typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; + m_output_kernel(OutputMapper(buffer, rows), m_tensor_contraction_params, + static_cast<Index>(0), static_cast<Index>(0), rows, + static_cast<Index>(1)); + } + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> + #if !defined(EIGEN_HIPCC) + EIGEN_DEVICE_FUNC + #endif + void evalGemm(Scalar* buffer) const { + // columns in left side, rows in right side + const Index k = this->m_k_size; + this->template evalGemmPartial<lhs_inner_dim_contiguous, + rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, + Alignment, true>(buffer, 0, k, 1); + } + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, + bool rhs_inner_dim_reordered, int Alignment> + EIGEN_DEVICE_FUNC void evalGemmPartialWithoutOutputKernel( + Scalar* buffer, Index k_start, Index k_end, int num_threads) const { + evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, Alignment, + /*use_output_kernel*/ false>(buffer, k_start, k_end, + num_threads); + } + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment, bool use_output_kernel> + EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const { + eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size); + // columns in slice on left side, rows on right side + const Index k_slice = k_end - k_start; + + // rows in left side + const Index m = this->m_i_size; + + // columns in right side + const Index n = this->m_j_size; + + // define data mappers for Lhs and Rhs + typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; + typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; + + typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; + typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; + + const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; + const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; + + typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, + LeftEvaluator, left_nocontract_t, + contract_t, lhs_packet_size, + lhs_inner_dim_contiguous, + false, Unaligned> LhsMapper; + + typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, + RightEvaluator, right_nocontract_t, + contract_t, rhs_packet_size, + rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, Unaligned> RhsMapper; + + typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; + + typedef internal::TensorContractionKernel< + Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper> + TensorContractionKernel; + + // initialize data mappers + LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, + this->m_left_contracting_strides, this->m_k_strides); + + RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, + this->m_right_contracting_strides, this->m_k_strides); + + OutputMapper output(buffer, m); + + // Sizes of the blocks to load in cache. See the Goto paper for details. + internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, + Index, internal::ShardByCol> + blocking(k_slice, m, n, num_threads); + const Index kc = blocking.kc(); + const Index mc = numext::mini(m, blocking.mc()); + const Index nc = numext::mini(n, blocking.nc()); + + typedef typename TensorContractionKernel::LhsBlock LhsBlock; + typedef typename TensorContractionKernel::RhsBlock RhsBlock; + + LhsBlock blockA; + RhsBlock blockB; + + TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc); + + typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle; + const BlockMemHandle packed_mem = + kernel.allocate(this->m_device, &blockA, &blockB); + + // If a contraction kernel does not support beta, explicitly initialize + // output buffer with zeroes. + if (!TensorContractionKernel::HasBeta) { + this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); + } + + for(Index i2=0; i2<m; i2+=mc) + { + const Index actual_mc = numext::mini(i2+mc,m)-i2; + for (Index k2 = k_start; k2 < k_end; k2 += kc) { + // make sure we don't overshoot right edge of left matrix, then pack vertical panel + const Index actual_kc = numext::mini(k2 + kc, k_end) - k2; + kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); + + // If kernel supports beta, there is no need to initialize output + // buffer with zeroes. + const Scalar alpha = Scalar(1); + const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start) + ? Scalar(0) + : Scalar(1); + + // series of horizontal blocks + for (Index j2 = 0; j2 < n; j2 += nc) { + // make sure we don't overshoot right edge of right matrix, then pack block + const Index actual_nc = numext::mini(j2 + nc, n) - j2; + kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc, + actual_nc); + + // call gebp (matrix kernel) + // The parameters here are copied from Eigen's GEMM implementation + const OutputMapper output_mapper = output.getSubMapper(i2, j2); + kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc, + actual_nc, alpha, beta); + + // We are done with this [i2, j2] output block. + if (use_output_kernel && k2 + kc >= k_end) { + m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2, + actual_mc, actual_nc); + } + } + } + } + + kernel.deallocate(this->m_device, packed_mem); + } + + EIGEN_STRONG_INLINE void cleanup() { + m_leftImpl.cleanup(); + m_rightImpl.cleanup(); + + if (m_result != NULL) { + m_device.deallocate(m_result); + m_result = NULL; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + return m_result[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { + return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return m_result; } + +protected: + Dimensions m_dimensions; + + contract_t m_k_strides; + contract_t m_left_contracting_strides; + contract_t m_right_contracting_strides; + + bool m_lhs_inner_dim_contiguous; + bool m_rhs_inner_dim_contiguous; + bool m_rhs_inner_dim_reordered; + + left_nocontract_t m_i_strides; + right_nocontract_t m_j_strides; + left_nocontract_t m_left_nocontract_strides; + right_nocontract_t m_right_nocontract_strides; + + Index m_i_size; + Index m_j_size; + Index m_k_size; + + TensorContractionParams m_tensor_contraction_params; + + TensorEvaluator<EvalLeftArgType, Device> m_leftImpl; + TensorEvaluator<EvalRightArgType, Device> m_rightImpl; + const Device EIGEN_DEVICE_REF m_device; + OutputKernelType m_output_kernel; + EvaluatorPointerType m_result; +}; + + +// evaluator for default device +template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device> +struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> : + public TensorContractionEvaluatorBase< + TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > { + typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; + typedef TensorContractionEvaluatorBase<Self> Base; + + typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::Index Index; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + + enum { + Layout = TensorEvaluator<LeftArgType, Device>::Layout + }; + + // Most of the code is assuming that both input tensors are ColMajor. If the + // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: + // If we want to compute A * B = C, where A is LHS and B is RHS, the code + // will pretend B is LHS and A is RHS. + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; + + static const int LDims = + internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; + static const int RDims = + internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; + static const int ContractDims = internal::array_size<Indices>::value; + + typedef array<Index, ContractDims> contract_t; + typedef array<Index, LDims - ContractDims> left_nocontract_t; + typedef array<Index, RDims - ContractDims> right_nocontract_t; + + static const int NumDims = LDims + RDims - 2 * ContractDims; + + // Could we use NumDimensions here? + typedef DSizes<Index, NumDims> Dimensions; + + TensorEvaluator(const XprType& op, const Device& device) : + Base(op, device) { } + + template <int Alignment> + void evalProduct(Scalar* buffer) const { + TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Alignment, (buffer)); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionBlocking.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionBlocking.h new file mode 100644 index 0000000..974feb0 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionBlocking.h @@ -0,0 +1,73 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H + + +namespace Eigen { +namespace internal { + +enum { + ShardByRow = 0, + ShardByCol = 1 +}; + + +// Default Blocking Strategy +template<typename ResScalar, typename LhsScalar, typename RhsScalar, typename StorageIndex, int ShardingType = ShardByCol> +class TensorContractionBlocking { + public: + + /* + adding EIGEN_DEVICE_FUNC unconditionally to 'TensorContractionBlocking' constructor in `TensorContractionBlocking.h` + requires adding EIGEN_DEVICE_FUNC to `computeProductBlockingSizes` in `GeneralBlockPanelKernel.h` + which in turn, requires adding EIGEN_DEVICE_FUNC to `evaluateProductBlockingSizesHeuristic` in `GeneralBlockPanelKernel.h` + which in turn, requires adding EIGEN_DEVICE_FUNC to `manage_caching_sizes` in `GeneralBlockPanelKernel.h` + (else HIPCC will error out) + + However adding EIGEN_DEVICE_FUNC to `manage_caching_sizes` in `GeneralBlockPanelKernel.h` + results in NVCC erroring out with the following error + + ../Eigen/src/Core/products/GeneralBlockPanelKernel.h(57): error #2901: + dynamic initialization is not supported for function-scope static variables within a __device__/__global__ function + */ + + #if !defined(EIGEN_HIPCC) + EIGEN_DEVICE_FUNC + #endif + TensorContractionBlocking(StorageIndex k, StorageIndex m, StorageIndex n, StorageIndex num_threads = 1) : + kc_(k), mc_(m), nc_(n) + { + if (ShardingType == ShardByCol) { + computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, mc_, nc_, num_threads); + } + else { + computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, nc_, mc_, num_threads); + } + + const int rhs_packet_size = internal::packet_traits<RhsScalar>::size; + kc_ = (rhs_packet_size <= 8 || kc_ <= rhs_packet_size) ? + kc_ : (kc_ / rhs_packet_size) * rhs_packet_size; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex kc() const { return kc_; } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex mc() const { return mc_; } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE StorageIndex nc() const { return nc_; } + + private: + StorageIndex kc_; + StorageIndex mc_; + StorageIndex nc_; +}; + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionCuda.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionCuda.h new file mode 100644 index 0000000..3f315fe --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionCuda.h @@ -0,0 +1,6 @@ + +#if defined(__clang__) || defined(__GNUC__) +#warning "Deprecated header file, please either include the main Eigen/CXX11/Tensor header or the respective TensorContractionGpu.h file" +#endif + +#include "TensorContractionGpu.h" diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionGpu.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionGpu.h new file mode 100644 index 0000000..c818038 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionGpu.h @@ -0,0 +1,1413 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2015 Navdeep Jaitly <ndjaitly@google.com> +// Copyright (C) 2014 Eric Martin <eric@ericmart.in> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H + +#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) + +namespace Eigen { + +template<typename Scalar, typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper, bool needs_edge_check> +__device__ EIGEN_STRONG_INLINE void +EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, Scalar* lhs_shmem, Scalar* rhs_shmem, + const Index m_size, const Index n_size, const Index k_size) { + + const Index m_block_idx = blockIdx.x; + const Index n_block_idx = blockIdx.y; + + const Index base_m = 64 * m_block_idx; + const Index base_n = 64 * n_block_idx; + + // declare and initialize 64 registers for output 8x8 block + + // prefetch registers + Scalar lhs_pf0; + Scalar lhs_pf1; + Scalar lhs_pf2; + Scalar lhs_pf3; + Scalar lhs_pf4; + Scalar lhs_pf5; + Scalar lhs_pf6; + Scalar lhs_pf7; + + Scalar rhs_pf0; + Scalar rhs_pf1; + Scalar rhs_pf2; + Scalar rhs_pf3; + Scalar rhs_pf4; + Scalar rhs_pf5; + Scalar rhs_pf6; + Scalar rhs_pf7; + + // shared memory is formatted + // (contract idx in block, nocontract idx in block, block idx) + // where block idx is column major. This transposition limits the number of + // bank conflicts when reading the LHS. The core idea is that since the contracting + // index is shared by both sides, then the contracting index should be in threadIdx.x. + + // On the LHS, we pad each row inside of each block with an extra element. This makes + // each block 8 rows of 9 elements, which is 72 elements. This gives no bank conflicts + // on writes and very few 2-way conflicts on reads. There is an 8x8 grid of these blocks. + + // On the RHS we just add 8 padding elements to the end of each block. This gives no bank + // conflicts on writes and also none on reads. + + // storage indices + const Index lhs_store_idx_base = threadIdx.y * 72 + threadIdx.x * 9 + threadIdx.z; + const Index rhs_store_idx_base = threadIdx.y * 72 + threadIdx.z * 8 + threadIdx.x; + + const Index lhs_store_idx_0 = lhs_store_idx_base + 576 * 0; + const Index lhs_store_idx_1 = lhs_store_idx_base + 576 * 1; + const Index lhs_store_idx_2 = lhs_store_idx_base + 576 * 2; + const Index lhs_store_idx_3 = lhs_store_idx_base + 576 * 3; + const Index lhs_store_idx_4 = lhs_store_idx_base + 576 * 4; + const Index lhs_store_idx_5 = lhs_store_idx_base + 576 * 5; + const Index lhs_store_idx_6 = lhs_store_idx_base + 576 * 6; + const Index lhs_store_idx_7 = lhs_store_idx_base + 576 * 7; + + const Index rhs_store_idx_0 = rhs_store_idx_base + 576 * 0; + const Index rhs_store_idx_1 = rhs_store_idx_base + 576 * 1; + const Index rhs_store_idx_2 = rhs_store_idx_base + 576 * 2; + const Index rhs_store_idx_3 = rhs_store_idx_base + 576 * 3; + const Index rhs_store_idx_4 = rhs_store_idx_base + 576 * 4; + const Index rhs_store_idx_5 = rhs_store_idx_base + 576 * 5; + const Index rhs_store_idx_6 = rhs_store_idx_base + 576 * 6; + const Index rhs_store_idx_7 = rhs_store_idx_base + 576 * 7; + + // in the loading code, the following variables are important: + // threadIdx.x: the vertical position in an 8x8 block + // threadIdx.y: the vertical index of the 8x8 block in the grid + // threadIdx.z: the horizontal position in an 8x8 block + // k: the horizontal index of the 8x8 block in the grid + // + // The k parameter is implicit (it was the loop counter for a loop that went + // from 0 to <8, but now that loop is unrolled in the below code. + + const Index load_idx_vert = threadIdx.x + 8 * threadIdx.y; + const Index lhs_vert = base_m + load_idx_vert; + +#define prefetchIntoRegisters(base_k) \ + { \ + lhs_pf0 = conv(0); \ + lhs_pf1 = conv(0); \ + lhs_pf2 = conv(0); \ + lhs_pf3 = conv(0); \ + lhs_pf4 = conv(0); \ + lhs_pf5 = conv(0); \ + lhs_pf6 = conv(0); \ + lhs_pf7 = conv(0); \ + \ + rhs_pf0 = conv(0); \ + rhs_pf1 = conv(0); \ + rhs_pf2 = conv(0); \ + rhs_pf3 = conv(0); \ + rhs_pf4 = conv(0); \ + rhs_pf5 = conv(0); \ + rhs_pf6 = conv(0); \ + rhs_pf7 = conv(0); \ + \ + if (!needs_edge_check || lhs_vert < m_size) { \ + const Index lhs_horiz_0 = base_k + threadIdx.z + 0 * 8; \ + const Index lhs_horiz_1 = base_k + threadIdx.z + 1 * 8; \ + const Index lhs_horiz_2 = base_k + threadIdx.z + 2 * 8; \ + const Index lhs_horiz_3 = base_k + threadIdx.z + 3 * 8; \ + const Index lhs_horiz_4 = base_k + threadIdx.z + 4 * 8; \ + const Index lhs_horiz_5 = base_k + threadIdx.z + 5 * 8; \ + const Index lhs_horiz_6 = base_k + threadIdx.z + 6 * 8; \ + const Index lhs_horiz_7 = base_k + threadIdx.z + 7 * 8; \ + \ + if (!needs_edge_check || lhs_horiz_7 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ + lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ + lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ + lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \ + lhs_pf7 = lhs(lhs_vert, lhs_horiz_7); \ + } else if (lhs_horiz_6 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ + lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ + lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ + lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \ + } else if (lhs_horiz_5 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ + lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ + lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \ + } else if (lhs_horiz_4 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ + lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \ + } else if (lhs_horiz_3 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \ + } else if (lhs_horiz_2 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \ + } else if (lhs_horiz_1 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \ + } else if (lhs_horiz_0 < k_size) { \ + lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \ + } \ + } \ + \ + const Index rhs_vert = base_k + load_idx_vert; \ + if (!needs_edge_check || rhs_vert < k_size) { \ + const Index rhs_horiz_0 = base_n + threadIdx.z + 0 * 8; \ + const Index rhs_horiz_1 = base_n + threadIdx.z + 1 * 8; \ + const Index rhs_horiz_2 = base_n + threadIdx.z + 2 * 8; \ + const Index rhs_horiz_3 = base_n + threadIdx.z + 3 * 8; \ + const Index rhs_horiz_4 = base_n + threadIdx.z + 4 * 8; \ + const Index rhs_horiz_5 = base_n + threadIdx.z + 5 * 8; \ + const Index rhs_horiz_6 = base_n + threadIdx.z + 6 * 8; \ + const Index rhs_horiz_7 = base_n + threadIdx.z + 7 * 8; \ + \ + if (rhs_horiz_7 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ + rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ + rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ + rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \ + rhs_pf7 = rhs(rhs_vert, rhs_horiz_7); \ + } else if (rhs_horiz_6 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ + rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ + rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ + rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \ + } else if (rhs_horiz_5 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ + rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ + rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \ + } else if (rhs_horiz_4 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ + rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \ + } else if (rhs_horiz_3 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \ + } else if (rhs_horiz_2 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \ + } else if (rhs_horiz_1 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \ + } else if (rhs_horiz_0 < n_size) { \ + rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \ + } \ + } \ + } \ + +#define writeRegToShmem(_) \ + lhs_shmem[lhs_store_idx_0] = lhs_pf0; \ + rhs_shmem[rhs_store_idx_0] = rhs_pf0; \ + \ + lhs_shmem[lhs_store_idx_1] = lhs_pf1; \ + rhs_shmem[rhs_store_idx_1] = rhs_pf1; \ + \ + lhs_shmem[lhs_store_idx_2] = lhs_pf2; \ + rhs_shmem[rhs_store_idx_2] = rhs_pf2; \ + \ + lhs_shmem[lhs_store_idx_3] = lhs_pf3; \ + rhs_shmem[rhs_store_idx_3] = rhs_pf3; \ + \ + lhs_shmem[lhs_store_idx_4] = lhs_pf4; \ + rhs_shmem[rhs_store_idx_4] = rhs_pf4; \ + \ + lhs_shmem[lhs_store_idx_5] = lhs_pf5; \ + rhs_shmem[rhs_store_idx_5] = rhs_pf5; \ + \ + lhs_shmem[lhs_store_idx_6] = lhs_pf6; \ + rhs_shmem[rhs_store_idx_6] = rhs_pf6; \ + \ + lhs_shmem[lhs_store_idx_7] = lhs_pf7; \ + rhs_shmem[rhs_store_idx_7] = rhs_pf7; \ + + // declare and initialize result array +#define res(i, j) _res_##i##j +#define initResultRow(i) \ + Scalar res(i, 0) = conv(0); \ + Scalar res(i, 1) = conv(0); \ + Scalar res(i, 2) = conv(0); \ + Scalar res(i, 3) = conv(0); \ + Scalar res(i, 4) = conv(0); \ + Scalar res(i, 5) = conv(0); \ + Scalar res(i, 6) = conv(0); \ + Scalar res(i, 7) = conv(0); \ + + internal::scalar_cast_op<int, Scalar> conv; + initResultRow(0); + initResultRow(1); + initResultRow(2); + initResultRow(3); + initResultRow(4); + initResultRow(5); + initResultRow(6); + initResultRow(7); +#undef initResultRow + + for (Index base_k = 0; base_k < k_size; base_k += 64) { + // wait for previous iteration to finish with shmem. Despite common sense, + // the code is a bit faster with this here then at bottom of loop + __syncthreads(); + + prefetchIntoRegisters(base_k); + writeRegToShmem(); + + #undef prefetchIntoRegisters + #undef writeRegToShmem + + // wait for shared mem packing to be done before starting computation + __syncthreads(); + + // compute 8x8 matrix product by outer product. This involves packing one column + // of LHS and one row of RHS into registers (takes 16 registers). + +#define lcol(i) _lcol##i + Scalar lcol(0); + Scalar lcol(1); + Scalar lcol(2); + Scalar lcol(3); + Scalar lcol(4); + Scalar lcol(5); + Scalar lcol(6); + Scalar lcol(7); + +#define rrow(j) _rrow##j + Scalar rrow(0); + Scalar rrow(1); + Scalar rrow(2); + Scalar rrow(3); + Scalar rrow(4); + Scalar rrow(5); + Scalar rrow(6); + Scalar rrow(7); + + // Now x corresponds to k, y to m, and z to n + const Scalar* lhs_block = &lhs_shmem[threadIdx.x + 9 * threadIdx.y]; + const Scalar* rhs_block = &rhs_shmem[threadIdx.x + 8 * threadIdx.z]; + +#define lhs_element(i, j) lhs_block[72 * ((i) + 8 * (j))] +#define rhs_element(i, j) rhs_block[72 * ((i) + 8 * (j))] + +#define loadData(i, j) \ + lcol(0) = lhs_element(0, j); \ + rrow(0) = rhs_element(i, 0); \ + lcol(1) = lhs_element(1, j); \ + rrow(1) = rhs_element(i, 1); \ + lcol(2) = lhs_element(2, j); \ + rrow(2) = rhs_element(i, 2); \ + lcol(3) = lhs_element(3, j); \ + rrow(3) = rhs_element(i, 3); \ + lcol(4) = lhs_element(4, j); \ + rrow(4) = rhs_element(i, 4); \ + lcol(5) = lhs_element(5, j); \ + rrow(5) = rhs_element(i, 5); \ + lcol(6) = lhs_element(6, j); \ + rrow(6) = rhs_element(i, 6); \ + lcol(7) = lhs_element(7, j); \ + rrow(7) = rhs_element(i, 7); \ + +#define computeCol(j) \ + res(0, j) += lcol(0) * rrow(j); \ + res(1, j) += lcol(1) * rrow(j); \ + res(2, j) += lcol(2) * rrow(j); \ + res(3, j) += lcol(3) * rrow(j); \ + res(4, j) += lcol(4) * rrow(j); \ + res(5, j) += lcol(5) * rrow(j); \ + res(6, j) += lcol(6) * rrow(j); \ + res(7, j) += lcol(7) * rrow(j); \ + +#define computePass(i) \ + loadData(i, i); \ + \ + computeCol(0); \ + computeCol(1); \ + computeCol(2); \ + computeCol(3); \ + computeCol(4); \ + computeCol(5); \ + computeCol(6); \ + computeCol(7); \ + + computePass(0); + computePass(1); + computePass(2); + computePass(3); + computePass(4); + computePass(5); + computePass(6); + computePass(7); + +#undef lcol +#undef rrow +#undef lhs_element +#undef rhs_element +#undef loadData +#undef computeCol +#undef computePass + } // end loop over k + + // we've now iterated over all of the large (ie width 64) k blocks and + // accumulated results in registers. At this point thread (x, y, z) contains + // the sum across all big k blocks of the product of little k block of index (x, y) + // with block of index (y, z). To compute the final output, we need to reduce + // the 8 threads over y by summation. +#if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000) +#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask) +#else +#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor_sync(0xFFFFFFFF, res(i, j), mask) +#endif + +#define reduceRow(i, mask) \ + shuffleInc(i, 0, mask); \ + shuffleInc(i, 1, mask); \ + shuffleInc(i, 2, mask); \ + shuffleInc(i, 3, mask); \ + shuffleInc(i, 4, mask); \ + shuffleInc(i, 5, mask); \ + shuffleInc(i, 6, mask); \ + shuffleInc(i, 7, mask); \ + +#define reduceMatrix(mask) \ + reduceRow(0, mask); \ + reduceRow(1, mask); \ + reduceRow(2, mask); \ + reduceRow(3, mask); \ + reduceRow(4, mask); \ + reduceRow(5, mask); \ + reduceRow(6, mask); \ + reduceRow(7, mask); \ + + // actually perform the reduction, now each thread of index (_, y, z) + // contains the correct values in its registers that belong in the output + // block + reduceMatrix(1); + reduceMatrix(2); + reduceMatrix(4); + +#undef shuffleInc +#undef reduceRow +#undef reduceMatrix + + // now we need to copy the 64 values into main memory. We can't split work + // among threads because all variables are in registers. There's 2 ways + // to do this: + // (1) have 1 thread do 64 writes from registers into global memory + // (2) have 1 thread do 64 writes into shared memory, and then 8 threads + // each do 8 writes into global memory. We can just overwrite the shared + // memory from the problem we just solved. + // (2) is slightly faster than (1) due to less branching and more ILP + + // TODO: won't yield much gain, but could just use currently unused shared mem + // and then we won't have to sync + // wait for shared mem to be out of use + __syncthreads(); + +#define writeResultShmem(i, j) \ + lhs_shmem[i + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j] = res(i, j); \ + +#define writeRow(i) \ + writeResultShmem(i, 0); \ + writeResultShmem(i, 1); \ + writeResultShmem(i, 2); \ + writeResultShmem(i, 3); \ + writeResultShmem(i, 4); \ + writeResultShmem(i, 5); \ + writeResultShmem(i, 6); \ + writeResultShmem(i, 7); \ + + if (threadIdx.x == 0) { + writeRow(0); + writeRow(1); + writeRow(2); + writeRow(3); + writeRow(4); + writeRow(5); + writeRow(6); + writeRow(7); + } +#undef writeResultShmem +#undef writeRow + + const int max_i_write = numext::mini((int)((m_size - base_m - threadIdx.y + 7) / 8), 8); + const int max_j_write = numext::mini((int)((n_size - base_n - threadIdx.z + 7) / 8), 8); + + if (threadIdx.x < max_i_write) { + if (max_j_write == 8) { + // TODO: can i trade bank conflicts for coalesced writes? + Scalar val0 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 0]; + Scalar val1 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 1]; + Scalar val2 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 2]; + Scalar val3 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 3]; + Scalar val4 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 4]; + Scalar val5 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 5]; + Scalar val6 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 6]; + Scalar val7 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 7]; + + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 0) = val0; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 1) = val1; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 2) = val2; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 3) = val3; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 4) = val4; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 5) = val5; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 6) = val6; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 7) = val7; + } else { +#pragma unroll 7 + for (int j = 0; j < max_j_write; j++) { + Scalar val = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j]; + output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * j) = val; + } + } + } +#undef res +} + + +template<typename Scalar, typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper> +__global__ void +#if defined(EIGEN_HIPCC) +__launch_bounds__(512, 1) +#else +__launch_bounds__(512) +#endif +EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, + const Index m_size, const Index n_size, const Index k_size) { + __shared__ Scalar lhs_shmem[72 * 64]; + __shared__ Scalar rhs_shmem[72 * 64]; + + const Index m_block_idx = blockIdx.x; + const Index n_block_idx = blockIdx.y; + + const Index base_m = 64 * m_block_idx; + const Index base_n = 64 * n_block_idx; + + if (base_m + 63 < m_size && base_n + 63 < n_size) { + EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); + } else { + EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size); + } +} + + +template<typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, + bool CHECK_RHS_BOUNDARY> +__device__ __forceinline__ void +EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, float2 lhs_shmem2[][16], + float2 rhs_shmem2[][8], const Index m_size, + const Index n_size, const Index k_size, + const Index base_m, const Index base_n) { + + // prefetch registers + float4 lhs_pf0, rhs_pf0; + + float4 results[4]; + for (int i=0; i < 4; i++) { + results[i].x = results[i].y = results[i].z = results[i].w = 0; + } + +#define prefetch_lhs(reg, row, col) \ + if (!CHECK_LHS_BOUNDARY) { \ + if (col < k_size) { \ + reg =lhs.template loadPacket<float4,Unaligned>(row, col); \ + } \ + } else { \ + if (col < k_size) { \ + if (row + 3 < m_size) { \ + reg =lhs.template loadPacket<float4,Unaligned>(row, col); \ + } else if (row + 2 < m_size) { \ + reg.x =lhs(row + 0, col); \ + reg.y =lhs(row + 1, col); \ + reg.z =lhs(row + 2, col); \ + } else if (row + 1 < m_size) { \ + reg.x =lhs(row + 0, col); \ + reg.y =lhs(row + 1, col); \ + } else if (row < m_size) { \ + reg.x =lhs(row + 0, col); \ + } \ + } \ + } \ + + Index lhs_vert = base_m+threadIdx.x*4; + + for (Index k = 0; k < k_size; k += 16) { + + lhs_pf0 = internal::pset1<float4>(0); + rhs_pf0 = internal::pset1<float4>(0); + + Index lhs_horiz = threadIdx.y+k; + prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz) + + Index rhs_vert = k+(threadIdx.x%4)*4; + Index rhs_horiz0 = (threadIdx.x>>2)+threadIdx.y*4+base_n; + + if (!CHECK_RHS_BOUNDARY) { + if ((rhs_vert + 3) < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); + } else if (rhs_vert + 2 < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); + } else if (rhs_vert + 1 < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + } else if (rhs_vert < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + } + } else { + if (rhs_horiz0 < n_size) { + if ((rhs_vert + 3) < k_size) { + rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); + } else if ((rhs_vert + 2) < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); + } else if ((rhs_vert + 1) < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + } else if (rhs_vert < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + } + } + } + float x1, x2 ; + // the following can be a bitwise operation..... some day. + if((threadIdx.x%8) < 4) { + x1 = rhs_pf0.y; + x2 = rhs_pf0.w; + } else { + x1 = rhs_pf0.x; + x2 = rhs_pf0.z; + } + #if defined(EIGEN_HIPCC) || (defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000) + x1 = __shfl_xor(x1, 4); + x2 = __shfl_xor(x2, 4); + #else + x1 = __shfl_xor_sync(0xFFFFFFFF, x1, 4); + x2 = __shfl_xor_sync(0xFFFFFFFF, x2, 4); + #endif + if((threadIdx.x%8) < 4) { + rhs_pf0.y = x1; + rhs_pf0.w = x2; + } else { + rhs_pf0.x = x1; + rhs_pf0.z = x2; + } + + // We have 64 features. + // Row 0 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 0, 1. + // Row 1 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 2, 3. + // ... + // Row 31 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 62, 63 + // Row 32 -> times (2, 6, 10, 14, 3, 7, 11, 15) for features 0, 1 + // ... + rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2][threadIdx.x%8] = make_float2(rhs_pf0.x, rhs_pf0.y); + rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2+32][threadIdx.x%8] = make_float2(rhs_pf0.z, rhs_pf0.w); + + // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) + // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) + // ... + // Row 15 (time 15) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) + // Row 16 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) + // ... + + lhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(lhs_pf0.x, lhs_pf0.y); + lhs_shmem2[threadIdx.y+16][threadIdx.x] = make_float2(lhs_pf0.z, lhs_pf0.w); + + +#define add_vals(fl1, fl2, fr1, fr2)\ + results[0].x += fl1.x * fr1.x;\ + results[0].y += fl1.y * fr1.x;\ + results[0].z += fl2.x * fr1.x;\ + results[0].w += fl2.y * fr1.x;\ +\ + results[1].x += fl1.x * fr1.y;\ + results[1].y += fl1.y * fr1.y;\ + results[1].z += fl2.x * fr1.y;\ + results[1].w += fl2.y * fr1.y;\ +\ + results[2].x += fl1.x * fr2.x;\ + results[2].y += fl1.y * fr2.x;\ + results[2].z += fl2.x * fr2.x;\ + results[2].w += fl2.y * fr2.x;\ +\ + results[3].x += fl1.x * fr2.y;\ + results[3].y += fl1.y * fr2.y;\ + results[3].z += fl2.x * fr2.y;\ + results[3].w += fl2.y * fr2.y;\ + + __syncthreads(); + + // Do the multiplies. + #pragma unroll + for (int koff = 0; koff < 16; koff ++) { + // 32 x threads. + float2 fl1 = lhs_shmem2[koff][threadIdx.x]; + float2 fl2 = lhs_shmem2[koff + 16][threadIdx.x]; + + int start_feature = threadIdx.y * 4; + float2 fr1 = rhs_shmem2[(start_feature>>1) + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; + float2 fr2 = rhs_shmem2[(start_feature>>1) + 1 + 32*((koff%4)/2)][koff/4 + (koff%2)*4]; + + add_vals(fl1, fl2, fr1, fr2) + } + __syncthreads(); + } + +#undef prefetch_lhs +#undef add_vals + + Index horiz_base = threadIdx.y*4+base_n; + if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { + for (int i = 0; i < 4; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } else if (!CHECK_RHS_BOUNDARY) { + // CHECK LHS + if (lhs_vert + 3 < m_size) { + for (int i = 0; i < 4; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } else if (lhs_vert + 2 < m_size) { + for (int i = 0; i < 4; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + } + } else if (lhs_vert + 1 < m_size) { + for (int i = 0; i < 4; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + } + } else if (lhs_vert < m_size) { + for (int i = 0; i < 4; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + } + } + } else if (!CHECK_LHS_BOUNDARY) { + // CHECK RHS + /* + int ncols_rem = fminf(n_size- horiz_base, 4); + for (int i = 0; i < ncols_rem; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + }*/ + for (int i = 0; i < 4; i++) { + if (horiz_base+i < n_size) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } + } else { + // CHECK both boundaries. + for (int i = 0; i < 4; i++) { + if (horiz_base+i < n_size) { + if (lhs_vert < m_size) + output(lhs_vert, horiz_base + i) = results[i].x; + if (lhs_vert + 1 < m_size) + output(lhs_vert + 1, horiz_base + i) = results[i].y; + if (lhs_vert + 2 < m_size) + output(lhs_vert + 2, horiz_base + i) = results[i].z; + if (lhs_vert + 3 < m_size) + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } + } +} + + +template<typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY, + bool CHECK_RHS_BOUNDARY> +__device__ __forceinline__ void +EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, float2 lhs_shmem2[][32], + float2 rhs_shmem2[][8], const Index m_size, + const Index n_size, const Index k_size, + const Index base_m, const Index base_n) { + + // prefetch registers + float4 lhs_pf0, lhs_pf1, lhs_pf2, lhs_pf3; + float4 rhs_pf0, rhs_pf1; + + float4 results[8]; + for (int i=0; i < 8; i++) { + results[i].x = results[i].y = results[i].z = results[i].w = 0; + } + + Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32; + for (Index k = 0; k < k_size; k += 32) { + lhs_pf0 = internal::pset1<float4>(0); + lhs_pf1 = internal::pset1<float4>(0); + lhs_pf2 = internal::pset1<float4>(0); + lhs_pf3 = internal::pset1<float4>(0); + + rhs_pf0 = internal::pset1<float4>(0); + rhs_pf1 = internal::pset1<float4>(0); + + if (!CHECK_LHS_BOUNDARY) { + if ((threadIdx.y/4+k+24) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); + lhs_pf3 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); + } else if ((threadIdx.y/4+k+16) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); + } else if ((threadIdx.y/4+k+8) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + } else if ((threadIdx.y/4+k) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + } + } else { + // just CHECK_LHS_BOUNDARY + if (lhs_vert + 3 < m_size) { + if ((threadIdx.y/4+k+24) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); + lhs_pf3 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+24)); + } else if ((threadIdx.y/4+k+16) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + lhs_pf2 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+16)); + } else if ((threadIdx.y/4+k+8) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + lhs_pf1 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k+8)); + } else if ((threadIdx.y/4+k) < k_size) { + lhs_pf0 =lhs.template loadPacket<float4,Unaligned>(lhs_vert, (threadIdx.y/4+k)); + } + } else if (lhs_vert + 2 < m_size) { + if ((threadIdx.y/4+k+24) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); + lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); + lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); + lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); + lhs_pf3.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+24)); + } else if ((threadIdx.y/4+k+16) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); + lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16)); + } else if ((threadIdx.y/4+k+8) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8)); + } else if ((threadIdx.y/4+k) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k)); + } + } else if (lhs_vert + 1 < m_size) { + if ((threadIdx.y/4+k+24) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); + lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); + lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24)); + } else if ((threadIdx.y/4+k+16) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16)); + } else if ((threadIdx.y/4+k+8) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8)); + } else if ((threadIdx.y/4+k) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k)); + } + } else if (lhs_vert < m_size) { + if ((threadIdx.y/4+k+24) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24)); + } else if ((threadIdx.y/4+k+16) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16)); + } else if ((threadIdx.y/4+k+8) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8)); + } else if ((threadIdx.y/4+k) < k_size) { + lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k)); + } + } + } + __syncthreads(); + Index rhs_vert = k+threadIdx.x*4; + Index rhs_horiz0 = threadIdx.y*2+base_n; + Index rhs_horiz1 = threadIdx.y*2+1+base_n; + if (!CHECK_RHS_BOUNDARY) { + if ((rhs_vert + 3) < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); + rhs_pf1 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz1); + } else if (rhs_vert + 2 < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); + rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); + } else if (rhs_vert + 1 < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); + } else if (rhs_vert < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + } + } else { + if (rhs_horiz1 < n_size) { + if ((rhs_vert + 3) < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); + rhs_pf1 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz1); + } else if (rhs_vert + 2 < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); + rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1); + } else if (k+threadIdx.x*4 + 1 < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1); + } else if (k+threadIdx.x*4 < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf1.x = rhs(rhs_vert, rhs_horiz1); + } + } else if (rhs_horiz0 < n_size) { + if ((rhs_vert + 3) < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0 = rhs.template loadPacket<float4,Unaligned>(rhs_vert, rhs_horiz0); + } else if ((rhs_vert + 2) < k_size) { + // just CHECK_RHS_BOUNDARY + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0); + } else if ((rhs_vert + 1) < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0); + } else if (rhs_vert < k_size) { + rhs_pf0.x = rhs(rhs_vert, rhs_horiz0); + } + } + } + __syncthreads(); + // Loaded. Do computation + // Row 0 -> times (0, 4, 8, .. 28) for features 0, 1. + // Row 1 -> times (0, 4, 8, .. 28) for features 2, 3. + // .. + // Row 31 -> times (0, 4, 8, .. 28) for features 62, 63 + rhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(rhs_pf0.x, rhs_pf1.x); + // Row 32 -> times (1, 5, 9, .. 29) for features 0, 1. + // Row 33 -> times (1, 5, 9, .. 29) for features 2, 3. + // .. + rhs_shmem2[threadIdx.y+32][threadIdx.x] = make_float2(rhs_pf0.y, rhs_pf1.y); + // Row 64 -> times (2, 6, 10, .. 30) for features 0, 1. + // Row 65 -> times (2, 6, 10, .. 30) for features 2, 3. + rhs_shmem2[threadIdx.y+64][threadIdx.x] = make_float2(rhs_pf0.z, rhs_pf1.z); + // Row 96 -> times (3, 7, 11, .. 31) for features 0, 1. + // Row 97 -> times (3, 7, 11, .. 31) for features 2, 3. + rhs_shmem2[threadIdx.y+96][threadIdx.x] = make_float2(rhs_pf0.w, rhs_pf1.w); + + // LHS. + // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125) + // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125) + // ... + // Row 8 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127) + // Row 15 (time 7) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127) + + +#define add_vals(a_feat1, a_feat2, f1, f2, f3, f4)\ + results[0].x += a_feat1.x * f1.x;\ + results[1].x += a_feat1.x * f1.y;\ + results[2].x += a_feat1.x * f2.x;\ + results[3].x += a_feat1.x * f2.y;\ + results[4].x += a_feat1.x * f3.x;\ + results[5].x += a_feat1.x * f3.y;\ + results[6].x += a_feat1.x * f4.x;\ + results[7].x += a_feat1.x * f4.y;\ +\ + results[0].y += a_feat1.y * f1.x;\ + results[1].y += a_feat1.y * f1.y;\ + results[2].y += a_feat1.y * f2.x;\ + results[3].y += a_feat1.y * f2.y;\ + results[4].y += a_feat1.y * f3.x;\ + results[5].y += a_feat1.y * f3.y;\ + results[6].y += a_feat1.y * f4.x;\ + results[7].y += a_feat1.y * f4.y;\ +\ + results[0].z += a_feat2.x * f1.x;\ + results[1].z += a_feat2.x * f1.y;\ + results[2].z += a_feat2.x * f2.x;\ + results[3].z += a_feat2.x * f2.y;\ + results[4].z += a_feat2.x * f3.x;\ + results[5].z += a_feat2.x * f3.y;\ + results[6].z += a_feat2.x * f4.x;\ + results[7].z += a_feat2.x * f4.y;\ +\ + results[0].w += a_feat2.y * f1.x;\ + results[1].w += a_feat2.y * f1.y;\ + results[2].w += a_feat2.y * f2.x;\ + results[3].w += a_feat2.y * f2.y;\ + results[4].w += a_feat2.y * f3.x;\ + results[5].w += a_feat2.y * f3.y;\ + results[6].w += a_feat2.y * f4.x;\ + results[7].w += a_feat2.y * f4.y;\ + + lhs_shmem2[threadIdx.y/4][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.x, lhs_pf0.y); + lhs_shmem2[threadIdx.y/4+8][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.x, lhs_pf1.y); + lhs_shmem2[threadIdx.y/4+16][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.x, lhs_pf2.y); + lhs_shmem2[threadIdx.y/4+24][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.x, lhs_pf3.y); + + lhs_shmem2[threadIdx.y/4 + 32][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.z, lhs_pf0.w); + lhs_shmem2[threadIdx.y/4 + 40][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.z, lhs_pf1.w); + lhs_shmem2[threadIdx.y/4 + 48][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.z, lhs_pf2.w); + lhs_shmem2[threadIdx.y/4 + 56][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.z, lhs_pf3.w); + + __syncthreads(); + + // Do the multiplies. + #pragma unroll + for (int koff = 0; koff < 32; koff ++) { + float2 a3 = lhs_shmem2[koff][threadIdx.x + (threadIdx.y % 4) * 8]; + float2 a4 = lhs_shmem2[koff + 32][threadIdx.x + (threadIdx.y % 4) * 8]; + + // first feature is at (threadIdx.y/4) * 8 last is at start + 8. + int start_feature = (threadIdx.y / 4) * 8; + + float2 br1 = rhs_shmem2[start_feature/2 + (koff % 4) * 32][koff/4]; + float2 br2 = rhs_shmem2[start_feature/2 + 1 + (koff % 4) * 32][koff/4]; + float2 br3 = rhs_shmem2[start_feature/2 + 2 + (koff % 4) * 32][koff/4]; + float2 br4 = rhs_shmem2[start_feature/2 + 3 + (koff % 4) * 32][koff/4]; + + add_vals(a3, a4, br1, br2, br3, br4) + } + __syncthreads(); + } // end loop over k + + __syncthreads(); + Index horiz_base = (threadIdx.y/4)*8+base_n; + if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) { + for (int i = 0; i < 8; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } else if (!CHECK_RHS_BOUNDARY) { + if (lhs_vert + 3 < m_size) { + for (int i = 0; i < 8; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } else if (lhs_vert + 2 < m_size) { + for (int i = 0; i < 8; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + } + } else if (lhs_vert + 1 < m_size) { + for (int i = 0; i < 8; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + } + } else if (lhs_vert < m_size) { + for (int i = 0; i < 8; i++) { + output(lhs_vert, horiz_base + i) = results[i].x; + } + } + } else if (!CHECK_LHS_BOUNDARY) { + // CHECK BOUNDARY_B + for (int i = 0; i < 8; i++) { + if (horiz_base + i < n_size) { + output(lhs_vert, horiz_base + i) = results[i].x; + output(lhs_vert + 1, horiz_base + i) = results[i].y; + output(lhs_vert + 2, horiz_base + i) = results[i].z; + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } + } else { + // CHECK both boundaries. + for (int i = 0; i < 8; i++) { + if (horiz_base + i < n_size) { + if (lhs_vert < m_size) + output(lhs_vert, horiz_base + i) = results[i].x; + if (lhs_vert + 1 < m_size) + output(lhs_vert + 1, horiz_base + i) = results[i].y; + if (lhs_vert + 2 < m_size) + output(lhs_vert + 2, horiz_base + i) = results[i].z; + if (lhs_vert + 3 < m_size) + output(lhs_vert + 3, horiz_base + i) = results[i].w; + } + } + } +} + + +template<typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper> +__global__ void +#if defined(EIGEN_HIPCC) +__launch_bounds__(256, 1) +#else +__launch_bounds__(256) +#endif +EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, + const Index m_size, const Index n_size, const Index k_size) { + __shared__ float2 lhs_shmem[64*32]; + __shared__ float2 rhs_shmem[128*8]; + + typedef float2 LHS_MEM[64][32]; + typedef float2 RHS_MEM[128][8]; + + const Index m_block_idx = blockIdx.x; + const Index n_block_idx = blockIdx.y; + + const Index base_m = 128 * m_block_idx; + const Index base_n = 64 * n_block_idx; + + bool check_rhs = (base_n + 63) >= n_size; + bool check_lhs128 = (base_m + 127) >= m_size; + + if (!check_rhs) { + if (!check_lhs128) { + // >= 128 rows left + EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, false>( + lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); + } else { + EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, false>( + lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); + } + } else { + if (!check_lhs128) { + // >= 128 rows left + EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, true>( + lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); + } else { + EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, true>( + lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n); + } + } +} + +template<typename Index, typename LhsMapper, + typename RhsMapper, typename OutputMapper> +__global__ void +#if defined(EIGEN_HIPCC) +__launch_bounds__(256, 1) +#else +__launch_bounds__(256) +#endif +EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs, + const OutputMapper output, + const Index m_size, const Index n_size, const Index k_size) { + __shared__ float2 lhs_shmem[32][16]; + __shared__ float2 rhs_shmem[64][8]; + + const Index m_block_idx = blockIdx.x; + const Index n_block_idx = blockIdx.y; + + const Index base_m = 64 * m_block_idx; + const Index base_n = 64 * n_block_idx; + + if (base_m + 63 < m_size) { + if (base_n + 63 < n_size) { + EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); + } else { + EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); + } + } else { + if (base_n + 63 < n_size) { + EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); + } else { + EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n); + } + } +} + + +template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType> +struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, GpuDevice> : + public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, GpuDevice> > { + + typedef GpuDevice Device; + + typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; + typedef TensorContractionEvaluatorBase<Self> Base; + + typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::Index Index; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType; + + enum { + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + }; + + // Most of the code is assuming that both input tensors are ColMajor. If the + // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: + // If we want to compute A * B = C, where A is LHS and B is RHS, the code + // will pretend B is LHS and A is RHS. + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; + + static const int LDims = + internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; + static const int RDims = + internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; + static const int ContractDims = internal::array_size<Indices>::value; + + typedef array<Index, LDims> left_dim_mapper_t; + typedef array<Index, RDims> right_dim_mapper_t; + + typedef array<Index, ContractDims> contract_t; + typedef array<Index, LDims - ContractDims> left_nocontract_t; + typedef array<Index, RDims - ContractDims> right_nocontract_t; + + static const int NumDims = LDims + RDims - 2 * ContractDims; + + typedef DSizes<Index, NumDims> Dimensions; + + // typedefs needed in evalTo + typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; + typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; + + typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; + typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; + + typedef typename LeftEvaluator::Dimensions LeftDimensions; + typedef typename RightEvaluator::Dimensions RightDimensions; + + TensorEvaluator(const XprType& op, const Device& device) : + Base(op, device) + { + EIGEN_STATIC_ASSERT( (internal::is_same<OutputKernelType, const NoOpOutputKernel>::value), + GPU_TENSOR_CONTRACTION_DOES_NOT_SUPPORT_OUTPUT_KERNELS); + } + + // We need to redefine this method to make nvcc happy + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { + this->m_leftImpl.evalSubExprsIfNeeded(NULL); + this->m_rightImpl.evalSubExprsIfNeeded(NULL); + if (data) { + evalTo(data); + return false; + } else { + this->m_result = static_cast<Scalar *>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar))); + evalTo(this->m_result); + return true; + } + } + + void evalTo(Scalar* buffer) const { + if (this->m_lhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<true, true, true, Unaligned>(buffer); + } + else { + evalTyped<true, true, false, Unaligned>(buffer); + } + } + else { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<true, false, true, Unaligned>(buffer); + } + else { + evalTyped<true, false, false, Unaligned>(buffer); + } + } + } + else { + if (this->m_rhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<false, true, true, Unaligned>(buffer); + } + else { + evalTyped<false, true, false, Unaligned>(buffer); + } + } + else { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<false, false, true, Unaligned>(buffer); + } + else { + evalTyped<false, false, false, Unaligned>(buffer); + } + } + } + } + + template <typename LhsScalar, typename RhsScalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels { + static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { + const Index m_blocks = (m + 63) / 64; + const Index n_blocks = (n + 63) / 64; + const dim3 num_blocks(m_blocks, n_blocks, 1); + const dim3 block_size(8, 8, 8); + LAUNCH_GPU_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); + } + }; + + template <typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels<float, float, Index, LhsMapper, RhsMapper, OutputMapper> { + static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) { + if (m < 768 || n < 768) { + const Index m_blocks = (m + 63) / 64; + const Index n_blocks = (n + 63) / 64; + const dim3 num_blocks(m_blocks, n_blocks, 1); + const dim3 block_size(16, 16, 1); + LAUNCH_GPU_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); + } else { + const Index m_blocks = (m + 127) / 128; + const Index n_blocks = (n + 63) / 64; + const dim3 num_blocks(m_blocks, n_blocks, 1); + const dim3 block_size(8, 32, 1); + LAUNCH_GPU_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k); + } + } + }; + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> + void evalTyped(Scalar* buffer) const { + // columns in left side, rows in right side + const Index k = this->m_k_size; + EIGEN_UNUSED_VARIABLE(k) + + // rows in left side + const Index m = this->m_i_size; + + // columns in right side + const Index n = this->m_j_size; + + // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar) + this->m_device.memset(buffer, 0, m * n * sizeof(Scalar)); + + typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, + LeftEvaluator, left_nocontract_t, + contract_t, 4, + lhs_inner_dim_contiguous, + false, Unaligned> LhsMapper; + + typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, + RightEvaluator, right_nocontract_t, + contract_t, 4, + rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, Unaligned> RhsMapper; + + typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; + + + // initialize data mappers + LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, + this->m_left_contracting_strides, this->m_k_strides); + + RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, + this->m_right_contracting_strides, this->m_k_strides); + + OutputMapper output(buffer, m); + +#if defined(EIGEN_USE_HIP) + setGpuSharedMemConfig(hipSharedMemBankSizeEightByte); +#else + setGpuSharedMemConfig(cudaSharedMemBankSizeEightByte); +#endif + + LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output, m, n, k, this->m_device); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_USE_GPU and EIGEN_GPUCC +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_GPU_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionMapper.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionMapper.h new file mode 100644 index 0000000..9ab900b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionMapper.h @@ -0,0 +1,575 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H + +namespace Eigen { + +namespace internal { + +enum { + Rhs = 0, + Lhs = 1 +}; + +/* + * Implementation of the Eigen blas_data_mapper class for tensors. + */ +/// The make pointer class is used by sycl in order to build the mapper class on the device. For other platform the default make pointer is used which +/// is scalar * for CoeffLoader. +template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_ = MakePointer> +struct CoeffLoader; + +template <typename Scalar, typename Index, int side, typename Tensor, + typename nocontract_t, typename contract_t, int packet_size, + bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment, + template <class> class MakePointer_ = MakePointer> +class BaseTensorContractionMapper; + +template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_> +struct CoeffLoader { + enum { + DirectOffsets = false + }; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) { + eigen_assert(false && "unsupported"); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename MakePointer_<const typename Tensor::Scalar>::Type + data() const { + eigen_assert(false && "unsupported"); + return NULL; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); } + + template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename Tensor::PacketReturnType packet(typename Tensor::Index index) const + { + return m_tensor.template packet<LoadMode>(index); + } + + #ifdef EIGEN_USE_SYCL + // The placeholder accessors require to be bound to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_tensor.bind(cgh); + } + #endif + + private: + const Tensor m_tensor; +}; + +template <typename Tensor, template <class> class MakePointer_> +struct CoeffLoader<Tensor, true, MakePointer_> { + enum { + DirectOffsets = true + }; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {} + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) { + m_data += offset; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename MakePointer_<const typename Tensor::Scalar>::Type + data() const { + return m_data; + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); } + + template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename Tensor::PacketReturnType packet(typename Tensor::Index index) const + { + return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index); + } + + #ifdef EIGEN_USE_SYCL + // The placeholder accessors require to be bound to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_data.bind(cgh); + } + #endif + private: + typedef typename Tensor::Scalar Scalar; + + typename MakePointer_<const Scalar>::Type m_data; +}; + +template<typename Scalar, typename Index, int side, + typename Tensor, + typename nocontract_t, typename contract_t, + int packet_size, bool inner_dim_contiguous, int Alignment, template <class> class MakePointer_ = MakePointer> +class SimpleTensorContractionMapper { + public: + EIGEN_DEVICE_FUNC + SimpleTensorContractionMapper(const Tensor& tensor, + const nocontract_t& nocontract_strides, + const nocontract_t& ij_strides, + const contract_t& contract_strides, + const contract_t& k_strides) : + m_tensor(tensor), + m_nocontract_strides(nocontract_strides), + m_ij_strides(ij_strides), + m_contract_strides(contract_strides), + m_k_strides(k_strides) { } + + enum { + DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_>::DirectOffsets + }; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) { + m_tensor.offsetBuffer(offset); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar operator()(Index row) const { + // column major assumption + return operator()(row, 0); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const { + return m_tensor.coeff(computeIndex(row, col)); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const { + const bool left = (side == Lhs); + EIGEN_UNUSED_VARIABLE(left); // annoying bug in g++8.1: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85963 + Index nocontract_val = left ? row : col; + Index linidx = 0; + EIGEN_UNROLL_LOOP + for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) { + const Index idx = nocontract_val / m_ij_strides[i]; + linidx += idx * m_nocontract_strides[i]; + nocontract_val -= idx * m_ij_strides[i]; + } + if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) { + if (side == Lhs && inner_dim_contiguous) { + eigen_assert(m_nocontract_strides[0] == 1); + linidx += nocontract_val; + } else { + linidx += nocontract_val * m_nocontract_strides[0]; + } + } + + Index contract_val = left ? col : row; + if(array_size<contract_t>::value > 0) { + EIGEN_UNROLL_LOOP + for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) { + const Index idx = contract_val / m_k_strides[i]; + linidx += idx * m_contract_strides[i]; + contract_val -= idx * m_k_strides[i]; + } + + if (side == Rhs && inner_dim_contiguous) { + eigen_assert(m_contract_strides[0] == 1); + linidx += contract_val; + } else { + linidx += contract_val * m_contract_strides[0]; + } + } + + return linidx; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const { + const bool left = (side == Lhs); + EIGEN_UNUSED_VARIABLE(left); // annoying bug in g++8.1: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85963 + Index nocontract_val[2] = {left ? row : col, left ? row + distance : col}; + Index linidx[2] = {0, 0}; + if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) { + EIGEN_UNROLL_LOOP + for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) { + const Index idx0 = nocontract_val[0] / m_ij_strides[i]; + const Index idx1 = nocontract_val[1] / m_ij_strides[i]; + linidx[0] += idx0 * m_nocontract_strides[i]; + linidx[1] += idx1 * m_nocontract_strides[i]; + nocontract_val[0] -= idx0 * m_ij_strides[i]; + nocontract_val[1] -= idx1 * m_ij_strides[i]; + } + if (side == Lhs && inner_dim_contiguous) { + eigen_assert(m_nocontract_strides[0] == 1); + linidx[0] += nocontract_val[0]; + linidx[1] += nocontract_val[1]; + } else { + linidx[0] += nocontract_val[0] * m_nocontract_strides[0]; + linidx[1] += nocontract_val[1] * m_nocontract_strides[0]; + } + } + + Index contract_val[2] = {left ? col : row, left ? col : row + distance}; + if (array_size<contract_t>::value> 0) { + EIGEN_UNROLL_LOOP + for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) { + const Index idx0 = contract_val[0] / m_k_strides[i]; + const Index idx1 = contract_val[1] / m_k_strides[i]; + linidx[0] += idx0 * m_contract_strides[i]; + linidx[1] += idx1 * m_contract_strides[i]; + contract_val[0] -= idx0 * m_k_strides[i]; + contract_val[1] -= idx1 * m_k_strides[i]; + } + + if (side == Rhs && inner_dim_contiguous) { + eigen_assert(m_contract_strides[0] == 1); + linidx[0] += contract_val[0]; + linidx[1] += contract_val[1]; + } else { + linidx[0] += contract_val[0] * m_contract_strides[0]; + linidx[1] += contract_val[1] * m_contract_strides[0]; + } + } + return IndexPair<Index>(linidx[0], linidx[1]); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const { + // Only claim alignment when we can compute the actual stride (ie when we're + // dealing with the lhs with inner_dim_contiguous. This is because the + // matrix-vector product relies on the stride when dealing with aligned inputs. + return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size; + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const { + return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1; + } + + #ifdef EIGEN_USE_SYCL + // The placeholder accessors require to be bound to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_tensor.bind(cgh); + } + #endif + + const CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_>& tensor() const { + return m_tensor; + } + + const nocontract_t& nocontract_strides() const { + return m_nocontract_strides; + } + const nocontract_t& ij_strides() const { return m_ij_strides; } + const contract_t& contract_strides() const { return m_contract_strides; } + const contract_t& k_strides() const { return m_k_strides; } + + protected: + CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_> m_tensor; + const nocontract_t m_nocontract_strides; + const nocontract_t m_ij_strides; + const contract_t m_contract_strides; + const contract_t m_k_strides; +}; + +template<typename Scalar, typename Index, int side, + typename Tensor, + typename nocontract_t, typename contract_t, + int packet_size, bool inner_dim_contiguous, + bool inner_dim_reordered, int Alignment, template <class> class MakePointer_> +class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment, MakePointer_> +{ + public: + typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment, MakePointer_> ParentMapper; + + EIGEN_DEVICE_FUNC + BaseTensorContractionMapper(const Tensor& tensor, + const nocontract_t& nocontract_strides, + const nocontract_t& ij_strides, + const contract_t& contract_strides, + const contract_t& k_strides) : + ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } + + template <typename PacketT,int AlignmentType> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::unpacket_traits<PacketT>::size==packet_size,PacketT>::type + load(Index i, Index j) const + { + // whole method makes column major assumption + + // don't need to add offsets for now (because operator handles that) + // current code assumes packet size must be a multiple of 2 + EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + + if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) { + const Index index = this->computeIndex(i, j); + eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1); + return this->m_tensor.template packet<AlignmentType>(index); + } + + const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1); + const Index first = indexPair.first; + const Index lastIdx = indexPair.second; + + // We can always do optimized packet reads from left hand side right now, because + // the vertical matrix dimension on the left hand side is never contracting. + // On the right hand side we need to check if the contracting dimensions may have + // been shuffled first. + if (Tensor::PacketAccess && + (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) && + (lastIdx - first) == (packet_size - 1)) { + + return this->m_tensor.template packet<AlignmentType>(first); + } + + EIGEN_ALIGN_MAX Scalar data[packet_size]; + + data[0] = this->m_tensor.coeff(first); + EIGEN_UNROLL_LOOP + for (Index k = 1; k < packet_size - 1; k += 2) { + const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1); + data[k] = this->m_tensor.coeff(internal_pair.first); + data[k + 1] = this->m_tensor.coeff(internal_pair.second); + } + data[packet_size - 1] = this->m_tensor.coeff(lastIdx); + + return pload<PacketT>(data); + } + + template <typename PacketT,int AlignmentType> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::unpacket_traits<PacketT>::size!=packet_size,PacketT>::type + load(Index i, Index j) const + { + const Index requested_packet_size = internal::unpacket_traits<PacketT>::size; + EIGEN_ALIGN_MAX Scalar data[requested_packet_size]; + + const IndexPair<Index> indexPair = this->computeIndexPair(i, j, requested_packet_size - 1); + const Index first = indexPair.first; + const Index lastIdx = indexPair.second; + + data[0] = this->m_tensor.coeff(first); + for (Index k = 1; k < requested_packet_size - 1; k += 2) { + const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1); + data[k] = this->m_tensor.coeff(internal_pair.first); + data[k + 1] = this->m_tensor.coeff(internal_pair.second); + } + data[requested_packet_size - 1] = this->m_tensor.coeff(lastIdx); + + return pload<PacketT>(data); + } + + template <typename PacketT,int AlignmentType> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PacketT loadPacket(Index i, Index j) const { + return this->load<PacketT,AlignmentType>(i,j); + } +}; + + +template<typename Scalar, typename Index, int side, + typename Tensor, + typename nocontract_t, typename contract_t, + bool inner_dim_contiguous, + bool inner_dim_reordered, int Alignment, template <class> class MakePointer_> +class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> + : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment, MakePointer_> +{ + public: + typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment, MakePointer_> ParentMapper; + + EIGEN_DEVICE_FUNC + BaseTensorContractionMapper(const Tensor& tensor, + const nocontract_t& nocontract_strides, + const nocontract_t& ij_strides, + const contract_t& contract_strides, + const contract_t& k_strides) : + ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } + + template <typename PacketT,int> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PacketT loadPacket(Index i, Index j) const { + EIGEN_ALIGN_MAX Scalar data[1]; + data[0] = this->m_tensor.coeff(this->computeIndex(i, j)); + return pload<PacketT>(data); + } + template <typename PacketT,int> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE PacketT load(Index i, Index j) const { + EIGEN_ALIGN_MAX Scalar data[1]; + data[0] = this->m_tensor.coeff(this->computeIndex(i, j)); + return pload<PacketT>(data); + } +}; + + +template<typename Scalar, typename Index, int side, + typename Tensor, + typename nocontract_t, typename contract_t, + int packet_size, + bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment, template <class> class MakePointer_=MakePointer> +class TensorContractionSubMapper { + public: + + typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> ParentMapper; + typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> Self; + typedef Self LinearMapper; + + enum { + // We can use direct offsets iff the parent mapper supports then and we can compute the strides. + // TODO: we should also enable direct offsets for the Rhs case. + UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0) + }; + + EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset) + : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) { + // Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute + // this offset every time we attempt to access a coefficient. + if (UseDirectOffsets) { + Index stride = m_base_mapper.stride(); + m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride); + } + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { + if (UseDirectOffsets) { + return m_base_mapper(i, 0); + } + return m_base_mapper(i + m_vert_offset, m_horiz_offset); + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const { + if (UseDirectOffsets) { + return m_base_mapper(i, j); + } + return m_base_mapper(i + m_vert_offset, j + m_horiz_offset); + } + + template <typename PacketT> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT loadPacket(Index i) const { + if (UseDirectOffsets) { + return m_base_mapper.template loadPacket<PacketT,Alignment>(i, 0); + } + return m_base_mapper.template loadPacket<PacketT,Alignment>(i + m_vert_offset, m_horiz_offset); + } + + template <typename PacketT> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT loadPacket(Index i, Index j) const { + if (UseDirectOffsets) { + return m_base_mapper.template loadPacket<PacketT,Alignment>(i, j); + } + return m_base_mapper.template loadPacket<PacketT,Alignment>(i + m_vert_offset, j + m_horiz_offset); + } + + template <typename PacketT, int AlignmentType> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT loadPacket(Index i, Index j) const { + if (UseDirectOffsets) { + return m_base_mapper.template load<PacketT,AlignmentType>(i, j); + } + return m_base_mapper.template loadPacket<PacketT,AlignmentType>(i + m_vert_offset, j + m_horiz_offset); + } + + template <typename PacketT> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketT& p) const { + if (UseDirectOffsets) { + m_base_mapper.storePacket(i, 0, p); + } + m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { + if (UseDirectOffsets) { + return LinearMapper(m_base_mapper, i, j); + } + return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset); + } + + template <typename PacketT, int AlignmentType> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const { + EIGEN_STATIC_ASSERT((internal::is_same<PacketT, PacketT>::value), YOU_MADE_A_PROGRAMMING_MISTAKE); + const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned; + if (UseDirectOffsets) { + return m_base_mapper.template loadPacket<PacketT,ActualAlignment>(i, 0); + } + return m_base_mapper.template loadPacket<PacketT,ActualAlignment>(i + m_vert_offset, m_horiz_offset); + } + + template <typename PacketT> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const { + return false; + } + + #ifdef EIGEN_USE_SYCL + // The placeholder accessors require to be bound to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_base_mapper.bind(cgh); + } + #endif + + const ParentMapper& base_mapper() const { return m_base_mapper; } + Index vert_offset() const { return m_vert_offset; } + Index horiz_offset() const { return m_horiz_offset; } + + private: + ParentMapper m_base_mapper; + const Index m_vert_offset; + const Index m_horiz_offset; +}; + + +template<typename Scalar_, typename Index, int side, + typename Tensor, + typename nocontract_t, typename contract_t, + int packet_size, + bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment, template <class> class MakePointer_=MakePointer> +class TensorContractionInputMapper + : public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> { + + public: + typedef Scalar_ Scalar; + typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> Base; + typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment, MakePointer_> SubMapper; + typedef SubMapper VectorMapper; + + EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor, + const nocontract_t& nocontract_strides, + const nocontract_t& ij_strides, + const contract_t& contract_strides, + const contract_t& k_strides) + : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const { + return SubMapper(*this, i, j); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { + return VectorMapper(*this, i, j); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_>& get_tensor() const { + return Base::m_tensor; + } +}; + + +template <typename T> struct TensorContractionInputMapperTrait; + +template<typename Scalar_, typename Index_, int side_, + typename Tensor_, + typename nocontract_t_, typename contract_t_, + int packet_size_, + bool inner_dim_contiguous_, bool inner_dim_reordered_, int Alignment_, template <class> class MakePointer_> +struct TensorContractionInputMapperTrait<TensorContractionInputMapper<Scalar_, Index_, side_, Tensor_, + nocontract_t_, contract_t_, packet_size_, inner_dim_contiguous_, + inner_dim_reordered_, Alignment_, MakePointer_> > { + + typedef Tensor_ XprType; + static const bool inner_dim_contiguous = inner_dim_contiguous_; + static const bool inner_dim_reordered = inner_dim_reordered_; + }; + + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionSycl.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionSycl.h new file mode 100755 index 0000000..473c228 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionSycl.h @@ -0,0 +1,1650 @@ +// This file is part of Eigen, a lightweight C++ template library for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// +// This Source Code Form is subject to the terms of the Mozilla Public License v. 2.0. If a copy of the MPL was not +// distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * TensorContractionSycl.h + * + * \brief: + * TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend + * + *****************************************************************/ + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H + +namespace Eigen { + +namespace TensorSycl { +namespace internal { + +#ifndef EIGEN_SYCL_DISABLE_GEMV +/*! + * \brief TVPanelSize, a template class used for setting the panel size required for launching General TensorVector + * contraction kernel on various hardware devices. + * + * \tparam Scalar: determines the element type of the tensor/vector + * + * \tparam StorageIndex determines the Index type. + * + * \tparam NCWindow: determines the number of non-contracting element to be process by each work-group + * + * \tparam CFactor: determines the number of contracting element to be process by each thread + * + * \tparam NCFactor: determines the number of non-contracting element to be process by each thread + */ +template <typename Scalar, typename StorageIndex, StorageIndex NCWindow, StorageIndex CFactor, StorageIndex NCFactor> +struct TVPanelSize { + // LocalThreadSizeC: determines total number of thread per workgroup for the contracting dimension + static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeC = EIGEN_SYCL_LOCAL_THREAD_DIM0; + // LocalThreadSizeNC: determines total number of thread per workgroup for the non-contracting dimension + static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeNC = EIGEN_SYCL_LOCAL_THREAD_DIM1; + // TileSizeDimNC: determines the tile size for the non-contracting dimension + static EIGEN_CONSTEXPR StorageIndex TileSizeDimNC = NCWindow / NCFactor; + // TileSizeDimC: determines the tile size for the contracting dimension + static EIGEN_CONSTEXPR StorageIndex TileSizeDimC = CFactor * LocalThreadSizeNC * LocalThreadSizeC; + // WorkLoadPerThreadNC : determines workload per thread for loading the non-contracting dimension + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadNC = TileSizeDimNC / LocalThreadSizeNC; + // WorkLoadPerThreadC: determines workload per thread for loading the non-contracting dimension + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadC = TileSizeDimC / LocalThreadSizeC; + // BC : determines if supporting bank conflict is required + static EIGEN_CONSTEXPR bool BC = false; +}; +#endif + +/*! + * \brief TTPanelSize, a template class used for setting the panel size required for launching General Tensor Tensor + contraction kernel on various hardware devices. + * + * \tparam Scalar: determines the element type of the tensor + * + * \tparam StorageIndex: determines the Index type. + * + * \tparam REG_SIZE_M: determines workload per thread for loading the M dimension This can be varied based on the + available register on a chosen device(can be controlled by EIGEN_SYCL_REG_M macro). + * + * \tparam REG_SIZE_N: determines workload per thread for loading the N dimension This can be varied based on the + available register on a chosen device(can be controlled by EIGEN_SYCL_REG_N macro). + * + * \tparam TSDK: determines Tile size for dimension K. The packet size is assumed to be considered + */ + +template <typename Scalar, typename StorageIndex, StorageIndex REG_SIZE_M, StorageIndex REG_SIZE_N, StorageIndex TSDK> +struct TTPanelSize { + // TileSizeDimK: determines Tile size for dimension K. The packet size is assumed to be considered + static EIGEN_CONSTEXPR StorageIndex TileSizeDimK = TSDK; + // WorkLoadPerThreadM : determines workload per thread for loading the M dimension This can be varied based on the + // available register on a chosen device(can be controlled by EIGEN_SYCL_REG_M macro// +#ifndef EIGEN_SYCL_REG_M + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadM = REG_SIZE_M; +#else + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadM = EIGEN_SYCL_REG_M; +#endif +// WorkLoadPerThreadN : determines workload per thread for loading the N dimension This can be varied based on the +// available register on a chosen device(can be controlled by EIGEN_SYCL_REG_N macro +#ifndef EIGEN_SYCL_REG_N + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadN = REG_SIZE_N; +#else + static EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadN = EIGEN_SYCL_REG_N; +#endif + // LocalThreadSizeM: determines total number of thread per workgroup for the m dimension + static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeM = EIGEN_SYCL_LOCAL_THREAD_DIM0; + // LocalThreadSizeN: determines total number of thread per workgroup for the n dimension + static EIGEN_CONSTEXPR StorageIndex LocalThreadSizeN = EIGEN_SYCL_LOCAL_THREAD_DIM1; + // TileSizeDimM: determines the tile size for the m dimension + static EIGEN_CONSTEXPR StorageIndex TileSizeDimM = LocalThreadSizeM * WorkLoadPerThreadM; + // TileSizeDimN: determines the tile size for the n dimension + static EIGEN_CONSTEXPR StorageIndex TileSizeDimN = LocalThreadSizeN * WorkLoadPerThreadN; + // LoadPerThreadLhs: determines workload per thread for loading Lhs Tensor. This must be divisable by packetsize + static EIGEN_CONSTEXPR StorageIndex LoadPerThreadLhs = + ((TileSizeDimK * WorkLoadPerThreadM * WorkLoadPerThreadN) / (TileSizeDimN)); + // LoadPerThreadRhs: determines workload per thread for loading Rhs Tensor. This must be divisable by packetsize + static EIGEN_CONSTEXPR StorageIndex LoadPerThreadRhs = + ((TileSizeDimK * WorkLoadPerThreadM * WorkLoadPerThreadN) / (TileSizeDimM)); + // BC : determines if supporting bank conflict is required + static EIGEN_CONSTEXPR bool BC = true; + // DoubleBuffer: determines if double buffering technique should be used (This can be disabled by + // EIGEN_SYCL_DISABLE_DOUBLE_BUFFER macro when the device doesnot have sufficient local memory) + static EIGEN_CONSTEXPR bool DoubleBuffer = +#ifdef EIGEN_SYCL_DISABLE_DOUBLE_BUFFER + false; +#else + true; +#endif +}; + +/* ! + * \brief contraction_type: an enum class representing the Tensor Contraction implementation algorithm. This is used to + * specialize the contraction algorithm based on device support for dedicated local memory. + */ +enum class contraction_type { local, no_local }; +/* ! + * \brief data_source an enum class determining the location of the data in a memory hierarchy (global, local, private). + */ +enum class data_source { global_mem, local_mem, private_mem }; + +/*! + * \brief read, a template function used for loading the data from global + memory. This function is used to guarantee coalesced and vectorized load whenever possible + * + * \tparam PacketLoad: determines if the each element of this tensor block should be loaded in a packet mode + * + * \param is_coalesced_layout: determines whether or not the Tensor data in a memory can be access coalesced and + vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the + contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case + when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed. + * + * \tparam PacketType: determines the type of packet + * + * \tparam TensorMapper: determines the input tensor mapper type + * + * \tparam StorageIndex: determines the Index type + + * \param tensorMapper: is the input tensor + * + * \param NCIndex: is the non-contracting dim index + * + * \param CIndex is the contracting dim index + * + * \param ld: is the leading dimension of the flattened tensor + */ +template <bool PacketLoad, bool is_coalesced_layout, bool, typename PacketType, typename TensorMapper, + typename StorageIndex> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<PacketLoad, PacketType>::type read( + const TensorMapper &tensorMapper, const StorageIndex &NCIndex, const StorageIndex &CIndex, const StorageIndex &ld) { + const StorageIndex row = (is_coalesced_layout) ? NCIndex : CIndex; + const StorageIndex col = (is_coalesced_layout) ? CIndex : NCIndex; + return tensorMapper.get_tensor().template packet<Unaligned>(row + (col * ld)); +} + +/*! + * \brief read, special overload of read function, when the read access is not vectorized + * + * \tparam PacketLoad: determines if the each element of this tensor block should be loaded in a packet mode + * + * \param is_coalesced_layout: determines whether or not the Tensor data in a memory can be access coalesced and + vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the + contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case + when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed. + * + * \tparam PacketType: determines the type of packet + * + * \tparam TensorMapper: determines the input tensor mapper type + * + * \tparam StorageIndex: determines the Index type + + * \param tensorMapper: is the input tensor + * + * \param NCIndex: is the non-contracting dim index + * + * \param CIndex: is the contracting dim index + */ +template <bool PacketLoad, bool, bool IsRhs, typename PacketType, typename TensorMapper, typename StorageIndex> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<!PacketLoad, PacketType>::type read( + const TensorMapper &tensorMapper, const StorageIndex &NCIndex, const StorageIndex &CIndex, const StorageIndex &) { + const StorageIndex row = (IsRhs) ? CIndex : NCIndex; + const StorageIndex col = (IsRhs) ? NCIndex : CIndex; + return tensorMapper(row, col); +} + +/*! + * \brief write, a template function used for storing the data to local memory. This function is used to guarantee + * coalesced and vectorized store whenever possible. + * + * \tparam StorageIndex: determines the Index type + * + * \param ld is the leading dimension of the local memory. ld is a compile time value for the local memory + * + * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy. + * + * \tparam PacketType: determines the type of packet + * + * \tparam DataScalar: determines the output data type + * + * \param packet_data: the data to be written in the local memory + * + * \param ptr: a pointer to the local memory + * + * \param CIndex is the contracting dim index + */ + +template <typename StorageIndex, StorageIndex ld, data_source dt, typename PacketType, typename DataScalar> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<dt != data_source::global_mem, void>::type + write(PacketType &packet_data, DataScalar ptr) { + EIGEN_CONSTEXPR int PacketSize = Eigen::internal::unpacket_traits<PacketType>::size; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; i++) { + *ptr = PacketWrapper<PacketType, PacketSize>::scalarize(i, packet_data); + ptr += ld; + } +} + +/*! + * \brief Overloading the write function for storing the data to global memory, when vectorization enabled This function + * is used to guarantee coalesced and vectorized store whenever possible. + * + * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy. + * + * \tparam PacketType: determines the type of packet + * + * \tparam DataScalar: determines the output data type + * + * \param packet_data: the data to be written in the local memory + * + * \param ptr: a pointer to the local memory + */ + +template <data_source dt, typename PacketType, typename DataScalar> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if< + Eigen::internal::unpacket_traits<PacketType>::size != 1 && dt == data_source::global_mem, void>::type +write(PacketType &packet_data, DataScalar *ptr) { + ::Eigen::internal::pstoreu<DataScalar, PacketType>(ptr, packet_data); +} + +/*! + * \brief Overloading the write function for storing the data to global memory, when vectorization is disabled. + * + * \tparam data_source: an enum value representing if the location of the data in a memory hierarchy. + * + * \tparam PacketType: determines the type of packet + * + * \tparam DataScalar: determines the output data type + * + * \param packet_data: the data to be written in the local memory + * + * \param ptr: a pointer to the local memory + */ +template <data_source dt, typename PacketType, typename DataScalar> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if< + Eigen::internal::unpacket_traits<PacketType>::size == 1 && dt == data_source::global_mem, void>::type +write(PacketType &packet_data, DataScalar *ptr) { + *ptr = packet_data; +} + +/*! + * \brief check_boundary: is used to check the edge condition for non-internal blocks. + * + * \tparam is_internal: determines if the block is internal + */ +template <bool is_internal> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool check_boundary(bool) { + return true; +} + +/*! + * \brief check_boundary: specialization of the check_boundary for non-internal blocks. + * + * \param cond: true when the data is in range. Otherwise false + */ +template <> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool check_boundary<false>(bool cond) { + return cond; +} + +/*! + * \brief BlockProperties is a template class that provides different characteristic of a block of each Tensor processed + * by each workgroup. + * + * \tparam is_transposed: iff true, determines whether or not the block of the Tensor is transposed + * + * \tparam packet_load_: determines if the each element of this tensor block should be loaded in a packet mode + * + * \tparam PacketType: determines the type of packet + * + * \tparam OutType: determines the type of each element for this block of tensor. If packet load is true, it will be + * packetType; Otherwise it will be scalar Type + * + * \param elements_per_access determines the size of each element based on OutType + * + * \param is_coalesced_layout determines whether or not the Tensor data in a memory can be access coalesced and + * vectorized when possible. Coalesced memory access is a key factor in Kernel performance. When a tensor is 2d and the + * contracting dimension is 1, it is always possible to accessed tensor data coalesced and vectorized. This is the case + * when RHS(right hand side) Tensor is transposed or when LHS(left hand side) Tensor is not transposed. + * + * \param nc_stride determines the stride of non-contracting dimension to access the next adjustment element within the + * Tensor Block for each workgroup + * + * \param c_stride determines the stride of contracting dimension to access the next adjustment element within the + * Tensor Block for each workgroup + */ +template <bool is_transposed, bool is_rhs_, bool packet_load_, typename PacketType> +struct BlockProperties { + static EIGEN_CONSTEXPR bool packet_load = packet_load_; + typedef typename Eigen::internal::unpacket_traits<PacketType>::type OutScalar; + static EIGEN_CONSTEXPR bool is_rhs = is_rhs_; + typedef typename Eigen::internal::conditional<packet_load, PacketType, OutScalar>::type OutType; + static EIGEN_CONSTEXPR int elements_per_access = Eigen::internal::unpacket_traits<OutType>::size; + static EIGEN_CONSTEXPR bool is_coalesced_layout = !(is_transposed ^ is_rhs); + static EIGEN_CONSTEXPR int nc_stride = (is_coalesced_layout ? elements_per_access : 1); + static EIGEN_CONSTEXPR int c_stride = (is_coalesced_layout ? 1 : elements_per_access); +}; + +/*! + * \brief ThreadProperties is a template class that provides each thread's properties within a workgroup. Please see + * the sycl-1.2.1 specification (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for the workgroup, + * work-items + * + * \tparam StorageIndex: determines the StorageIndex Type + * + * \param linearLocalThreadId: determines the linearized location of a thread within a work-group + * + * \param kGroupId: determines the logical group id in a k dimension of the flattened tensor. It will be > 1 when + * tall/skinny algorithm is used + * + * \param mGroupOffset: determines the logical start position of all thread within a workgroup for the m dimension of + * the flattened tensor. + * + * \param kGroupOffset determines the logical start position of all thread within a workgroup for the k dimension of the + * flattened tensor. It will be > 1 when tall/skinny algorithm is used. + * + * \param mLocalOffset: determines the logical start position of each thread within a workgroup for the m dimension of a + * flattened tensor. The position determines the distance of each thread within the workgroup from each other + * independent from their global position. + * + * \param nLocalOffset: determines the logical start position of each thread within a workgroup for the n dimension of a + * flattened tensor. The position determines the distance of each thread within the workgroup from each other + * independent from their global position. + * + * \param mGlobalOffset: determines the logical start position of each thread a thread for the m dimension on a + * flattened tensor + * + * \param nGlobalOffset: determines the logical start position of each thread a thread for the n dimension on a + * flattened tensor + * + * \param kSize : determine the number of the k elements of the flattened Tensor to be processed by each thread for the + * given tensor block. This is !=K dimension of Flattened Tensor when Tall/Skinny matrix is used. + * + * \param is_internal : this will determined if the thread within the work-group computes an internal block of tensor or + * the edge blocks. When it is internal, there is no need to check the boundaries and all the if stantement can be + * resolve by compiler. + */ +template <typename StorageIndex> +struct ThreadProperties { + const StorageIndex linearLocalThreadId; + const StorageIndex kGroupId; + const StorageIndex mGroupOffset; + const StorageIndex nGroupOffset; + const StorageIndex kGroupOffset; + const StorageIndex mLocalOffset; + const StorageIndex nLocalOffset; + const StorageIndex mGlobalOffset; + const StorageIndex nGlobalOffset; + StorageIndex kSize; + const bool is_internal; + // this is used to adjust the last block + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ThreadProperties( + const StorageIndex linearLocalThreadId_, const StorageIndex kGroupId_, const StorageIndex mGroupOffset_, + const StorageIndex nGroupOffset_, const StorageIndex kGroupOffset_, const StorageIndex mLocalOffset_, + const StorageIndex nLocalOffset_, const StorageIndex mGlobalOffset_, const StorageIndex nGlobalOffset_, + StorageIndex kSize_, const bool is_internal_) + : linearLocalThreadId(linearLocalThreadId_), + kGroupId(kGroupId_), + mGroupOffset(mGroupOffset_), + nGroupOffset(nGroupOffset_), + kGroupOffset(kGroupOffset_), + mLocalOffset(mLocalOffset_), + nLocalOffset(nLocalOffset_), + mGlobalOffset(mGlobalOffset_), + nGlobalOffset(nGlobalOffset_), + kSize(kSize_), + is_internal(is_internal_) {} +}; + +/*! + * \brief TensorContractionKernel is a template class that provides Tensor -Tensor contraction operation. + * + * \tparam OutScalar: determines the output scalar type + * + * \tparam LhsScalar: determines the left-hand-side scalar type + * + * \tparam RhsScalar: determines the right-hand-side scalar type + * + * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification + (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition) + * + * \tparam LhsMapper determines the tensor contraction mapper type for left-hand-side matrix + * + * \tparam RhsMapper determines the tensor contraction mapper type for right-hand-side matrix + * + * \tparam StorageIndex: determines the StorageIndex Type + * + * \tparam Properties: determines the Contraction Panel properties + * + * \tparam TripleDim: determines the M, K, N dimensions for the flatten tensors in order to treat them as a matrix + * + * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression. + * + * \tparam input_mapper_properties : determine if the input tensors are matrix. If they are matrix, special memory + access is used to guarantee that always the memory access are coalesced. + * + * \tptaram IsFinal : determine if this is the final kernel. If so, the result will be written in a final output. + Otherwise, the result of contraction will be written iin a temporary buffer. This is the case when Tall/Skinny + contraction is used. So in this case, a final reduction step is required to compute final output. + + * \tparam contraction_tp: it is an enum value representing whether the local memroy/no local memory implementation of + the algorithm to be used + * + * \param scratch: local memory containing tiles of LHS and RHS tensors for each work-group + * + * \param lhs: determines the left-hand-side flattened tensor (tensor mapper) + * + * \param rhs: determines the right-hand-side flattened tensor (tensor mapper) + * + * \param out_res: determines the output tensor containing the contraction result + * + * \param groupSizeM: a logical number determining the number of work-group for m dimension + * + * \param groupSizeN: a logical number determining the number of work-group for n dimension + * + * \param numTiles: determines total number of tiles on the k dimension + * + * \param TripleDim: determines the M, K, N dimensions for the flatten tensors in order to treat them as a matrix + */ +template <typename OutScalar, typename LhsScalar, typename RhsScalar, typename OutAccessor, typename LhsMapper, + typename RhsMapper, typename StorageIndex, typename Properties, typename TripleDim, bool Vectorizable, + typename input_mapper_properties, bool IsFinal, contraction_type contraction_tp> +class TensorContractionKernel { + public: + typedef typename Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketReturnType + PacketReturnType; + static EIGEN_CONSTEXPR int PacketSize = + Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketSize; + static EIGEN_CONSTEXPR bool is_lhs_transposed = + !::Eigen::internal::TensorContractionInputMapperTrait<LhsMapper>::inner_dim_contiguous; + static EIGEN_CONSTEXPR bool is_rhs_transposed = + !::Eigen::internal::TensorContractionInputMapperTrait<RhsMapper>::inner_dim_contiguous; + + typedef BlockProperties<is_lhs_transposed, false, input_mapper_properties::is_lhs_matrix && Vectorizable, + PacketReturnType> + LHSBlockProperties; + + typedef BlockProperties<is_rhs_transposed, true, input_mapper_properties::is_rhs_matrix && Vectorizable, + PacketReturnType> + RHSBlockProperties; + + static EIGEN_CONSTEXPR StorageIndex NStride = + contraction_tp == contraction_type::local ? Properties::WorkLoadPerThreadN : RHSBlockProperties::nc_stride; + + typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch; + typedef cl::sycl::multi_ptr<OutScalar, cl::sycl::access::address_space::local_space> local_ptr; + typedef OutScalar * /*cl::sycl::multi_ptr<OutScalar, cl::sycl::access::address_space::private_space>*/ private_ptr; + typedef + typename ::Eigen::internal::conditional<contraction_tp == contraction_type::local, local_ptr, private_ptr>::type + tile_ptr; + static EIGEN_CONSTEXPR StorageIndex LSDL = contraction_tp == contraction_type::local + ? Properties::TileSizeDimM + Properties::BC + : Properties::WorkLoadPerThreadM; + static EIGEN_CONSTEXPR StorageIndex LSDR = contraction_tp == contraction_type::local + ? Properties::TileSizeDimN + Properties::BC + : Properties::WorkLoadPerThreadN; + static EIGEN_CONSTEXPR StorageIndex LocalOffset = Properties::LocalThreadSizeM * Properties::LocalThreadSizeN; + + /** + * \brief MemHolder this is a place holder struct for creating memory hierarchy in SYCL. Inside SYCL kernel it is not + * allowed to have dynamic memory allocation. While the local memory is created outside of the kernel and passed to + * the kernel as an accessor, the private memory can only allowed to be allocated statically. Since we are abstracting + * the TiledMemory for both local and private memory, the MemHolder structs is used as a helper to abstract out + * different type of memory needed when local/no_local memory computation is called. + * + * \tparam contraction_type: it is an enum value representing whether the local memroy/no local memory implementation + of the algorithm to be used + * \tparam the private memory size + * \param ptr the tile memory pointer type + */ + template <contraction_type, StorageIndex> + struct MemHolder { + tile_ptr ptr; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MemHolder(local_ptr block_start_ptr) : ptr(block_start_ptr) {} + }; + /** + * \brief specialization of memHolder class when no local memory kernel is used. + */ + template <StorageIndex MemSize> + struct MemHolder<contraction_type::no_local, MemSize> { + OutScalar ptr[MemSize] = {OutScalar{0}}; + }; + /** + * \brief TiledMemory: contains required memory pointer for loading each tile of the TensorContraction panel from + * global memory to local/private memory when local/no_local algorithm used. + * + * \param lhs_scratch_extract : determines the LHS tile memory. It is either private or local memory based on the + * selected contraction_type. + * + * \param rhs_scratch_extract : determines the RHS tile memory. It is either private or local memory based on the + * selected contraction_type. + * + * \param lhs_extract_index: determins the position of each thread on a local memory for lhs input. When private + * memory is used this is set to zero as this is not applicable in case of private memory. + * + * \param rhs_extract_index: determins the position of each thread on a local memory for rhs input. When private + * memory is used this is set to zero as this is not applicable in case of private memory. + * + * \param lhs_scratch_compute : determines the location to load for computation for lhs_local memory. This is the + * same as lhs_scratch_extract for private memory. + * + * \param rhs_scratch_compute : determines the location to load for computation for rhs_local memory. This is the + * same as rhs_scratch_extract for private memory. + */ + struct TiledMemory { + MemHolder<contraction_tp, Properties::WorkLoadPerThreadM * Properties::TileSizeDimK> lhs_scratch_extract; + MemHolder<contraction_tp, Properties::WorkLoadPerThreadN * Properties::TileSizeDimK> rhs_scratch_extract; + tile_ptr lhs_scratch_ptr_compute; + tile_ptr rhs_scratch_ptr_compute; + const std::pair<StorageIndex, StorageIndex> lhs_extract_index; + const std::pair<StorageIndex, StorageIndex> rhs_extract_index; + template <contraction_type tp = contraction_tp> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TiledMemory(const ThreadProperties<StorageIndex> &, local_ptr, + typename ::Eigen::internal::enable_if<tp == contraction_type::no_local>::type * = 0) + : lhs_scratch_extract{}, + rhs_scratch_extract{}, + lhs_scratch_ptr_compute(lhs_scratch_extract.ptr), + rhs_scratch_ptr_compute(rhs_scratch_extract.ptr), + lhs_extract_index(std::pair<StorageIndex, StorageIndex>(StorageIndex{0}, StorageIndex{0})), + rhs_extract_index(std::pair<StorageIndex, StorageIndex>(StorageIndex{0}, StorageIndex{0})) {} + + template <contraction_type tp = contraction_tp> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TiledMemory(const ThreadProperties<StorageIndex> &thread_properties, local_ptr block_start_ptr, + typename ::Eigen::internal::enable_if<tp == contraction_type::local>::type * = 0) + : lhs_scratch_extract{block_start_ptr}, + rhs_scratch_extract{lhs_scratch_extract.ptr + + ((Properties::DoubleBuffer + 1) * LSDL * Properties::TileSizeDimK)}, + lhs_scratch_ptr_compute(lhs_scratch_extract.ptr + thread_properties.mLocalOffset), + rhs_scratch_ptr_compute(rhs_scratch_extract.ptr + thread_properties.nLocalOffset), + lhs_extract_index( + local_id_extract<LHSBlockProperties, Properties::TileSizeDimM>(thread_properties.linearLocalThreadId)), + rhs_extract_index( + local_id_extract<RHSBlockProperties, Properties::TileSizeDimN>(thread_properties.linearLocalThreadId)) {} + }; + + Scratch scratch; + const LhsMapper lhs; + const RhsMapper rhs; + OutAccessor out_res; + const StorageIndex groupSizeM; + const StorageIndex groupSizeN; + const StorageIndex numTiles; + const TripleDim triple_dim; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionKernel(Scratch scratch_, const LhsMapper lhs_, + const RhsMapper rhs_, OutAccessor out_res_, + const StorageIndex groupSizeM_, + const StorageIndex groupSizeN_, + const StorageIndex numTiles_, + const TripleDim triple_dim_) + : scratch(scratch_), + lhs(lhs_), + rhs(rhs_), + out_res(out_res_), + groupSizeM(groupSizeM_), + groupSizeN(groupSizeN_), + numTiles(numTiles_), + triple_dim(triple_dim_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionKernel(Scratch scratch_, const LhsMapper lhs_, + const RhsMapper rhs_, OutAccessor out_res_, + const StorageIndex groupSizeM_, + const StorageIndex numTiles_, + const TripleDim triple_dim_) + : TensorContractionKernel(scratch_, lhs_, rhs_, out_res_, groupSizeM_, 1, numTiles_, triple_dim_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + const StorageIndex linearLocalThreadId = itemID.get_local_id(0); + const StorageIndex nLocalThreadId = linearLocalThreadId / Properties::LocalThreadSizeM; + const StorageIndex mLocalThreadId = linearLocalThreadId % Properties::LocalThreadSizeM; + const StorageIndex mGroupId = itemID.get_group(0) % groupSizeM; + const StorageIndex tmp = itemID.get_group(0) / groupSizeM; + const StorageIndex nGroupId = IsFinal ? tmp : tmp % groupSizeN; + const StorageIndex kGroupId = IsFinal ? 0 : tmp / groupSizeN; + const StorageIndex mGroupOffset = mGroupId * Properties::TileSizeDimM; + const StorageIndex nGroupOffset = nGroupId * Properties::TileSizeDimN; + const StorageIndex mLocalOffset = PacketSize * mLocalThreadId; + const StorageIndex nLocalOffset = NStride * nLocalThreadId; + const StorageIndex mGlobalOffset = mGroupOffset + mLocalOffset; + const StorageIndex nGlobalOffset = nGroupOffset + nLocalOffset; + + const StorageIndex kSizePerWG = IsFinal ? triple_dim.K : numTiles * Properties::TileSizeDimK; + StorageIndex kGroupOffset = kGroupId * kSizePerWG; + const bool is_internal = triple_dim.M - mGroupOffset >= Properties::TileSizeDimM && + triple_dim.N - nGroupOffset >= Properties::TileSizeDimN && + triple_dim.K - kGroupOffset >= kSizePerWG; + // this is used to adjust the last block + StorageIndex kSize = IsFinal ? triple_dim.K : std::min(kSizePerWG, triple_dim.K - kGroupOffset); + // This is used to find out the lats K offset so that kGroupOffset -kSize can compute the coffset for loading to + // tile + kGroupOffset += kSize; + + auto thread_properties = + ThreadProperties<StorageIndex>(linearLocalThreadId, kGroupId, mGroupOffset, nGroupOffset, kGroupOffset, + mLocalOffset, nLocalOffset, mGlobalOffset, nGlobalOffset, kSize, is_internal); + + auto out_ptr = out_res.get_pointer() + (IsFinal ? 0 : thread_properties.kGroupId * triple_dim.M * triple_dim.N); + + (thread_properties.is_internal) ? compute_panel<true>(itemID, thread_properties, out_ptr) + : compute_panel<false>(itemID, thread_properties, out_ptr); + } + // The compute block computes the contraction operation private block for each thread and store the resutl in the + // privateRes memory of Each computation the compute block function is independent of local and no local concepts as + // it only compute the block on each thread's private memory space + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_block_per_tile(OutScalar *lhs_block_ptr, OutScalar *rhs_block_ptr, + PacketReturnType *privateRes) { + StorageIndex idx = 0; + EIGEN_CONSTEXPR StorageIndex lhs_stride = + contraction_tp == contraction_type::local ? (PacketSize * Properties::LocalThreadSizeM) : 1; + EIGEN_UNROLL_LOOP + for (StorageIndex wLPTN = 0; wLPTN < Properties::WorkLoadPerThreadN; wLPTN++) { + auto rhsPacket = PacketReturnType{*(rhs_block_ptr + wLPTN)}; + StorageIndex lhs_index = 0; + EIGEN_UNROLL_LOOP + for (StorageIndex wLPTM = 0; wLPTM < Properties::WorkLoadPerThreadM / PacketSize; wLPTM++) { + PacketReturnType lhsPack{}; + Eigen::TensorSycl::internal::PacketWrapper<PacketReturnType, PacketSize>::set_packet(lhsPack, + lhs_block_ptr + lhs_index); + privateRes[idx] = ::Eigen::internal::pmadd(lhsPack, rhsPacket, privateRes[idx]); + + lhs_index += lhs_stride; + idx++; + } + } + } + // The store function write the computed contraction operation in the private memory of each thread to the global + // memory. The store function is independent of local and no local concepts s that it can be abstract out in the base + // class. + template <bool is_internal_block, StorageIndex PrivateNStride, typename OutPtr> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void store(OutPtr *out_ptr, PacketReturnType *privateRes, + StorageIndex mGlobalOffset, StorageIndex nGlobalOffset) { + auto chk_bound = [&](const StorageIndex &mIndex, const StorageIndex &nIndex) EIGEN_DEVICE_FUNC { + return (mIndex + PacketSize - 1 < triple_dim.M && nGlobalOffset + nIndex < triple_dim.N); + }; + // when local memory is not used M and N are both accessed in a coalesced way. However, when local memory is + // available the k*N is transposed in the local to N*K therefore, each blocks operates on blockId* + // WorkLoadPerThreadN slice of N + EIGEN_CONSTEXPR StorageIndex GlobalNStride = + contraction_tp == contraction_type::local ? 1 : Properties::LocalThreadSizeN; + EIGEN_UNROLL_LOOP + for (StorageIndex wLPTN = 0; wLPTN < Properties::WorkLoadPerThreadN / PrivateNStride; wLPTN++) { + // output leading dimension + StorageIndex outputLD = 0; + // When local memory is used the PrivateNstride is always 1 because the coalesed access on N is loaded into Local + // memory and extracting from local to global is the same as no transposed version. However, when local memory is + // not used and RHS is transposed we packetize the load for RHS. + EIGEN_UNROLL_LOOP + for (StorageIndex nId = 0; nId < PrivateNStride; nId++) { + StorageIndex globalRow = mGlobalOffset; + EIGEN_UNROLL_LOOP + for (StorageIndex wLPTM = 0; wLPTM < Properties::WorkLoadPerThreadM / PacketSize; wLPTM++) { + PacketReturnType privetOut = privateRes[wLPTM]; + if (check_boundary<is_internal_block>(chk_bound(globalRow, nId))) { + // Store the final results in C. The C matrix has always M as a first StorageIndex and N as a second + // StorageIndex Therefore it is always coalesced layout + write<data_source::global_mem>(privetOut, out_ptr + outputLD + globalRow); + } else { + EIGEN_UNROLL_LOOP + for (StorageIndex mId = 0; mId < PacketSize; mId++) { + StorageIndex mOffset = globalRow + mId; + if (mOffset < triple_dim.M && (nGlobalOffset + nId < triple_dim.N)) { + out_ptr[mOffset + outputLD] = + Eigen::TensorSycl::internal::PacketWrapper<PacketReturnType, PacketSize>::scalarize(mId, privetOut); + } + } + } + globalRow += (PacketSize * Properties::LocalThreadSizeM); + } + outputLD += triple_dim.M; + privateRes += Properties::WorkLoadPerThreadM / PacketSize; + } + out_ptr += (GlobalNStride * outputLD); + + nGlobalOffset += (PrivateNStride * GlobalNStride); + } + } + // when no local memory is used the following extract_block will be enabled + template <typename InputBlockProperties, bool is_internal_block, typename Input, typename PrivateReg, + contraction_type contract_tp = contraction_tp> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<contract_tp == contraction_type::no_local>::type + extract_block(const Input &inpt, PrivateReg private_ptr, const std::pair<StorageIndex, StorageIndex> &, + const StorageIndex &ncOffset, const StorageIndex cOffset) { + EIGEN_CONSTEXPR StorageIndex LocalThreadSizeNC = + InputBlockProperties::is_rhs ? Properties::LocalThreadSizeN : Properties::LocalThreadSizeM; + EIGEN_CONSTEXPR StorageIndex WorkLoadPerThreadNC = + InputBlockProperties::is_rhs ? Properties::WorkLoadPerThreadN : Properties::WorkLoadPerThreadM; + const StorageIndex &NC = InputBlockProperties::is_rhs ? triple_dim.N : triple_dim.M; + + auto chk_bound = [&](const StorageIndex &CIndex, const StorageIndex &NCIndex) EIGEN_DEVICE_FUNC { + return ((CIndex + InputBlockProperties::c_stride - 1 < triple_dim.K) && + (NCIndex + InputBlockProperties::nc_stride - 1 < NC)); + }; + const StorageIndex ld = InputBlockProperties::is_coalesced_layout ? NC : triple_dim.K; + StorageIndex cIndex = cOffset; + + EIGEN_UNROLL_LOOP + for (StorageIndex cId = 0; cId < Properties::TileSizeDimK / InputBlockProperties::c_stride; cId++) { + StorageIndex ncIndex = ncOffset; + EIGEN_UNROLL_LOOP + for (StorageIndex ncId = 0; ncId < WorkLoadPerThreadNC / InputBlockProperties::nc_stride; ncId++) { + if (check_boundary<is_internal_block>(chk_bound(cIndex, ncIndex))) { + auto val = + read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout, + InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, ncIndex, cIndex, ld); + + write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : WorkLoadPerThreadNC), + data_source::private_mem>(val, private_ptr); + } else { + EIGEN_UNROLL_LOOP + for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) { + const StorageIndex ncInd = ncIndex + (InputBlockProperties::is_coalesced_layout ? i : 0); + const StorageIndex cInd = cIndex + (InputBlockProperties::is_coalesced_layout ? 0 : i); + OutScalar val = + (ncInd < NC && cInd < triple_dim.K) + ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>( + inpt, ncInd, cInd, ld) + : OutScalar(0); + write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : WorkLoadPerThreadNC), + data_source::private_mem>( + val, private_ptr + (InputBlockProperties::is_coalesced_layout ? i : 0) + + ((InputBlockProperties::is_coalesced_layout ? 0 : i) * WorkLoadPerThreadNC)); + } + } + + // if it is lhs we have to load it packetised when the packet size is > 1, because the output is coalesced. So + // even if M is not accessed in a coalesced mode, we have to load packet_size number of m per thread. + ncIndex = (!InputBlockProperties::is_rhs && InputBlockProperties::nc_stride == 1 && PacketSize != 1) + ? ncOffset + (ncId + 1) % PacketSize + ((ncId + 1) / PacketSize) * LocalThreadSizeNC + : (ncIndex + InputBlockProperties::nc_stride * LocalThreadSizeNC); + private_ptr += InputBlockProperties::nc_stride; + } + // the previous for loop ( private_ptr += (ncId * nc_stride)) has already moved ptr with one WorkLoadPerThreadNC + private_ptr += (InputBlockProperties::c_stride - 1) * WorkLoadPerThreadNC; + cIndex += InputBlockProperties::c_stride; + } + } + template <typename InputBlockProperties, StorageIndex TileSizeDimNC> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::pair<StorageIndex, StorageIndex> local_id_extract( + const StorageIndex &linearLocalThreadId) { + const StorageIndex localThreadNC = + (InputBlockProperties::is_coalesced_layout) + ? linearLocalThreadId % (TileSizeDimNC / InputBlockProperties::nc_stride) + : linearLocalThreadId / (Properties::TileSizeDimK / InputBlockProperties::c_stride); + const StorageIndex localThreadC = + (InputBlockProperties::is_coalesced_layout) + ? linearLocalThreadId / (TileSizeDimNC / InputBlockProperties::nc_stride) + : linearLocalThreadId % (Properties::TileSizeDimK / InputBlockProperties::c_stride); + return std::pair<StorageIndex, StorageIndex>(localThreadNC, localThreadC); + } + + template <bool db = Properties::DoubleBuffer, contraction_type ctp = contraction_tp> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<db && ctp == contraction_type::local>::type + sync_mem(const cl::sycl::nd_item<1> &, bool &db_offset) noexcept { + db_offset = !db_offset; + } + + template <bool db = Properties::DoubleBuffer, contraction_type ctp = contraction_tp> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<!db && ctp == contraction_type::local>::type + sync_mem(const cl::sycl::nd_item<1> &itemID, bool &) noexcept { + itemID.barrier(cl::sycl::access::fence_space::local_space); + } + + template <contraction_type ctp = contraction_tp> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<ctp == contraction_type::no_local>::type + sync_mem(const cl::sycl::nd_item<1> &, bool &) noexcept { + return; + } + + template <bool need_sync, contraction_type ctp = contraction_tp> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<need_sync && ctp == contraction_type::no_local>::type + sync_thread(const cl::sycl::nd_item<1> & +#ifdef EIGEN_SYCL_ARM_GPU_CACHE_OPTIMISATION + itemID +#endif + ) noexcept { +#ifdef EIGEN_SYCL_ARM_GPU_CACHE_OPTIMISATION + itemID.barrier(cl::sycl::access::fence_spacce::local_space); +#else + return; +#endif + } + template <bool need_sync, contraction_type ctp = contraction_tp> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<need_sync && ctp == contraction_type::local>::type + sync_thread(const cl::sycl::nd_item<1> &itemID) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + } + template <bool need_sync> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<!need_sync>::type sync_thread( + const cl::sycl::nd_item<1> &) { + return; + } + + template <bool is_internal_block> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_tile_per_panel(const cl::sycl::nd_item<1> &itemID, + ThreadProperties<StorageIndex> &thread_properties, + TiledMemory &tiled_input_block, + PacketReturnType *privateRes, bool &db_offset) { + // Tiling the Rhs block from global to local memory + extract_block<RHSBlockProperties, is_internal_block>( + rhs, tiled_input_block.rhs_scratch_extract.ptr + (db_offset * Properties::TileSizeDimK * LSDR), + tiled_input_block.rhs_extract_index, + contraction_tp == contraction_type::local ? thread_properties.nGroupOffset : thread_properties.nGlobalOffset, + thread_properties.kGroupOffset - thread_properties.kSize); + + sync_thread<contraction_tp == contraction_type::no_local>(itemID); + + // Tiling the Lhs block from global to local memory + extract_block<LHSBlockProperties, is_internal_block>( + lhs, tiled_input_block.lhs_scratch_extract.ptr + (db_offset * LSDL * Properties::TileSizeDimK), + tiled_input_block.lhs_extract_index, + contraction_tp == contraction_type::local ? thread_properties.mGroupOffset : thread_properties.mGlobalOffset, + thread_properties.kGroupOffset - thread_properties.kSize); + + // itemID.barrier(cl::sycl::access::fence_space::local_space); + sync_thread<contraction_tp == contraction_type::local>(itemID); + // switch to compute mede + StorageIndex lhs_offset = (db_offset * LSDL * Properties::TileSizeDimK); + StorageIndex rhs_offset = (db_offset * Properties::TileSizeDimK * LSDR); + // Loop over the values of a single tile + for (StorageIndex k = 0; k < Properties::TileSizeDimK; k++) { + compute_block_per_tile(tiled_input_block.lhs_scratch_ptr_compute + lhs_offset, + tiled_input_block.rhs_scratch_ptr_compute + rhs_offset, privateRes); + lhs_offset += LSDL; + rhs_offset += LSDR; + } + // computing the K index for the next tile + thread_properties.kSize -= Properties::TileSizeDimK; + sync_mem(itemID, db_offset); + } + + // when local memory is available the following compute_panel will be enabled + template <bool is_internal_block, typename OutPtr> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_panel(const cl::sycl::nd_item<1> &itemID, + ThreadProperties<StorageIndex> &thread_properties, + OutPtr out_ptr) { + auto tiled_input_block = TiledMemory{thread_properties, scratch.get_pointer()}; + // Allocate register space + PacketReturnType privateRes[Properties::WorkLoadPerThreadM * Properties::WorkLoadPerThreadN / PacketSize] = { + PacketReturnType{0}}; + bool db_offset = 0; + + while (thread_properties.kSize >= Properties::TileSizeDimK) { + compute_tile_per_panel<is_internal_block>(itemID, thread_properties, tiled_input_block, privateRes, db_offset); + } + if (thread_properties.kSize > 0) { + compute_tile_per_panel<false>(itemID, thread_properties, tiled_input_block, privateRes, db_offset); + } + + // Storing the final results in the output + store<is_internal_block, + contraction_tp == contraction_type::local ? static_cast<StorageIndex>(1) : RHSBlockProperties::nc_stride>( + out_ptr + thread_properties.nGlobalOffset * triple_dim.M, privateRes, thread_properties.mGlobalOffset, + thread_properties.nGlobalOffset); + } + // When local memory is available the following extract_block will be enabled + template <typename InputBlockProperties, bool is_internal_block, typename Input, typename Local, + contraction_type contract_tp = contraction_tp> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename ::Eigen::internal::enable_if<contract_tp == contraction_type::local>::type + extract_block(const Input &inpt, Local local_ptr, const std::pair<StorageIndex, StorageIndex>& local_index, + const StorageIndex &ncOffset, const StorageIndex cOffset) { + EIGEN_CONSTEXPR StorageIndex TileSizeDimNC = + InputBlockProperties::is_rhs ? Properties::TileSizeDimN : Properties::TileSizeDimM; + EIGEN_CONSTEXPR StorageIndex LoadPerThread = + InputBlockProperties::is_rhs ? Properties::LoadPerThreadRhs : Properties::LoadPerThreadLhs; + EIGEN_CONSTEXPR StorageIndex LSD = InputBlockProperties::is_rhs ? LSDR : LSDL; + static_assert(((LocalOffset % (TileSizeDimNC / InputBlockProperties::nc_stride) == 0) && + (LocalOffset % (Properties::TileSizeDimK / InputBlockProperties::c_stride) == 0)), + " LocalOffset must be divisable by stride"); + const StorageIndex &NC = InputBlockProperties::is_rhs ? triple_dim.N : triple_dim.M; + StorageIndex localThreadNC = local_index.first; + StorageIndex localThreadC = local_index.second; + auto chk_bound = [&](const StorageIndex &CIndex, const StorageIndex &NCIndex) EIGEN_DEVICE_FUNC { + return ((CIndex + InputBlockProperties::c_stride - 1 < triple_dim.K) && + (NCIndex + InputBlockProperties::nc_stride - 1 < NC)); + }; + EIGEN_UNROLL_LOOP + for (StorageIndex lPT = 0; lPT < LoadPerThread / InputBlockProperties::elements_per_access; lPT++) { + const StorageIndex CIndex = cOffset + (InputBlockProperties::c_stride * localThreadC); + const StorageIndex NCIndex = ncOffset + (InputBlockProperties::nc_stride * localThreadNC); + const StorageIndex ld = InputBlockProperties::is_coalesced_layout ? NC : triple_dim.K; + if (check_boundary<is_internal_block>(chk_bound(CIndex, NCIndex))) { + auto val = + read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout, + InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, NCIndex, CIndex, ld); + write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : LSD), data_source::local_mem>( + val, local_ptr + (InputBlockProperties::nc_stride * localThreadNC) + + (InputBlockProperties::c_stride * localThreadC * LSD)); + } else { + EIGEN_UNROLL_LOOP + for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) { + const StorageIndex nCInd = NCIndex + (InputBlockProperties::is_coalesced_layout ? i : 0); + const StorageIndex cInd = CIndex + (InputBlockProperties::is_coalesced_layout ? 0 : i); + OutScalar val = + (nCInd < NC && cInd < triple_dim.K) + ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>( + inpt, nCInd, cInd, ld) + : OutScalar(0); + + write<StorageIndex, (InputBlockProperties::is_coalesced_layout ? 1 : LSD), data_source::local_mem>( + val, local_ptr + (InputBlockProperties::nc_stride * localThreadNC) + + (InputBlockProperties::is_coalesced_layout ? i : 0) + + ((InputBlockProperties::c_stride * localThreadC + + (InputBlockProperties::is_coalesced_layout ? 0 : i)) * + LSD)); + } + } + localThreadNC += (InputBlockProperties::is_coalesced_layout) + ? LocalOffset % (TileSizeDimNC / InputBlockProperties::nc_stride) + : LocalOffset / (Properties::TileSizeDimK / InputBlockProperties::c_stride); + localThreadC += (InputBlockProperties::is_coalesced_layout) + ? LocalOffset / (TileSizeDimNC / InputBlockProperties::nc_stride) + : LocalOffset % (Properties::TileSizeDimK / InputBlockProperties::c_stride); + } + } +}; + +#ifndef EIGEN_SYCL_DISABLE_GEMV + +/*! + * \brief GeneralVectorTensor is a template class that provides Tensor -vector contraction operation, which is a special + * case of Tensor Tensor contraction. + * + * \tparam OutScalar: determines the output scalar type + * + * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification + * (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition) + * + * \tparam VectorMapper: determines the tensor contraction mapper for the vector input (can be lhs or rhs) + * + * \tparam TensorMapper: determines the tensor contraction mapper for the tensor input (can be lhs or rhs) + * + * \tparam StorageIndex: determines the StorageIndex Type + * + * \tparam Properties: determines the Contraction Panel properties + * + * \tparam KFactor: determines the number of elements in K dimension in a Tile + * + * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression. + * + * \tparam is_lhs_vec: determines whether lhs is a vector or rhs is a vector + * + * \tparam IsFinal: determine if this is the final kernel. If so, the result will be written in a final output. + * Otherwise, the result of contraction will be written iin a temporary buffer. + * + * \param scratch: determines the local memory containing the vector block for each work-group + * + * \param vec: determines the vector input (tensor mapper) + * + * \param mat: determines the tensor input (tensor mapper) + * + * \param out_res: determines the output vector containing the contraction result + * + * \param nonContractGroupSize: a logical number determining the number of work-group for non-contracting dimension + * + * \param nonContractDim: determines the size of non contracting dimension for the flattened tensor + * + * \param contractDim: determines the size of non contracting dimension for the flattened tensor + * + */ +template <typename OutScalar, typename OutAccessor, typename VectorMapper, typename TensorMapper, typename StorageIndex, + typename Properties, StorageIndex KFactor, bool Vectorizable, bool is_lhs_vec, bool IsFinal> +struct GeneralVectorTensor { + typedef typename Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketReturnType + PacketReturnType; + static EIGEN_CONSTEXPR int PacketSize = + Eigen::TensorSycl::internal::Vectorise<OutScalar, Eigen::SyclDevice, Vectorizable>::PacketSize; + typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch; + + static EIGEN_CONSTEXPR StorageIndex OutScratchOffset = + KFactor * Properties::LocalThreadSizeC * Properties::LocalThreadSizeNC; + + // Since the access layout for a vector can always be coalesced, when LHS is a vector, we pass false and false to make + // sure that the !^ is true When RHS is a vector, we pass true and true to make sure that the !^ is true. + typedef BlockProperties<is_lhs_vec ? false : true, is_lhs_vec ? false : true, Vectorizable, PacketReturnType> + VecBlockProperties; + + Scratch scratch; + const VectorMapper vec; + const TensorMapper mat; + OutAccessor out_res; + const StorageIndex nonContractGroupSize; + const StorageIndex nonContractDim; + const StorageIndex contractDim; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE GeneralVectorTensor(Scratch scratch_, const VectorMapper vec_, + const TensorMapper mat_, OutAccessor out_res_, + const StorageIndex nonContractGroupSize_, + const StorageIndex nonContractDim_, + const StorageIndex contractDim_) + : scratch(scratch_), + vec(vec_), + mat(mat_), + out_res(out_res_), + nonContractGroupSize(nonContractGroupSize_), + nonContractDim(nonContractDim_), + contractDim(contractDim_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + auto scratch_ptr = scratch.get_pointer(); + const StorageIndex linearLocalThreadId = itemID.get_local_id(0); + StorageIndex nonContractId = is_lhs_vec ? linearLocalThreadId / Properties::LocalThreadSizeC + : linearLocalThreadId % Properties::LocalThreadSizeNC; + StorageIndex contractId = is_lhs_vec ? linearLocalThreadId % Properties::LocalThreadSizeC + : linearLocalThreadId / Properties::LocalThreadSizeNC; + const StorageIndex cGroupSize = itemID.get_group_range(0) / nonContractGroupSize; + const StorageIndex nonContractGroupId = + is_lhs_vec ? itemID.get_group(0) / cGroupSize : itemID.get_group(0) % nonContractGroupSize; + const StorageIndex contractGroupId = + is_lhs_vec ? itemID.get_group(0) % cGroupSize : itemID.get_group(0) / nonContractGroupSize; + auto out_ptr = out_res.get_pointer() + (IsFinal ? 0 : contractGroupId * nonContractDim); + + const StorageIndex nonContractGroupOffset = nonContractGroupId * Properties::TileSizeDimNC; + const StorageIndex contractGroupOffset = contractGroupId * Properties::TileSizeDimC; + auto outScratchIndex = nonContractId + contractId * Properties::LocalThreadSizeNC; + const StorageIndex globalNonContractDimOffset = nonContractGroupOffset + nonContractId; + const StorageIndex globalContractDimOffset = contractGroupOffset + contractId; + auto local_output = scratch_ptr + OutScratchOffset; + const bool is_internal = nonContractDim - nonContractGroupOffset >= Properties::TileSizeDimNC && + contractDim - contractGroupOffset >= Properties::TileSizeDimC; + is_internal + ? compute_panel<true>(itemID, vec, mat, local_output, out_ptr, +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + scratch_ptr, contractGroupOffset, +#endif + nonContractGroupOffset, linearLocalThreadId, contractDim, nonContractDim, contractId, + nonContractId, globalContractDimOffset, globalNonContractDimOffset, outScratchIndex) + : compute_panel<false>(itemID, vec, mat, local_output, out_ptr, +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + scratch_ptr, contractGroupOffset, +#endif + nonContractGroupOffset, linearLocalThreadId, contractDim, nonContractDim, contractId, + nonContractId, globalContractDimOffset, globalNonContractDimOffset, outScratchIndex); + } + template <bool is_internal_block, typename OutPtr> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_panel( + const cl::sycl::nd_item<1> &itemID, const VectorMapper &vec, const TensorMapper &mat, OutScalar *local_output, + OutPtr out_ptr, +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + OutScalar *scratch_ptr, const StorageIndex contractGroupOffset, +#endif + const StorageIndex nonContractGroupOffset, const StorageIndex linearLocalThreadId, StorageIndex contractDim, + StorageIndex nonContractDim, StorageIndex contractId, StorageIndex nonContractId, + StorageIndex globalContractDimOffset, StorageIndex globalNonContractDimOffset, StorageIndex outScratchIndex) { + OutScalar outScalar[Properties::WorkLoadPerThreadNC] = {OutScalar(0)}; + // Reading the vector +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + const StorageIndex vectorOffset = contractGroupOffset + linearLocalThreadId; + extract_block<VecBlockProperties, is_internal_block, KFactor, + Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC>(vec, scratch_ptr, linearLocalThreadId, + vectorOffset, contractDim); + + itemID.barrier(cl::sycl::access::fence_space::local_space); + auto in_scratch_ptr = scratch_ptr + contractId; +#endif + + StorageIndex privateOffsetC = 0; + EIGEN_UNROLL_LOOP + for (StorageIndex i = 0; i < Properties::WorkLoadPerThreadC; i++) { + StorageIndex privateOffsetNC = 0; + bool contract_conds = ((globalContractDimOffset + privateOffsetC) < contractDim); +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + auto vecScalar = *in_scratch_ptr; +#else + auto vecScalar = (check_boundary<is_internal_block>(contract_conds)) + ? vec(is_lhs_vec ? StorageIndex(0) : globalContractDimOffset + privateOffsetC, + is_lhs_vec ? globalContractDimOffset + privateOffsetC : StorageIndex(0)) + : OutScalar(0); +#endif + EIGEN_UNROLL_LOOP + for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) { + auto matScalar = (check_boundary<is_internal_block>( + contract_conds && ((globalNonContractDimOffset + privateOffsetNC) < nonContractDim))) + ? mat(is_lhs_vec ? globalContractDimOffset + privateOffsetC + : globalNonContractDimOffset + privateOffsetNC, + is_lhs_vec ? globalNonContractDimOffset + privateOffsetNC + : globalContractDimOffset + privateOffsetC) + : OutScalar(0); + + outScalar[j] = cl::sycl::mad(matScalar, vecScalar, outScalar[j]); + privateOffsetNC += Properties::LocalThreadSizeNC; + } + privateOffsetC += Properties::LocalThreadSizeC; +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + in_scratch_ptr += Properties::LocalThreadSizeC; +#endif + } + + auto out_scratch_ptr = local_output + outScratchIndex; + // Each block of 16*16 element in shared memory should reduce to 16*1 + EIGEN_UNROLL_LOOP + for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) { + *out_scratch_ptr = outScalar[j]; + + out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC); + } + if (is_lhs_vec) { + nonContractId = linearLocalThreadId % Properties::LocalThreadSizeNC; + contractId = linearLocalThreadId / Properties::LocalThreadSizeNC; + outScratchIndex = nonContractId + contractId * Properties::LocalThreadSizeNC; + } + + out_scratch_ptr = local_output + outScratchIndex; + EIGEN_UNROLL_LOOP + for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) { + EIGEN_UNROLL_LOOP + for (StorageIndex offset = Properties::LocalThreadSizeC >> 1; offset > 0; offset >>= 1) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (contractId < offset) { + StorageIndex myNeigbourId = (Properties::LocalThreadSizeNC * offset); + *out_scratch_ptr += out_scratch_ptr[myNeigbourId]; + } + } + // moving to next 16 by 16 block + out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC); + } + + if (contractId == 0) { + out_scratch_ptr = local_output + nonContractId; + StorageIndex global_final_offset = nonContractGroupOffset + nonContractId; + out_ptr += global_final_offset; + EIGEN_UNROLL_LOOP + for (StorageIndex j = 0; j < Properties::WorkLoadPerThreadNC; j++) { + if (check_boundary<is_internal_block>(global_final_offset < nonContractDim)) { + auto res = *out_scratch_ptr; + + *out_ptr = res; + out_ptr += Properties::LocalThreadSizeNC; + } + // moving to next 16 by 16 block to ge the next 16 reduced elements + out_scratch_ptr += (Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC); + if (!(is_internal_block)) global_final_offset += Properties::LocalThreadSizeNC; + } + } + } + + template <typename InputBlockProperties, bool is_internal_block, int CFactor, int GroupSize, typename Input, + typename Local> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void extract_block(const Input &inpt, Local *local_ptr, + const StorageIndex &linearLocalThreadId, + const StorageIndex &cOffset, const StorageIndex &C) { + local_ptr += InputBlockProperties::c_stride * linearLocalThreadId; + StorageIndex cIndex = cOffset; + for (StorageIndex cId = 0; cId < CFactor / InputBlockProperties::c_stride; cId++) { + if (check_boundary<is_internal_block>(cIndex + InputBlockProperties::c_stride - 1 < C)) { + auto val = read<InputBlockProperties::packet_load, InputBlockProperties::is_coalesced_layout, + InputBlockProperties::is_rhs, typename InputBlockProperties::OutType>(inpt, StorageIndex(0), + cIndex, StorageIndex(1)); + write<StorageIndex, 1, data_source::local_mem>(val, local_ptr); + } else { + EIGEN_UNROLL_LOOP + for (StorageIndex i = 0; i < InputBlockProperties::elements_per_access; i++) { + OutScalar val = + (cIndex + i < C) + ? read<false, InputBlockProperties::is_coalesced_layout, InputBlockProperties::is_rhs, OutScalar>( + inpt, StorageIndex(0), cIndex + i, StorageIndex(1)) + : OutScalar(0); + write<StorageIndex, 1, data_source::local_mem>(val, local_ptr + i); + } + } + local_ptr += InputBlockProperties::c_stride * GroupSize; + cIndex += InputBlockProperties::c_stride * GroupSize; + } + } +}; +#endif + +#ifndef EIGEN_SYCL_DISABLE_SCALAR + +/*! + * \brief GeneralScalarContraction is a template class that provides the scalar value of Tensor -Tensor contraction + * operation, when all the dimensions are contracting dimensions. This Kernel reduces two tensors to an scalar + * + * \tparam OutScalar: determines the output scalar type + * + * \tparam LhsScalar: determines the left-hand-side scalar type + * + * \tparam RhsScalar: determines the right-hand-side scalar type + * + * \tparam OutAccessor: determines the sycl accessor type for out put (please see the sycl-1.2.1 specification + * (https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf) for accessor definition) + * + * \tparam LhsMapper: determines the tensor contraction mapper type for left-hand-side matrix + * + * \tparam RhsMapper: determines the tensor contraction mapper type for right-hand-side matrix + * + * \tparam StorageIndex: determines the StorageIndex Type + * + * \tparam Vectorizable: determines whether or not the vectorization is enabled for the Eigen expression. + * + * \param scratch: local memory containing tiles of LHS and RHS tensors for each work-group + * + * \param lhs: determines the left-hand-side flattened tensor (tensor mapper) + * + * \param rhs: determines the right-hand-side flattened tensor (tensor mapper) + * + * \param out_res: determines the output tensor containing the contraction result + * + * \param rng: determins the total input data size + */ +template <typename OutScalar, typename LhsScalar, typename RhsScalar, typename OutAccessor, typename LhsMapper, + typename RhsMapper, typename StorageIndex, bool Vectorizable> +struct GeneralScalarContraction { + typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> Scratch; + Scratch scratch; + const LhsMapper lhs; + const RhsMapper rhs; + OutAccessor out_res; + const StorageIndex rng; + + EIGEN_DEVICE_FUNC + GeneralScalarContraction(Scratch scratch_, const LhsMapper lhs_, const RhsMapper rhs_, OutAccessor out_res_, + const StorageIndex rng_) + : scratch(scratch_), lhs(lhs_), rhs(rhs_), out_res(out_res_), rng(rng_) {} + + EIGEN_DEVICE_FUNC void operator()(cl::sycl::nd_item<1> itemID) { + auto out_ptr = out_res.get_pointer(); + auto scratch_ptr = scratch.get_pointer().get(); + + StorageIndex globalid = itemID.get_global_id(0); + StorageIndex localid = itemID.get_local_id(0); + OutScalar accumulator = OutScalar(0); + for (StorageIndex i = globalid; i < rng; i += itemID.get_global_range(0)) { + accumulator = cl::sycl::mad(lhs(0, i), rhs(i, 0), accumulator); + } + auto out_scratch_ptr = scratch_ptr + localid; + *out_scratch_ptr = accumulator; + for (StorageIndex offset = itemID.get_local_range(0) >> 1; offset > 0; offset >>= 1) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (localid < offset) { + *out_scratch_ptr = (accumulator += out_scratch_ptr[offset]); + } + } + if (localid == 0) { + out_ptr[itemID.get_group(0)] = accumulator; + } + } +}; +#endif + +} // namespace internal +} // namespace TensorSycl + +template <typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType> +struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, + Eigen::SyclDevice> + : public TensorContractionEvaluatorBase<TensorEvaluator< + const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Eigen::SyclDevice>> { + static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value, + "SYCL tensor contraction does not support output kernels."); + + typedef Eigen::SyclDevice Device; + + typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; + typedef TensorContractionEvaluatorBase<Self> Base; + typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::Index StorageIndex; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename Base::Storage Storage; + typedef typename Base::EvaluatorPointerType EvaluatorPointerType; + struct TripleDim { + const StorageIndex M; + const StorageIndex N; + const StorageIndex K; + TripleDim(const StorageIndex M_, const StorageIndex N_, const StorageIndex K_) : M(M_), N(N_), K(K_) {} + }; + enum { + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = false, + }; + + static EIGEN_CONSTEXPR int LDims = Base::LDims; + static EIGEN_CONSTEXPR int RDims = Base::RDims; + static EIGEN_CONSTEXPR int ContractDims = Base::ContractDims; + + typedef array<StorageIndex, LDims> left_dim_mapper_t; + typedef array<StorageIndex, RDims> right_dim_mapper_t; + + typedef array<StorageIndex, ContractDims> contract_t; + typedef array<StorageIndex, LDims - ContractDims> left_nocontract_t; + typedef array<StorageIndex, RDims - ContractDims> right_nocontract_t; + + static const int NumDims = LDims + RDims - 2 * ContractDims; + + typedef DSizes<StorageIndex, NumDims> Dimensions; + + typedef TensorEvaluator<typename Base::EvalLeftArgType, Device> LeftEvaluator; + typedef TensorEvaluator<typename Base::EvalRightArgType, Device> RightEvaluator; + typedef typename Eigen::internal::remove_const<typename LeftEvaluator::CoeffReturnType>::type LhsScalar; + typedef typename Eigen::internal::remove_const<typename RightEvaluator::CoeffReturnType>::type RhsScalar; + + typedef typename LeftEvaluator::Dimensions LeftDimensions; + typedef typename RightEvaluator::Dimensions RightDimensions; + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered> + struct input_mapper_propertis { + static EIGEN_CONSTEXPR bool is_lhs_matrix = (LDims == 2 && ContractDims == 1) || lhs_inner_dim_contiguous; + static EIGEN_CONSTEXPR bool is_rhs_matrix = + (RDims == 2 && ContractDims == 1) || (rhs_inner_dim_contiguous && !rhs_inner_dim_reordered); + }; + + TensorEvaluator(const XprType &op, const Device &device) : Base(op, device) {} + + // We need to redefine this method to make nvcc happy + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(typename Base::EvaluatorPointerType data) { + this->m_leftImpl.evalSubExprsIfNeeded(NULL); + this->m_rightImpl.evalSubExprsIfNeeded(NULL); + if (!data) { + this->m_result = this->m_device.get( + static_cast<Scalar *>(this->m_device.allocate_temp(this->dimensions().TotalSize() * sizeof(Scalar)))); + data = this->m_result; + } + evalToSycl(data); + return (this->m_result != NULL); + } + const Eigen::SyclDevice &device() const { return this->m_device; } + void evalToSycl(typename Base::EvaluatorPointerType buffer) const { + if (this->m_lhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<true, true, true, Unaligned>(buffer); + } else { + evalTyped<true, true, false, Unaligned>(buffer); + } + } else { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<true, false, true, Unaligned>(buffer); + } else { + evalTyped<true, false, false, Unaligned>(buffer); + } + } + } else { + if (this->m_rhs_inner_dim_contiguous) { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<false, true, true, Unaligned>(buffer); + } else { + evalTyped<false, true, false, Unaligned>(buffer); + } + } else { + if (this->m_rhs_inner_dim_reordered) { + evalTyped<false, false, true, Unaligned>(buffer); + } else { + evalTyped<false, false, false, Unaligned>(buffer); + } + } + } + } + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> + void evalTyped(typename Base::EvaluatorPointerType buffer) const { + const auto triple_dim = TripleDim{this->m_i_size, this->m_j_size, this->m_k_size}; + typedef internal::TensorContractionInputMapper< + LhsScalar, StorageIndex, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, + PacketType<CoeffReturnType, Device>::size, lhs_inner_dim_contiguous, false, Unaligned, MakeSYCLPointer> + LhsMapper; + + typedef internal::TensorContractionInputMapper<RhsScalar, StorageIndex, internal::Rhs, RightEvaluator, + right_nocontract_t, contract_t, + PacketType<CoeffReturnType, Device>::size, rhs_inner_dim_contiguous, + rhs_inner_dim_reordered, Unaligned, MakeSYCLPointer> + RhsMapper; + + // initialize data mappers + LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, + this->m_left_contracting_strides, this->m_k_strides); + + RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, + this->m_right_contracting_strides, this->m_k_strides); + +#ifndef EIGEN_SYCL_DISABLE_SCALAR + if (triple_dim.M == 1 && triple_dim.N == 1) { + launchSC(buffer, lhs, rhs, triple_dim.K); + } else +#endif +#ifndef EIGEN_SYCL_DISABLE_GEMV + if (triple_dim.M != 1 && triple_dim.N == 1) { + LaunchVT<false>(buffer, rhs, lhs, triple_dim.M, triple_dim.K); + } else if (triple_dim.M == 1 && triple_dim.N != 1) { + LaunchVT<true>(buffer, lhs, rhs, triple_dim.N, triple_dim.K); + } else // This is equivalent of if (m!=1 && n!=1) +#endif + { + typedef input_mapper_propertis<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered> + inpt_mapper_properties; +#ifndef EIGEN_SYCL_DISABLE_SKINNY + bool skinny = false; + auto platform_name = this->device().getPlatformName(); + // This is based on empirical calculation for AMD r9-nano and Fiji + if (platform_name.find("AMD") == 0) { + skinny = (triple_dim.M < triple_dim.K || triple_dim.N < triple_dim.K) && + ((triple_dim.M < 1024 && triple_dim.N < 1024) || + (uint64_t(triple_dim.M * triple_dim.N) < uint64_t(triple_dim.K))); + } else { + skinny = (((std::max(triple_dim.K, triple_dim.N) / std::min(triple_dim.K, triple_dim.N)) > 100) || + ((std::max(triple_dim.K, triple_dim.M) / std::min(triple_dim.K, triple_dim.M)) > 100) || + ((std::max(triple_dim.N, triple_dim.M) / std::min(triple_dim.N, triple_dim.M)) > 100)); + } + if (skinny) + adjustTT<true, inpt_mapper_properties>(buffer, lhs, rhs, triple_dim); + else +#endif // EIGEN_SYCL_DISABLE_SKINNY + adjustTT<false, inpt_mapper_properties>(buffer, lhs, rhs, triple_dim); + } + } + + template <bool skinny, typename input_mapper_properties, typename LhsMapper, typename RhsMapper> + void EIGEN_ALWAYS_INLINE adjustTT(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs, + const TripleDim &triple_dim) const { +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON + if (device().has_local_memory()) { + typedef TensorSycl::internal::TTPanelSize<CoeffReturnType, StorageIndex, 4, 4, 16> PanelParameters; + launchTT<TensorSycl::internal::contraction_type::local, skinny, input_mapper_properties, PanelParameters>( + buffer, lhs, rhs, triple_dim); + } +#endif +#ifdef EIGEN_SYCL_LOCAL_MEM_UNSET_OR_OFF + if (!(device().has_local_memory())) { + typedef TensorSycl::internal::TTPanelSize<CoeffReturnType, StorageIndex, 4, 4, 4> PanelParameters; + launchTT<TensorSycl::internal::contraction_type::no_local, skinny, input_mapper_properties, PanelParameters>( + buffer, lhs, rhs, triple_dim); + } +#endif + } + + template <TensorSycl::internal::contraction_type ct, bool skinny, typename input_mapper_properties, + typename Properties, typename LhsMapper, typename RhsMapper> + void launchTT(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs, + const TripleDim &triple_dim) const { + const StorageIndex roundUpM = Eigen::TensorSycl::internal::roundUp(triple_dim.M, Properties::TileSizeDimM); + const StorageIndex roundUpN = Eigen::TensorSycl::internal::roundUp(triple_dim.N, Properties::TileSizeDimN); + const StorageIndex groupSizeM = roundUpM / Properties::TileSizeDimM; + const StorageIndex groupSizeN = roundUpN / Properties::TileSizeDimN; + + const StorageIndex roundUpK = Eigen::TensorSycl::internal::roundUp(triple_dim.K, Properties::TileSizeDimK); + StorageIndex totalTilesK = roundUpK / Properties::TileSizeDimK; + StorageIndex groupSizeK = + skinny + ? std::max(std::min(totalTilesK, + (StorageIndex)(device().getPowerOfTwo(device().getNumSyclMultiProcessors(), true) * 4) / + (groupSizeM * groupSizeN)), + StorageIndex(1)) + : StorageIndex(1); + + const StorageIndex numTilesPerGroup = Eigen::TensorSycl::internal::roundUp(totalTilesK, groupSizeK) / groupSizeK; + + const StorageIndex totalGroupSize = groupSizeM * groupSizeN * groupSizeK; + + const StorageIndex localRange = Properties::LocalThreadSizeM * Properties::LocalThreadSizeN; + const StorageIndex globalRange = totalGroupSize * localRange; + + const StorageIndex scratchSize = (ct == TensorSycl::internal::contraction_type::local) + ? ((Properties::DoubleBuffer + 1) * + (Properties::TileSizeDimM + Properties::BC) * (Properties::TileSizeDimK)) + + ((Properties::DoubleBuffer + 1) * (Properties::TileSizeDimK) * + (Properties::TileSizeDimN + Properties::BC)) + : StorageIndex(1); + + auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(globalRange), cl::sycl::range<1>(localRange)); + if (groupSizeK == 1) { + typedef TensorSycl::internal::TensorContractionKernel<CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType, + LhsMapper, RhsMapper, StorageIndex, Properties, TripleDim, + PacketAccess, input_mapper_properties, true, ct> + ContractKernelName; + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>( + lhs, rhs, buffer, thread_range, scratchSize, groupSizeM, groupSizeN, numTilesPerGroup, triple_dim); + } else { + typedef TensorSycl::internal::TensorContractionKernel<CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType, + LhsMapper, RhsMapper, StorageIndex, Properties, TripleDim, + PacketAccess, input_mapper_properties, false, ct> + ContractKernelName; + CoeffReturnType *temp_pointer = static_cast<CoeffReturnType *>( + device().allocate_temp(triple_dim.M * triple_dim.N * groupSizeK * sizeof(CoeffReturnType))); + EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer); + + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>( + lhs, rhs, tmp_global_accessor, thread_range, scratchSize, groupSizeM, groupSizeN, numTilesPerGroup, + triple_dim); + + typedef Eigen::internal::SumReducer<CoeffReturnType> Op; + auto op = Op(); + typedef TensorSycl::internal::SecondStepPartialReduction<CoeffReturnType, StorageIndex, EvaluatorPointerType, + EvaluatorPointerType, Op> + ReductionKernel; + + device().template unary_kernel_launcher<CoeffReturnType, ReductionKernel>( + tmp_global_accessor, buffer, + cl::sycl::nd_range<1>(cl::sycl::range<1>(StorageIndex( + Eigen::TensorSycl::internal::roundUp(triple_dim.M * triple_dim.N, localRange))), + cl::sycl::range<1>(localRange)), + StorageIndex(1), op, StorageIndex(triple_dim.M * triple_dim.N), groupSizeK); + + device().deallocate_temp(temp_pointer); + } + } + +#ifndef EIGEN_SYCL_DISABLE_GEMV + template <bool is_lhs_vec, typename VectorMapper, typename TensorMapper, typename StorageIndex> + void EIGEN_ALWAYS_INLINE LaunchVT(EvaluatorPointerType buffer, const VectorMapper &vec, const TensorMapper &mat, + StorageIndex NC, StorageIndex C) const { + const StorageIndex nonContractDim = NC; + EIGEN_CONSTEXPR StorageIndex NCFactor = 1; + EIGEN_CONSTEXPR StorageIndex CFactor = 1; + EIGEN_CONSTEXPR StorageIndex NCWindow = 16; + typedef Eigen::TensorSycl::internal::TVPanelSize<CoeffReturnType, StorageIndex, NCWindow, CFactor, NCFactor> + Properties; + const StorageIndex roundUpC = Eigen::TensorSycl::internal::roundUp(C, Properties::TileSizeDimC); + const StorageIndex cNumGroups = roundUpC / (Properties::LocalThreadSizeC * Properties::WorkLoadPerThreadC); + const StorageIndex roundUpNC = Eigen::TensorSycl::internal::roundUp(nonContractDim, Properties::TileSizeDimNC); + const StorageIndex nCNumGroups = roundUpNC / (Properties::LocalThreadSizeNC * Properties::WorkLoadPerThreadNC); + const StorageIndex globalRange = + (roundUpNC / (Properties::WorkLoadPerThreadNC)) * (roundUpC / (Properties::WorkLoadPerThreadC)); + const StorageIndex localRange = Properties::LocalThreadSizeNC * Properties::LocalThreadSizeC; + const StorageIndex scratchSize = + (Properties::WorkLoadPerThreadNC + CFactor) * Properties::LocalThreadSizeC * Properties::LocalThreadSizeNC; + auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(globalRange), cl::sycl::range<1>(localRange)); + if (cNumGroups > 1) { + typedef Eigen::TensorSycl::internal::GeneralVectorTensor<CoeffReturnType, EvaluatorPointerType, VectorMapper, + TensorMapper, StorageIndex, Properties, CFactor, false, + is_lhs_vec, false> + ContractKernelName; + CoeffReturnType *temp_pointer = + static_cast<CoeffReturnType *>(device().allocate_temp(nonContractDim * cNumGroups * sizeof(CoeffReturnType))); + EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer); + + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>( + vec, mat, tmp_global_accessor, thread_range, scratchSize, nCNumGroups, nonContractDim, C); + + typedef Eigen::internal::SumReducer<CoeffReturnType> Op; + typedef TensorSycl::internal::SecondStepPartialReduction<CoeffReturnType, StorageIndex, EvaluatorPointerType, + EvaluatorPointerType, Op> + ReductionKernel; + + device().template unary_kernel_launcher<CoeffReturnType, ReductionKernel>( + tmp_global_accessor, buffer, + cl::sycl::nd_range<1>(cl::sycl::range<1>(Eigen::TensorSycl::internal::roundUp(nonContractDim, localRange)), + cl::sycl::range<1>(localRange)), + StorageIndex(1), Op(), nonContractDim, cNumGroups); + + device().deallocate_temp(temp_pointer); + } else { + typedef Eigen::TensorSycl::internal::GeneralVectorTensor<CoeffReturnType, EvaluatorPointerType, VectorMapper, + TensorMapper, StorageIndex, Properties, CFactor, false, + is_lhs_vec, true> + ContractKernelName; + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>( + vec, mat, buffer, thread_range, scratchSize, nCNumGroups, nonContractDim, C); + } + } +#endif + +#ifndef EIGEN_SYCL_DISABLE_SCALAR + template <typename LhsMapper, typename RhsMapper> + EIGEN_ALWAYS_INLINE void launchSC(EvaluatorPointerType buffer, const LhsMapper &lhs, const RhsMapper &rhs, + StorageIndex K) const { + EIGEN_STATIC_ASSERT(!((EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1) & + (EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1 - 1)), + "The Local thread size must be a power of 2 for the reduction " + "operation"); + EIGEN_CONSTEXPR StorageIndex local_range = EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1; + + // Here we force the code not to be more than 2-step reduction: Our empirical research shows that if each thread + // reduces at least 512 elementss individually, we get better performance. + const StorageIndex num_work_group = ((K + (512 * local_range - 1)) / (512 * local_range) > 1 ? local_range : 1); + const StorageIndex global_range = num_work_group * local_range; + + typedef Eigen::TensorSycl::internal::GeneralScalarContraction< + CoeffReturnType, LhsScalar, RhsScalar, EvaluatorPointerType, LhsMapper, RhsMapper, StorageIndex, false> + ContractKernelName; + auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(global_range), cl::sycl::range<1>(local_range)); + if (num_work_group > 1) { + CoeffReturnType *temp_pointer = + static_cast<CoeffReturnType *>(device().allocate_temp(num_work_group * sizeof(CoeffReturnType))); + EvaluatorPointerType tmp_global_accessor = device().get(temp_pointer); + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(lhs, rhs, tmp_global_accessor, + thread_range, local_range, K); + typedef Eigen::internal::SumReducer<CoeffReturnType> Op; + typedef TensorSycl::internal::SecondStepFullReducer<CoeffReturnType, Op, EvaluatorPointerType, + EvaluatorPointerType, StorageIndex, local_range> + GenericRKernel; + device().template unary_kernel_launcher<CoeffReturnType, GenericRKernel>( + tmp_global_accessor, buffer, + cl::sycl::nd_range<1>(cl::sycl::range<1>(local_range), cl::sycl::range<1>(local_range)), local_range, Op()); + + device().deallocate_temp(temp_pointer); + } else { + device().template binary_kernel_launcher<CoeffReturnType, ContractKernelName>(lhs, rhs, buffer, thread_range, + local_range, K); + } + } +#endif + + EIGEN_STRONG_INLINE void cleanup() { + this->m_leftImpl.cleanup(); + this->m_rightImpl.cleanup(); + + if (this->m_result) { + this->m_device.deallocate_temp(this->m_result); + this->m_result = NULL; + } + } + // The placeholder accessors must bound to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + this->m_leftImpl.bind(cgh); + this->m_rightImpl.bind(cgh); + this->m_result.bind(cgh); + } +}; +} // namespace Eigen +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_SYCL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionThreadPool.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionThreadPool.h new file mode 100644 index 0000000..21be6ea --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorContractionThreadPool.h @@ -0,0 +1,1679 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H + +// evaluator for thread pool device +#ifdef EIGEN_USE_THREADS + +namespace Eigen { + +template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType> +struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> : + public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > { + + typedef ThreadPoolDevice Device; + + typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; + typedef TensorContractionEvaluatorBase<Self> Base; + + typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::Index Index; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + + enum { + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + }; + + // Most of the code is assuming that both input tensors are ColMajor. If the + // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: + // If we want to compute A * B = C, where A is LHS and B is RHS, the code + // will pretend B is LHS and A is RHS. + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; + typedef typename internal::conditional< + static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; + + static const int LDims = + internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; + static const int RDims = + internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; + static const int ContractDims = internal::array_size<Indices>::value; + + typedef array<Index, LDims> left_dim_mapper_t; + typedef array<Index, RDims> right_dim_mapper_t; + + typedef array<Index, ContractDims> contract_t; + typedef array<Index, LDims - ContractDims> left_nocontract_t; + typedef array<Index, RDims - ContractDims> right_nocontract_t; + + static const int NumDims = LDims + RDims - 2 * ContractDims; + + typedef DSizes<Index, NumDims> Dimensions; + + // typedefs needed in evalTo + typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar; + typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar; + typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits; + + typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; + typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; + + TensorEvaluator(const XprType& op, const Device& device) : + Base(op, device) {} + + template <int Alignment> + void evalProduct(Scalar* buffer) const { + evalProductImpl<NoCallback, Alignment>(buffer, NoCallback()); + } + + template <typename EvalToCallback, int Alignment> + void evalProductAsync(Scalar* buffer, EvalToCallback done) const { + evalProductImpl<EvalToCallback, Alignment>(buffer, std::move(done)); + } + + template <typename DoneCallback, int Alignment> + void evalProductImpl(Scalar* buffer, DoneCallback done) const { + // This function computes a lot of heuristics in multiple steps, and it + // also has multiple exit points. To keep it sane, readable and all in one + // place, sync/async execution decision is made at runtime at the very end. + // + // (1) In sync mode we allocate Context on the stack, submit computations + // to the device thread pool, and block on a barrier until it is + // completed. + // + // (2) In async mode we allocate Context on the heap, and after all tasks + // are finished, we call provided the done callback, and delete a + // context from the heap. + // + // (*) EvalParallelContext & EvalShardedByInnerDimContext owns all the state + // and temporary buffers, requried for executing the tensor contraction. + // They are responsible for cleaning it up after contraction is done. + static const bool IsEvalInSyncMode = + std::is_same<DoneCallback, NoCallback>::value; + + const Index m = this->m_i_size; + const Index n = this->m_j_size; + const Index k = this->m_k_size; + if (m == 0 || n == 0 || k == 0) return; + + // Compute a set of algorithm parameters: + // - kernel block sizes (bm, bn, bk) + // - task grain sizes (number of kernels executed per task: gm, gn) + // - number of threads + // - sharding by row/column + // - parallel packing or first lhs then rhs + // and some derived parameters: + // - number of tasks (nm, nn, nk) + // - number of kernels (nm0, nn0) + // Unfortunately, all these parameters are tightly interdependent. + // So in some cases we first compute approximate values, then compute other + // values based on these approximations and then refine the approximations. + + // There are lots of heuristics here. There is some reasoning behind them, + // but ultimately they are just tuned on contraction benchmarks for + // different input configurations, thread counts and instruction sets. + // So feel free to question any of them. + + // Compute whether we want to shard by row or by column. + // This is a first approximation, it will be refined later. Since we don't + // know number of threads yet we use 2, because what's we are most + // interested in at this point is whether it makes sense to use + // parallelization at all or not. + bool shard_by_col = shardByCol(m, n, 2); + + // First approximation of kernel blocking sizes. + // Again, we don't know number of threads yet, so we use 2. + Index bm, bn, bk; + if (shard_by_col) { + internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, + internal::ShardByCol> + blocking(k, m, n, 2); + bm = blocking.mc(); + bn = blocking.nc(); + bk = blocking.kc(); + } else { + internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, + internal::ShardByRow> + blocking(k, m, n, 2); + bm = blocking.mc(); + bn = blocking.nc(); + bk = blocking.kc(); + } + + // Compute optimal number of threads. + // Note: we use bk instead of k here because we are interested in amount of + // _parallelizable_ computations, and computations are not parallelizable + // across k dimension. + const TensorOpCost cost = + contractionCost(m, n, bm, bn, bk, shard_by_col, false); + int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads( + static_cast<double>(n) * m, cost, this->m_device.numThreads()); + int num_threads_by_k = numThreadsInnerDim(m, n, k); + if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) { + // We are in the scenario where it is more effective to shard by the + // inner dimension. + if (IsEvalInSyncMode) { + EvalShardedByInnerDimContext<DoneCallback> ctx( + this, num_threads_by_k, buffer, m, n, k, std::move(done)); + ctx.template run<Alignment>(); + } else { + auto* ctx = new EvalShardedByInnerDimContext<DoneCallback>( + this, num_threads_by_k, buffer, m, n, k, std::move(done)); + ctx->template runAsync<Alignment>(); + } + + return; + } + + // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost + // model is not tuned. Remove this when the cost model is tuned. + if (n == 1) num_threads = 1; + + if (num_threads == 1) { + TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, + Unaligned, (buffer)); + if (!IsEvalInSyncMode) done(); + return; + } + + // Now that we know number of threads, recalculate sharding and blocking. + shard_by_col = shardByCol(m, n, num_threads); + if (shard_by_col) { + internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, + internal::ShardByCol> + blocking(k, m, n, num_threads); + bm = blocking.mc(); + bn = blocking.nc(); + bk = blocking.kc(); + } else { + internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, Index, + internal::ShardByRow> + blocking(k, m, n, num_threads); + bm = blocking.mc(); + bn = blocking.nc(); + bk = blocking.kc(); + } + + // Number of kernels for each dimension. + Index nm0 = divup(m, bm); + Index nn0 = divup(n, bn); + Index nk = divup(k, bk); + + // Calculate task grain size (number of kernels executed per task). + // This task size coarsening serves two purposes: + // 1. It reduces per-task overheads including synchronization overheads. + // 2. It allows to use caches better (reuse the same packed rhs in several + // consecutive kernels). + Index gm = 1; + Index gn = 1; + // If we are sharding by column, then we prefer to reduce rows first. + if (shard_by_col) { + gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); + gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); + } else { + gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); + gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); + } + // Number of tasks in each dimension. + Index nm = divup(nm0, gm); + Index nn = divup(nn0, gn); + + // If there is enough concurrency in the sharding dimension, we choose not + // to paralellize by the other dimension, and execute all kernels in sync + // mode. This reduces parallelism from the nm x nn down to nn + // (shard_by_col==true) or nm (shard_by_col==false). + const Index sharding_dim_tasks = shard_by_col ? nn : nm; + const int num_worker_threads = this->m_device.numThreadsInPool(); + + // With small number of threads we want to make sure that we do not reduce + // parallelism too much. With large number of threads we trade maximum + // parallelism for better memory locality. + const float oversharding_factor = + num_worker_threads <= 4 ? 8.0 : + num_worker_threads <= 8 ? 4.0 : + num_worker_threads <= 16 ? 2.0 : + num_worker_threads <= 32 ? 1.0 : + num_worker_threads <= 64 ? 0.8 : /* num_worker_threads > 64 */ 0.6; + + const bool parallelize_by_sharding_dim_only = + sharding_dim_tasks >= oversharding_factor * num_worker_threads; + + // Last by not least, decide whether we want to issue both lhs and rhs + // packing in parallel; or issue lhs packing first, and then issue rhs + // packing when lhs packing completes (for !shard_by_col lhs and rhs are + // swapped). Parallel packing allows more parallelism (for both packing and + // kernels), while sequential packing provides better locality (once + // a thread finishes rhs packing it proceed to kernels with that rhs). + // First, we are interested in parallel packing if there are few tasks. + bool parallel_pack = num_threads >= nm * nn; + // Also do parallel packing if all data fits into L2$. + if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <= + l2CacheSize() * num_threads) + parallel_pack = true; + // But don't do it if we will use each rhs only once. Locality seems to be + // more important in this case. + if ((shard_by_col ? nm : nn) == 1) parallel_pack = false; + // Also don't get in the way of parallelize_by_sharding_dim_only + // optimization. + if (parallelize_by_sharding_dim_only) parallel_pack = false; + + // TODO(ezhulnev): With if contexpr we don't need SyncEvalParallelContext. + if (IsEvalInSyncMode) { +#define CONTEXT_ARGS \ + (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \ + nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \ + NoCallback()) \ + .run() + TENSOR_CONTRACTION_DISPATCH(SyncEvalParallelContext, Alignment, + CONTEXT_ARGS); +#undef CONTEXT_ARGS + + } else { +#define CONTEXT_ARGS \ + (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \ + nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \ + std::move(done)) + TENSOR_CONTRACTION_ASYNC_DISPATCH(EvalParallelContext, DoneCallback, + Alignment, CONTEXT_ARGS, run()); +#undef CONTEXT_ARGS + } + } + + // ------------------------------------------------------------------------ // + + // Dummy struct to represent an empty DoneCallback. + + struct NoCallback { + void operator()() { + eigen_assert(false && "NoCallback should never be called"); + } + }; + + // ------------------------------------------------------------------------ // + + template <typename DoneCallback, typename Context> + class EvalParallelNotification; + + // Synchronous evaluation notification that blocks caller thread in Wait(). + template <typename Context> + class EvalParallelNotification<NoCallback, Context> { + public: + EvalParallelNotification(Context*, NoCallback) {} + void Notify() { done_.Notify(); } + void Wait() { done_.Wait(); } + private: + Eigen::Notification done_; + }; + + // Asynchronous evaluation notification that does not block in Wait(). + template <typename DoneCallback, typename Context> + class EvalParallelNotification { + public: + EvalParallelNotification(Context* ctx, DoneCallback done) + : ctx_(ctx), done_(std::move(done)) {} + + void Notify() { + // Make a copy of done callback, because it will be destructed when we + // will delete context in the next line (EvalParallelNotification is a + // data member of EvalParallelContext class). + DoneCallback done_copy = std::move(done_); + + // Delete parallel evaluation context. + delete ctx_; + + // Now safely call the done callback. + done_copy(); + } + + void Wait() {} + + private: + Context* ctx_; + DoneCallback done_; + }; + + // Context orchestrates sync/async parallel contraction evaluation. When it is + // executed in asynchronous mode, it owns all the shared state that might be + // accessible by block packing and kernel tasks. + + template <typename DoneCallback, bool lhs_inner_dim_contiguous, + bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, + int Alignment> + class EvalParallelContext { + public: + typedef internal::TensorContractionInputMapper< + LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, + contract_t, internal::packet_traits<LhsScalar>::size, + lhs_inner_dim_contiguous, false, Unaligned> + LhsMapper; + typedef internal::TensorContractionInputMapper< + RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, + contract_t, internal::packet_traits<RhsScalar>::size, + rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> + RhsMapper; + + typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; + + typedef internal::TensorContractionKernel< + Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper> + TensorContractionKernel; + + typedef typename TensorContractionKernel::LhsBlock LhsBlock; + typedef typename TensorContractionKernel::RhsBlock RhsBlock; + typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle; + + EvalParallelContext(const Self* self, int num_threads, Scalar* buffer, + Index tm, Index tn, Index tk, Index bm, Index bn, + Index bk, Index nm, Index nn, Index nk, Index gm, + Index gn, Index nm0, Index nn0, bool shard_by_col, + bool parallel_pack, + bool parallelize_by_sharding_dim_only, + DoneCallback done) + : created_by_thread_id_(std::this_thread::get_id()), + done_(this, std::move(done)), + device_(self->m_device), + lhs_(self->m_leftImpl, self->m_left_nocontract_strides, + self->m_i_strides, self->m_left_contracting_strides, + self->m_k_strides), + rhs_(self->m_rightImpl, self->m_right_nocontract_strides, + self->m_j_strides, self->m_right_contracting_strides, + self->m_k_strides), + buffer_(buffer), + output_(buffer, tm), + output_kernel_(self->m_output_kernel), + tensor_contraction_params_(self->m_tensor_contraction_params), + num_threads_(num_threads), + shard_by_col_(shard_by_col), + parallel_pack_(parallel_pack), + parallelize_by_sharding_dim_only_(parallelize_by_sharding_dim_only), + m_(tm), + n_(tn), + k_(tk), + bm_(bm), + bn_(bn), + bk_(bk), + nm_(nm), + nn_(nn), + nk_(nk), + gm_(gm), + gn_(gn), + nm0_(nm0), + nn0_(nn0), + kernel_(m_, k_, n_, bm_, bk_, bn_), + num_thread_local_allocations_(0), + // We reserve 2X more capacity for a thread local values, than the + // number of threads in the pool to efficiently handle task stealing + // by threads that are not managed by the pool. + thread_local_capacity(2 * (parallelize_by_sharding_dim_only_ + ? device_.numThreadsInPool() + : 0)), + // We will use only one of the Lhs/Rhs thread local storage depending + // on the shard_by_col value and we parallelize by sharding dim ONLY. + lhs_thread_local_blocks_(shard_by_col_ ? 0 : thread_local_capacity, + {*this}, {*this}), + rhs_thread_local_blocks_(shard_by_col_ ? thread_local_capacity : 0, + {*this}, {*this}) { + // These two options are mutually exclusive. + eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only)); + + for (Index x = 0; x < P; x++) { + // Normal number of notifications for k slice switch is + // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only + // nm_ + nn_ notifications, because they will not receive notifications + // from preceding kernels. + state_switch_[x] = + x == 0 + ? 1 + : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) + + (x == P - 1 ? nm_ * nn_ : 0); + state_packing_ready_[x] = + parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_); + state_kernel_[x] = new std::atomic<uint8_t>*[nm_]; + for (Index m = 0; m < nm_; m++) { + state_kernel_[x][m] = new std::atomic<uint8_t>[nn_]; + // Kernels generally receive 3 notifications (previous kernel + 2 + // packing), but the first slice won't get notifications from previous + // kernels. + for (Index n = 0; n < nn_; n++) + state_kernel_[x][m][n].store( + (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1), + std::memory_order_relaxed); + } + } + + // Allocate memory for packed rhs/lhs matrices. + packed_mem_ = kernel_.allocateSlices( // + device_, // + /*num_lhs=*/nm0_, // + /*num_rhs=*/nn0_, // + /*num_slices=*/std::min<Index>(nk_, P - 1), // + packed_lhs_, packed_rhs_); + + if (parallelize_by_sharding_dim_only_) { + const int num_worker_threads = device_.numThreadsInPool(); + + if (shard_by_col) { + can_use_thread_local_packed_ = new std::atomic<bool>[nn_]; + for (int i = 0; i < nn_; ++i) + can_use_thread_local_packed_[i].store(true, + std::memory_order_relaxed); + + Index num_blocks = num_worker_threads * gn_; + thread_local_pre_alocated_mem_ = kernel_.allocateSlices( // + device_, // + /*num_lhs=*/0, // + /*num_rhs=*/num_blocks, // + /*num_slices=*/1, // + /*lhs_blocks=*/nullptr, &rhs_thread_local_pre_allocated_); + + } else { + can_use_thread_local_packed_ = new std::atomic<bool>[nm_]; + for (int i = 0; i < nm_; ++i) + can_use_thread_local_packed_[i].store(true, + std::memory_order_relaxed); + + Index num_blocks = num_worker_threads * gm_; + thread_local_pre_alocated_mem_ = kernel_.allocateSlices( // + device_, // + /*num_lhs=*/num_blocks, // + /*num_rhs=*/0, // + /*num_slices=*/1, &lhs_thread_local_pre_allocated_, // + /*rhs_blocks=*/nullptr); + } + } + } + + ~EvalParallelContext() { + for (Index x = 0; x < P; x++) { + for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m]; + delete[] state_kernel_[x]; + } + kernel_.deallocate(device_, packed_mem_); + if (parallelize_by_sharding_dim_only_) { + kernel_.deallocate(device_, thread_local_pre_alocated_mem_); + delete[] can_use_thread_local_packed_; + } + } + + void run() { + // Kick off packing of the first slice. + signal_switch(0, 1); + + // Wait for overall completion. + // + // If parallel evaluation is executed in async mode, this is a no-op, and + // Wait() will return immediately. In synchronous mode it will block the + // caller thread until it will receive notification from last task. + // + // In async mode, last task when completed will call done callback from + // the same thread, and will delete this context. + // + // TODO(dvyukov): This wait can lead to deadlock if contraction is + // evaluated in synchronous mode. If nthreads contractions are + // concurrently submitted from worker threads, this wait will block all + // worker threads and the system will deadlock. + done_.Wait(); + } + + private: + std::thread::id created_by_thread_id_; + + // This notification is specialized on the type of DoneCallback and can be + // blocking or non-blocking. + EvalParallelNotification<DoneCallback, EvalParallelContext> done_; + + const Device& device_; + LhsMapper lhs_; + RhsMapper rhs_; + Scalar* const buffer_; + OutputMapper output_; + OutputKernelType output_kernel_; + TensorContractionParams tensor_contraction_params_; + const int num_threads_; + const bool shard_by_col_; + const bool parallel_pack_; + const bool parallelize_by_sharding_dim_only_; + // Matrix sizes. + const Index m_; + const Index n_; + const Index k_; + // Block sizes. + const Index bm_; + const Index bn_; + const Index bk_; + // Number of tasks. + const Index nm_; + const Index nn_; + const Index nk_; + // Task grain sizes (number of kernels executed per task). + const Index gm_; + const Index gn_; + // Number of blocks (this is different from ni_/nn_ because of task size + // coarsening). + const Index nm0_; + const Index nn0_; + // Tensor contraction kernel. + TensorContractionKernel kernel_; + + // Parallelization strategy. + // + // Blocks related to the same k block can run in parallel because they write + // to different output blocks. So we parallelize within k slices, this + // gives us parallelism level of m x n. Before we can start any kernels + // related to k-th slice, we need to issue m lhs packing tasks and n rhs + // packing tasks. + // + // However, there is a bottleneck when we are finishing kernels for k-th + // slice (at the very end there is only 1 runnable kernel). To mitigate this + // bottleneck we allow kernels from k-th and k+1-th slices to run in + // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same + // output block, so they must not run in parallel. + // + // This gives us the following dependency graph. + // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs + // packing tasks. + // Kernel (m, n, k) can start when: + // - kernel (m, n, k-1) has finished + // - lhs packing (m, k) has finished + // - rhs packing (n, k) has finished + // Lhs/rhs packing can start when: + // - all k-1 packing has finished (artificially imposed to limit amount of + // parallel packing) + // + // On top of that we limit runnable tasks to two consecutive k slices. + // This is done to limit amount of memory we need for packed lhs/rhs + // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_). + // + // state_switch_ tracks when we are ready to switch to the next k slice. + // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n). + // These variable are rolling over 3 consecutive k slices: first two we are + // actively executing + one to track completion of kernels in the second + // slice. + static const Index P = 3; + + // Handle to the allocated temporary storage for Lhs/Rhs blocks. + BlockMemHandle packed_mem_; + std::vector<LhsBlock> packed_lhs_[P - 1]; + std::vector<RhsBlock> packed_rhs_[P - 1]; + + // If we choose to parallelize only by the sharding dimension, each thread + // will have it's own "thead local" (not a c++ thread local storage) memory + // for packed_lhs or packed_rhs (shard_by_col = false of true). This memory + // can't be passed to a kernel that might execute on a different thread. + // + // In practice when we are ready to pack memory for the sharding dimension + // (rhs if shard_by_col==true) of the K-th slice, all kernels for K-1 slice + // already computed (99% of the time), and we can pack data into the thread + // local storage, and guarantee that all the kernels will be executed + // immediately in the same thread. This significantly increases L1 cache hit + // ratio and reduces pressure on the memory bus. + // + // It's still possible that kernel for the K-th slice will be ready before + // completion of the K-1 kernel, so we have to allocate "global" packed_lhs_ + // and packed_rhs_ to allow kernels to be executed later on a thread + // different from the thread that was used for packing. + + // Handle for pre-allocated thread local memory buffers. + BlockMemHandle thread_local_pre_alocated_mem_; + + // Only one of these will be initialized depending on shard_by_col value + // (the size will be `num_worker_threads * num_grains_in_the_sharding_dim`). + std::vector<LhsBlock> lhs_thread_local_pre_allocated_; + std::vector<RhsBlock> rhs_thread_local_pre_allocated_; + + // How many thread local blocks were already allocated. + std::atomic<int> num_thread_local_allocations_; + const int thread_local_capacity; + + // We will use pre-allocated Lhs/Rhs blocks defined above, if the number of + // unique threads in a system is below or equal to the number of threads in + // a thread pool. We will fallback on dynamic memory allocation after that. + + // ThreadLocalBlocks is a container for Lhs or Rhs thread local buffers. Its + // size is equal to the grain size in Lhs/Rhs sharding dimension. + template <typename BlockType> + class ThreadLocalBlocks { + public: + ThreadLocalBlocks() = default; + + ThreadLocalBlocks(BlockType* base, size_t grain_size) + : is_pre_allocated_(true), + thread_local_pre_allocated_base_(base), + grain_size_(grain_size) {} + + ThreadLocalBlocks(BlockMemHandle mem_handle, + std::vector<BlockType> blocks) + : is_pre_allocated_(false), + mem_handle_(std::move(mem_handle)), + blocks_(std::move(blocks)) {} + + BlockType& block(int grain_index) { + eigen_assert(grain_index >= 0); + eigen_assert(static_cast<size_t>(grain_index) < size()); + return is_pre_allocated_ ? thread_local_pre_allocated_base_[grain_index] + : blocks_[grain_index]; + } + + void Release(EvalParallelContext& ctx) const { + if (!is_pre_allocated_) { + ctx.kernel_.deallocate(ctx.device_, mem_handle_); + } + } + + size_t size() const { + return is_pre_allocated_ ? grain_size_ : blocks_.size(); + } + + private: + bool is_pre_allocated_; + + // Reuse pre-allocated thread local buffers. + BlockType* thread_local_pre_allocated_base_ = nullptr; + size_t grain_size_ = 0; + + // These will be initialized only if `is_pre_allocated == false`. + BlockMemHandle mem_handle_{}; + std::vector<BlockType> blocks_; + }; + + // ThreadLocalBlocksInitialize callable does custom thread local blocks + // initialization, and will reuse pre-allocated buffers if possible, or will + // dynamically allocate new memory. + // + // Lhs/Rhs blocks might be of the same type, so we have to pass explicitly + // for what side do we plan to do block allocation. + template <typename BlockType, bool is_rhs> + class ThreadLocalBlocksInitialize { + static constexpr bool kIsLhs = + !is_rhs && std::is_same<BlockType, LhsBlock>::value; + static const bool kIsRhs = + is_rhs && std::is_same<BlockType, RhsBlock>::value; + static_assert(kIsLhs || kIsRhs, "Unkown block type"); + + using Blocks = ThreadLocalBlocks<BlockType>; + + public: + ThreadLocalBlocksInitialize(EvalParallelContext& ctx) + : ctx_(ctx), + num_worker_threads_(ctx_.device_.numThreadsInPool()) {} + + void operator()(Blocks& blocks) { + const int n = ctx_.num_thread_local_allocations_.fetch_add( + 1, std::memory_order_relaxed); + + if (n >= num_worker_threads_) { + ThreadLocalBlocksAllocator<is_rhs>::allocate(ctx_, blocks); + } else { + ThreadLocalBlocksAllocator<is_rhs>::reuse(ctx_, n, blocks); + } + } + + private: + // NOTE(ezhulenev): Without 'if constexpr' we have to put calls to + // TensorContractionKernel::allocateSlices into template specializations. + // Also explicit specializations are not allowed at class scope in C++03, + // EvalCtx type parameter is just a workaround for that limitation. + template <bool pack_rhs, typename EvalCtx = EvalParallelContext> + struct ThreadLocalBlocksAllocator; + + template <typename EvalCtx> + struct ThreadLocalBlocksAllocator</*pack_rhs=*/true, EvalCtx> { + static void allocate(EvalCtx& ctx, Blocks& blocks) { + std::vector<RhsBlock> rhs_blocks; + BlockMemHandle mem_handle = ctx.kernel_.allocateSlices( + ctx.device_, + /*num_lhs=*/0, + /*num_rhs=*/ctx.gn_, + /*num_slices=*/1, + /*lhs_blocks=*/nullptr, /*rhs_blocks=*/&rhs_blocks); + + blocks = ThreadLocalBlocks<RhsBlock>(std::move(mem_handle), + std::move(rhs_blocks)); + } + + static void reuse(EvalCtx& ctx, int index, Blocks& blocks) { + RhsBlock* ptr = &ctx.rhs_thread_local_pre_allocated_[ctx.gn_ * index]; + blocks = ThreadLocalBlocks<RhsBlock>(ptr, ctx.gn_); + } + }; + + template <typename EvalCtx> + struct ThreadLocalBlocksAllocator</*pack_rhs=*/false, EvalCtx> { + static void allocate(EvalCtx& ctx, Blocks& blocks) { + std::vector<LhsBlock> lhs_blocks; + BlockMemHandle mem_handle = ctx.kernel_.allocateSlices( + ctx.device_, + /*num_lhs=*/ctx.gm_, + /*num_rhs=*/0, + /*num_slices=*/1, + /*lhs_blocks=*/&lhs_blocks, /*rhs_blocks=*/nullptr); + + blocks = ThreadLocalBlocks<LhsBlock>(std::move(mem_handle), + std::move(lhs_blocks)); + } + + static void reuse(EvalCtx& ctx, int index, Blocks& blocks) { + LhsBlock* ptr = &ctx.lhs_thread_local_pre_allocated_[ctx.gm_ * index]; + blocks = ThreadLocalBlocks<LhsBlock>(ptr, ctx.gm_); + } + }; + + EvalParallelContext& ctx_; + const int num_worker_threads_; + }; + + template <typename BlockType> + class ThreadLocalBlocksRelease { + public: + using Blocks = ThreadLocalBlocks<BlockType>; + ThreadLocalBlocksRelease(EvalParallelContext& ctx) : ctx_(ctx) {} + void operator()(Blocks& blocks) { blocks.Release(ctx_); } + + private: + EvalParallelContext& ctx_; + }; + + // ThreadLocalBlocks initialization callables. + using ThreadLocalLhsInit = + ThreadLocalBlocksInitialize<LhsBlock, /*is_rhs=*/false>; + using ThreadLocalRhsInit = + ThreadLocalBlocksInitialize<RhsBlock, /*is_rhs=*/true>; + + // ThreadLocalBlocks release callables. + using ThreadLocalLhsRelease = ThreadLocalBlocksRelease<LhsBlock>; + using ThreadLocalRhsRelease = ThreadLocalBlocksRelease<RhsBlock>; + + // Thread local containers for Lhs/Rhs block packs. In practice only one of + // them will be used, depending on the shard_by_col value. + Eigen::ThreadLocal<ThreadLocalBlocks<LhsBlock>, ThreadLocalLhsInit, + ThreadLocalLhsRelease> + lhs_thread_local_blocks_; + Eigen::ThreadLocal<ThreadLocalBlocks<RhsBlock>, ThreadLocalRhsInit, + ThreadLocalRhsRelease> + rhs_thread_local_blocks_; + + // After a particular shard for Kth slice missed thread local execution + // opportunity (K-1 slice didn't complete kernels execution), we can no + // longer schedule K+1 and following slices in thread local mode, because + // there is no more guarantee that previous kernels were executed + // sequentially in the same thread (size is nn_ or nm_). + std::atomic<bool>* can_use_thread_local_packed_; + + std::atomic<uint8_t>** state_kernel_[P]; + // state_switch_ is frequently modified by worker threads, while other + // fields are read-only after constructor. Let's move it to a separate cache + // line to reduce cache-coherency traffic. + char pad_[128]; + std::atomic<Index> state_packing_ready_[P]; + std::atomic<Index> state_switch_[P]; + + LhsBlock& packed_lhs(Index m, Index k, Index m1, bool use_thread_local) { + if (use_thread_local) { + eigen_assert(!shard_by_col_); + ThreadLocalBlocks<LhsBlock>& blocks = lhs_thread_local_blocks_.local(); + + Index grain_index = m1 - m * gm_; + return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index? + } else { + return packed_lhs_[k % (P - 1)][m1]; + } + } + + RhsBlock& packed_rhs(Index n, Index k, Index n1, bool use_thread_local) { + if (use_thread_local) { + eigen_assert(shard_by_col_); + ThreadLocalBlocks<RhsBlock>& blocks = rhs_thread_local_blocks_.local(); + + Index grain_index = n1 - n * gn_; + return blocks.block(internal::convert_index<int>(grain_index)); // FIXME better make ThreadLocalBlocks use Eigen::Index? + } else { + return packed_rhs_[k % (P - 1)][n1]; + } + } + + // In following two methods (pack_lhs and pack_rhs), if we know for sure + // that we'll be able to immediately call a kernel with packed data, and do + // not submit it to the thread pool, we can use thread local memory for + // packed data. + // + // We can only reliably check it if we are running all kernels in sync mode + // (parallelize only by sharding dim). If kernel for m==0 (n==0) is ready to + // run, it's guaranteed that all kernels with larger values of m (n) are + // also ready, because we execute them in the same order for all K slices. + + void pack_lhs(Index m, Index k) { + bool use_thread_local = false; + + if (parallelize_by_sharding_dim_only_ && !shard_by_col_ && + can_use_thread_local_packed_[m].load(std::memory_order_relaxed)) { + if (state_kernel_[k % P][m][0].load(std::memory_order_relaxed) == 1) { + use_thread_local = true; + } else { + // If we can't guarantee that all kernels in `k` slice will be + // executed sequentially in current thread, it's no longer safe to use + // thread local memory in following slices along the k dimensions. + eigen_assert(k > 0); + can_use_thread_local_packed_[m].store(false, + std::memory_order_relaxed); + } + } + + const Index mend = m * gm_ + gm(m); + for (Index m1 = m * gm_; m1 < mend; m1++) + kernel_.packLhs(&packed_lhs(m, k, m1, use_thread_local), + lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1)); + + if (!parallel_pack_ && shard_by_col_) { + assert(!use_thread_local); + signal_packing(k); + } else { + signal_switch(k + 1); + for (Index n = nn_ - 1; n >= 0; n--) { + bool sync = parallelize_by_sharding_dim_only_ || n == 0; + signal_kernel(m, n, k, sync, use_thread_local); + } + } + } + + void pack_rhs(Index n, Index k) { + bool use_thread_local = false; + + if (parallelize_by_sharding_dim_only_ && shard_by_col_ && + can_use_thread_local_packed_[n].load(std::memory_order_relaxed)) { + if (state_kernel_[k % P][0][n].load(std::memory_order_relaxed) == 1) { + use_thread_local = true; + } else { + // If we can't guarantee that all kernels in `k` slice will be + // executed sequentially in current thread, it's no longer safe to use + // thread local memory in followig slices along the k dimensions. + eigen_assert(k > 0); + can_use_thread_local_packed_[n].store(false, + std::memory_order_relaxed); + } + } + + const Index nend = n * gn_ + gn(n); + for (Index n1 = n * gn_; n1 < nend; n1++) { + if (!TensorContractionKernel::HasBeta && k == 0) { + // Zero the output memory in parallel, only if contraction kernel does + // not support `beta`. Otherwise we will pass beta 0.0 to the first + // call to the `TensorContractionKernel::invoke()`. + // + // On 10000x2x10000 mm zeroing can easily take half of time. Zero (bn + // x m) row. Safe to do here because all kernels that will write to + // this memory depend on completion of this task. Note: don't call + // device_.memset() here. device_.memset() blocks on thread pool + // worker thread, which can lead to underutilization and deadlocks. + memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar)); + } + kernel_.packRhs(&packed_rhs(n, k, n1, use_thread_local), + rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1)); + } + + if (parallel_pack_ || shard_by_col_) { + signal_switch(k + 1); + for (Index m = nm_ - 1; m >= 0; m--) { + bool sync = parallelize_by_sharding_dim_only_ || m == 0; + signal_kernel(m, n, k, sync, use_thread_local); + } + } else { + assert(!use_thread_local); + signal_packing(k); + } + } + + void kernel(Index m, Index n, Index k, bool use_thread_local) { + // Note: order of iteration matters here. Iteration over m is innermost + // because we want to reuse the same packed rhs in consecutive tasks + // (rhs fits into L2$ while lhs only into L3$). + const Index nend = n * gn_ + gn(n); + const Index mend = m * gm_ + gm(m); + + // NOTE: output = alpha * LHS * RHS + beta * output. + const Scalar alpha = Scalar(1); + const Scalar beta = + (TensorContractionKernel::HasBeta && k == 0) ? Scalar(0) : Scalar(1); + + if (shard_by_col_) { + for (Index n1 = n * gn_; n1 < nend; n1++) { + for (Index m1 = m * gm_; m1 < mend; m1++) { + const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_); + kernel_.invoke( + output_mapper, + packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local), + packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1), + bk(k), bn(n1), alpha, beta); + + // We are done with the last task for the [m1, n1] block. + if (k + 1 == nk_) { + output_kernel_(output_mapper, tensor_contraction_params_, + m1 * bm_, n1 * bn_, bm(m1), bn(n1)); + } + } + } + } else { + for (Index m1 = m * gm_; m1 < mend; m1++) + for (Index n1 = n * gn_; n1 < nend; n1++) { + const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_); + kernel_.invoke( + output_mapper, + packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local), + packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1), + bk(k), bn(n1), alpha, beta); + + // We are done with the last task for the [m1, n1] block. + if (k + 1 == nk_) { + output_kernel_(output_mapper, tensor_contraction_params_, + m1 * bm_, n1 * bn_, bm(m1), bn(n1)); + } + } + } + signal_kernel(m, n, k + 1, /*sync=*/false, /*use_thread_local=*/false); + signal_switch(k + 2); + } + + void signal_packing(Index k) { + eigen_assert(!parallel_pack_); + Index s = state_packing_ready_[k % P].fetch_sub(1); + eigen_assert(s > 0); + if (s != 1) return; + state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_; + enqueue_packing(k, shard_by_col_); + } + + void signal_kernel(Index m, Index n, Index k, bool sync, + bool use_thread_local) { + std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n]; + Index s = state->load(); + eigen_assert(s > 0); + if (s != 1 && state->fetch_sub(1) != 1) { + eigen_assert(!use_thread_local); + return; + } + state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed); + if (sync) { + kernel(m, n, k, use_thread_local); + } else { + eigen_assert(!use_thread_local); + device_.enqueueNoNotification( + [=]() { kernel(m, n, k, use_thread_local); }); + } + } + + void signal_switch(Index k, Index v = 1) { + Index s = state_switch_[k % P].fetch_sub(v); + eigen_assert(s >= v); + if (s != v) return; + + // Ready to switch to the next k slice. + // Reset counter for the next iteration. + state_switch_[k % P] = + (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) + + nm_ * nn_; + if (k < nk_) { + // Issue lhs/rhs packing. Their completion will in turn kick off + // kernels. + if (parallel_pack_) { + enqueue_packing(k, !shard_by_col_); + enqueue_packing(k, shard_by_col_); + } else if (shard_by_col_) { + enqueue_packing(k, false); + } else { + enqueue_packing(k, true); + } + + // Termination handling. + // Because kernel completion signals k + 2 switch, we need to finish nk + // + 2 slices without issuing any tasks on nk + 1 slice. So here we + // pretend that all nk + 1 packing tasks just finish instantly; so that + // nk + 2 switch only waits for completion of nk kernels. + } else if (k == nk_) { + signal_switch(k + 1, + parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)); + } else { + done_.Notify(); + } + } + + // Enqueue all rhs/lhs packing for k-th slice. + void enqueue_packing(Index k, bool rhs) { + enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs); + } + + void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) { + if (end - start == 1) { + if (rhs) + pack_rhs(start, k); + else + pack_lhs(start, k); + } else { + while (end - start > 1) { + Index mid = (start + end) / 2; + device_.enqueueNoNotification( + [=]() { enqueue_packing_helper(mid, end, k, rhs); }); + end = mid; + } + + // Decide if we want to run first packing task (start == 0) in + // async mode if we parallelize only by sharding dim: + // (1) pack_lhs and pack_rhs call signal_switch before completing + // all calls to signal_kernel, which in sync mode might lead + // to the execution of the first kernel of the k+1 slice, before + // completing a call to the last kernel of the k slice. + // (2) all pack tasks for sharded dim must be executed in a thread + // pool to get pre-allocated thead local buffers. + bool pack_async = + (start == 0) && + (parallelize_by_sharding_dim_only_&& shard_by_col_ == rhs) && + (k > 0 || std::this_thread::get_id() == created_by_thread_id_); + + if (pack_async) { + device_.enqueueNoNotification( + [=]() { enqueue_packing_helper(start, end, k, rhs); }); + } else { + enqueue_packing_helper(start, end, k, rhs); + } + } + } + + // Block sizes with accounting for potentially incomplete last block. + Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; } + Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; } + Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; } + // Task grain sizes accounting for potentially incomplete last task. + Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; } + Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; } + + EvalParallelContext(const EvalParallelContext&) = delete; + void operator=(const EvalParallelContext&) = delete; + }; + + template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, + bool rhs_inner_dim_reordered, int Alignment> + using SyncEvalParallelContext = + EvalParallelContext<NoCallback, lhs_inner_dim_contiguous, + rhs_inner_dim_contiguous, rhs_inner_dim_reordered, + Alignment>; + + // ------------------------------------------------------------------------ // + + // EvalShardedByInnerDimContext orchestrates sync/async contraction + // evaluation, when we shard by inner dimension. When it is executed in + // asynchronous mode, it owns all the shared state that might be accessible by + // block processing tasks. + + template <typename DoneCallback> + struct EvalShardedByInnerDimContext { + EvalShardedByInnerDimContext(const Self* self, int num_threads, + Scalar* result_buffer, + Index m_size, Index n_size, Index k_size, + DoneCallback done_callback) + : evaluator(self), + m_lhs_inner_dim_contiguous(evaluator->m_lhs_inner_dim_contiguous), + m_rhs_inner_dim_contiguous(evaluator->m_rhs_inner_dim_contiguous), + m_rhs_inner_dim_reordered(evaluator->m_rhs_inner_dim_reordered), + result(result_buffer), + m(m_size), + n(n_size), + k(k_size), + done(std::move(done_callback)), + buffer_size_bytes(m * n * sizeof(Scalar)), + block_size(blockSize(k, num_threads)), + num_blocks(divup<Index>(k, block_size)), + num_pending_blocks(internal::convert_index<int>(num_blocks)), + l0_ranges(divup<Index>(num_blocks, l0_size)), + l0_state(l0_ranges), + block_buffers(num_blocks) { + // Keep count of pending gemm tasks for each l0 range. + for (int i = 0; i < l0_ranges; ++i) { + const Index num_pending_tasks = actualRangeSize(l0_ranges, l0_size, i); + l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks)); + } + + // Allocate temporary buffers for each block. + for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) { + Scalar* buf = block_idx == 0 + ? result + : static_cast<Scalar*>(evaluator->m_device.allocate( + buffer_size_bytes)); + block_buffers.emplace_back(buf); + } + } + + ~EvalShardedByInnerDimContext() { + for (Index i = 1; i < num_blocks; ++i) { + evaluator->m_device.deallocate(block_buffers[i]); + } + } + + template <int Alignment> + void run() { + Barrier barrier(internal::convert_index<int>(num_blocks)); + eval<Alignment>(barrier, 0, num_blocks); + barrier.Wait(); + + // Aggregate partial sums from l0 ranges. + aggregateL0Blocks<Alignment>(); + + // Apply output kernel. + applyOutputKernel(); + } + + template <int Alignment> + void runAsync() { + evalAsync<Alignment>(0, num_blocks); + } + + private: + // The underlying GEMM kernel assumes that k is a multiple of + // the packet size and subtle breakage occurs if this is violated. + static const Index packet_size = internal::packet_traits<RhsScalar>::size; + + const Self* evaluator; // TensorContraction evaluator + + // These fields required fromTENSOR_CONTRACTION_DISPATCH macro. + bool m_lhs_inner_dim_contiguous; + bool m_rhs_inner_dim_contiguous; + bool m_rhs_inner_dim_reordered; + + Scalar* result; + + Index m; + Index n; + Index k; + + DoneCallback done; + + // ----------------------------------------------------------------------// + // Algorithm parameters. + + // We will compute partial results into the buffers of this size. + Index buffer_size_bytes; + + Index block_size; + Index num_blocks; + + // Keep track of pending tasks when evaluate in async mode. + std::atomic<int> num_pending_blocks; + + // We compute partial gemm results in parallel, and to get the final result + // we need to add them all together. For the large number of threads (>= 48) + // this adds a very expensive sequential step at the end. + // + // We split the [0, num_blocks) into small ranges, and when a task for the + // block finishes its partial gemm computation, it checks if it was the last + // gemm in the range, and if so, it will add all blocks of the range. + // + // After all tasks done, we need to add only these pre-aggregated blocks. + + // For now we use just a single level of ranges to compute pre-aggregated + // partial sums, but in general we can use more layers to compute tree + // aggregation in parallel and reduce the size of the sequential step. + // + // TODO(ezhulenev): Add multilevel tree aggregation? Probably will make + // sense only if number of threads >= ~128? + static const Index l0_size = 4; + Index l0_ranges; + + // Keep count of pending gemm tasks for each l0 range. + MaxSizeVector<std::atomic<int>> l0_state; // [0, l0_ranges) + + // Buffers allocated for each temporary block computation. + MaxSizeVector<Scalar*> block_buffers; // [0, num_blocks) + + template <int Alignment> + void processBlock(Index block_idx, Index begin, Index end) { + Scalar* buf = block_buffers[block_idx]; + + TENSOR_CONTRACTION_DISPATCH( + evaluator->template evalGemmPartialWithoutOutputKernel, Alignment, + (buf, begin, end, + /*num_threads=*/internal::convert_index<int>(num_blocks))); + + // Check if it was the last task in l0 range. + const Index l0_index = block_idx / l0_size; + const int v = l0_state[l0_index].fetch_sub(1); + eigen_assert(v >= 1); + + // If we processed the last block of the range, we can aggregate all + // partial results into the first block of the range. + if (v == 1) { + const Index rng_size = actualRangeSize(l0_ranges, l0_size, l0_index); + const Index dst_block_idx = l0_index * l0_size; + + if (rng_size == l0_size) { + addAllToBuffer<Alignment>( + m * n, + /*src_buf0=*/block_buffers[dst_block_idx + 1], + /*src_buf1=*/block_buffers[dst_block_idx + 2], + /*src_buf2=*/block_buffers[dst_block_idx + 3], + /*dst_buf= */ block_buffers[dst_block_idx]); + } else { + // Aggregate blocks of potentially incomplete last range. + for (int i = 1; i < rng_size; ++i) { + addToBuffer<Alignment>(m * n, + /*src_buf=*/block_buffers[dst_block_idx + i], + /*dst_buf=*/block_buffers[dst_block_idx]); + } + } + } + } + + // Aggregate partial sums from l0 ranges. + template <int Alignment> + void aggregateL0Blocks() const { + Index l0_index = 1; + + for (; l0_index + 2 < l0_ranges; l0_index += 3) { + addAllToBuffer<Alignment>( + m * n, + /*src_buf0=*/block_buffers[(l0_index + 0) * l0_size], + /*src_buf1=*/block_buffers[(l0_index + 1) * l0_size], + /*src_buf2=*/block_buffers[(l0_index + 2) * l0_size], + /*dst_buf= */ block_buffers[0]); + } + + for (; l0_index < l0_ranges; ++l0_index) { + addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size], + block_buffers[0]); + } + } + + void applyOutputKernel() const { + typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; + evaluator->m_output_kernel( + OutputMapper(result, m), evaluator->m_tensor_contraction_params, + static_cast<Eigen::Index>(0), static_cast<Eigen::Index>(0), m, n); + } + + // Compute block size with accounting for potentially incomplete last block. + Index actualBlockSize(Index block_idx) const { + return block_idx + 1 < num_blocks + ? block_size + : k + block_size - block_size * num_blocks; + }; + + // Compute range size with accounting for potentially incomplete last range. + Index actualRangeSize(Index num_ranges, Index range_size, + Index range_idx) const { + eigen_assert(range_idx < num_ranges); + return range_idx + 1 < num_ranges + ? range_size + : num_blocks + range_size - range_size * num_ranges; + }; + + template <int Alignment> + EIGEN_STRONG_INLINE static void addToBuffer(size_t n, const Scalar* src_buf, + Scalar* tgt_buf) { + const int output_packet_size = + internal::unpacket_traits<PacketReturnType>::size; + size_t i = 0; + const size_t num_packets = n / output_packet_size; + for (; i < output_packet_size * num_packets; i += output_packet_size) { + const PacketReturnType src_val = + internal::pload<PacketReturnType>(src_buf + i); + const PacketReturnType tgt_val = + internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i); + const PacketReturnType sum = internal::padd(src_val, tgt_val); + internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i, + sum); + } + for (; i < n; ++i) { + tgt_buf[i] += src_buf[i]; + } + } + + template <int Alignment> + EIGEN_STRONG_INLINE static void addAllToBuffer(size_t n, + const Scalar* src_buf0, + const Scalar* src_buf1, + const Scalar* src_buf2, + Scalar* dst_buf) { + using ::Eigen::internal::padd; + using ::Eigen::internal::pload; + using ::Eigen::internal::ploadt; + using ::Eigen::internal::pstoret; + + const int output_packet_size = + internal::unpacket_traits<PacketReturnType>::size; + + size_t i = 0; + const size_t num_packets = n / output_packet_size; + for (; i < output_packet_size * num_packets; i += output_packet_size) { + const auto src_val0 = pload<PacketReturnType>(src_buf0 + i); + const auto src_val1 = pload<PacketReturnType>(src_buf1 + i); + const auto src_val2 = pload<PacketReturnType>(src_buf2 + i); + + const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i); + const auto sum = + padd(padd(dst_val, src_val0), padd(src_val1, src_val2)); + + pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum); + } + for (; i < n; ++i) { + dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i]; + } + } + + template <int Alignment> + void eval(Barrier& barrier, Index start_block_idx, Index end_block_idx) { + while (end_block_idx - start_block_idx > 1) { + Index mid_block_idx = (start_block_idx + end_block_idx) / 2; + evaluator->m_device.enqueueNoNotification( + [this, &barrier, mid_block_idx, end_block_idx]() { + eval<Alignment>(barrier, mid_block_idx, end_block_idx); + }); + end_block_idx = mid_block_idx; + } + + Index block_idx = start_block_idx; + Index block_start = block_idx * block_size; + Index block_end = block_start + actualBlockSize(block_idx); + + processBlock<Alignment>(block_idx, block_start, block_end); + barrier.Notify(); + } + + template <int Alignment> + void evalAsync(Index start_block_idx, Index end_block_idx) { + while (end_block_idx - start_block_idx > 1) { + Index mid_block_idx = (start_block_idx + end_block_idx) / 2; + evaluator->m_device.enqueueNoNotification( + [this, mid_block_idx, end_block_idx]() { + evalAsync<Alignment>(mid_block_idx, end_block_idx); + }); + end_block_idx = mid_block_idx; + } + + Index block_idx = start_block_idx; + + Index block_start = block_idx * block_size; + Index block_end = block_start + actualBlockSize(block_idx); + + processBlock<Alignment>(block_idx, block_start, block_end); + + int v = num_pending_blocks.fetch_sub(1); + eigen_assert(v >= 1); + + if (v == 1) { + // Aggregate partial sums from l0 ranges. + aggregateL0Blocks<Alignment>(); + + // Apply output kernel. + applyOutputKernel(); + + // NOTE: If we call `done` callback before deleting this (context), + // it might deallocate Self* pointer captured by context, and we'll + // fail in destructor trying to deallocate temporary buffers. + + // Move done call back from context before it will be destructed. + DoneCallback done_copy = std::move(done); + + // We are confident that we are the last one who touches context. + delete this; + + // Now safely call the done callback. + done_copy(); + } + } + + // Cost model doesn't capture well the cost associated with constructing + // tensor contraction mappers and computing loop bounds in gemm_pack_lhs + // and gemm_pack_rhs, so we specify minimum desired block size. + static Index blockSize(Index k, int num_threads) { + const auto round_up = [=](Index index) -> Index { + const Index kmultiple = packet_size <= 8 ? 8 : packet_size; + return divup<Index>(index, kmultiple) * kmultiple; + }; + + const Index target_block_size = round_up(divup<Index>(k, num_threads)); + const Index desired_min_block_size = 12 * packet_size; + + return numext::mini<Index>( + k, numext::maxi<Index>(desired_min_block_size, target_block_size)); + } + + EvalShardedByInnerDimContext(const EvalShardedByInnerDimContext&) = delete; + void operator=(const EvalShardedByInnerDimContext&) = delete; + }; + + // ------------------------------------------------------------------------ // + + // Below are the function used by evalProductImpl heuristics, trying to select + // optimcal parameters for parallelization algorithm. + + // Decide whether we want to shard m x n contraction by columns or by rows. + static bool shardByCol(Index m, Index n, Index num_threads) { + // Note: we are comparing both n and m against Traits::nr, it is not + // a mistake. We are trying to figure out how both n and m will fit into + // the main sharding dimension. + + // Sharding by column is the default + // ... unless there is enough data for vectorization over rows + if (m / num_threads >= Traits::nr && + // and not enough data for vectorization over columns + (n / num_threads < Traits::nr || + // ... or barely enough data for vectorization over columns, + // but it is not evenly dividable across threads + (n / num_threads < 4 * Traits::nr && + (n % (num_threads * Traits::nr)) != 0 && + // ... and it is evenly dividable across threads for rows + ((m % (num_threads * Traits::nr)) == 0 || + // .. or it is not evenly dividable for both dimensions but + // there is much more data over rows so that corner effects are + // mitigated. + (m / n >= 6))))) + return false; + // Wait, or if matrices are just substantially prolonged over the other + // dimension. + if (n / num_threads < 16 * Traits::nr && m > n * 32) return false; + return true; + } + + Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn, + int num_threads, bool shard_by_col) const { + Index gm = 1; + Index gm1 = 1; + Index nm0 = divup(m, bm); + Index nm1 = nm0; + for (;;) { + // Find the next candidate for m grain size. It needs to result in + // different number of blocks. E.g. if we have 10 kernels, we want to try + // 5 and 10, but not 6, 7, 8 and 9. + while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++; + if (gm1 > nm0) break; + // Check the candidate. + int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads, + shard_by_col); + if (res < 0) break; + nm1 = divup(nm0, gm1); + if (res == 0) continue; + // Commit new grain size. + gm = gm1; + } + return gm; + } + + Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm, + int num_threads, bool shard_by_col) const { + Index gn = 1; + Index gn1 = 1; + Index nn0 = divup(n, bn); + Index nn1 = nn0; + for (;;) { + while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++; + if (gn1 > nn0) break; + int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads, + shard_by_col); + if (res < 0) break; + nn1 = divup(nn0, gn1); + if (res == 0) continue; + gn = gn1; + } + return gn; + } + + // checkGrain checks whether grain (gm, gn) is suitable and is better than + // (oldgm, oldgn). + int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm, + Index gn, Index oldgm, Index oldgn, int num_threads, + bool shard_by_col) const { + const TensorOpCost cost = + contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true); + double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize( + static_cast<double>(bm) * gm * bn * gn, cost); + // If the task is too small, then we agree on it regardless of anything + // else. Otherwise synchronization overheads will dominate. + if (taskSize < 1) return 1; + // If it is too large, then we reject it and all larger tasks. + if (taskSize > 2) return -1; + // Now we are in presumably good task size range. + // The main deciding factor here is parallelism. Consider that we have 12 + // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes. + // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4 + // of cores will be busy). While grain size 3 gives us 4 tasks, which gives + // us parallelism of 1 (we can load all cores). + Index nm0 = divup(m, bm); + Index nn0 = divup(n, bn); + Index new_tasks = divup(nm0, gm) * divup(nn0, gn); + double new_parallelism = static_cast<double>(new_tasks) / + (divup<int>(new_tasks, num_threads) * num_threads); + Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn); + double old_parallelism = static_cast<double>(old_tasks) / + (divup<int>(old_tasks, num_threads) * num_threads); + if (new_parallelism > old_parallelism || new_parallelism == 1) return 1; + return 0; + } + + TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk, + bool shard_by_col, bool prepacked) const { + const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size, + PacketType<RhsScalar, Device>::size); + const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size; + const double kd = static_cast<double>(bk); + double compute_bandwidth = computeBandwidth(false, bm, bn, bk); + // Computations. + TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size); + // Output stores. + cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size); + if (prepacked) { + // Packing and kernels are executed in different tasks. When we calculate + // task grain size we look only at kernel cost assuming that kernel + // is more expensive than packing. + return cost; + } + // Lhs/rhs loads + computations. + TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n); + TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m); + // Lhs packing memory cost does not contribute considerably to overall + // execution time because lhs is prefetched early and accessed sequentially. + if (shard_by_col) + lhsCost.dropMemoryCost(); + else + rhsCost.dropMemoryCost(); + return cost + lhsCost + rhsCost; + } + + // Decide whether we want to shard m x k x n contraction over the inner + // (contraction) dimension (k). + static bool shardByInnerDim(Index m, Index n, Index k, int num_threads, + int num_threads_by_k) { + std::ptrdiff_t bufsize = m * n * sizeof(Scalar); + bool shard_by_k = false; + if (n == 1 || // If mat*vec or... + num_threads_by_k < 2 || // running single threaded or... + num_threads_by_k < + num_threads || // sharding by k gives less parallelism or... + bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space + // than L3 cache or... + k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny. + shard_by_k = false; + } else if (numext::maxi(m, n) / num_threads < + Traits::nr || // both other dimensions are tiny or... + // k per thread is not small and... + (k / num_threads_by_k > 8 * Traits::nr && + // one of the outer dimensions is tiny or sharding by k offers + // more parallelism. + (numext::mini(m, n) < 2 * Traits::nr || + num_threads_by_k > num_threads))) { + shard_by_k = true; + } + return shard_by_k; + } + + TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const { + // Compute cost. + const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size; + TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n, true, output_packet_size); + // Output stores. + cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size); + TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m; + TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n; + // Since the inner gemm kernel is always sharded by column, the lhs + // load cost is negligible. + lhsCost.dropMemoryCost(); + return cost + lhsCost + rhsCost; + } + + int numThreadsInnerDim(Index m, Index n, Index k) const { + const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size; + TensorOpCost cost = contractionCostPerInnerDim(m, n, k); + double total_parallel_cost = + TensorCostModel<ThreadPoolDevice>::totalCost(k, cost); + // Cost of reduction step accumulating the m*n per-thread buffers into the + // result. + double reduction_cost = TensorCostModel<ThreadPoolDevice>::totalCost( + m * n, TensorOpCost(2, 1, 1, true, output_packet_size)); + int num_threads = 1; + double min_cost = total_parallel_cost; + double kPerThreadOverHead = 3000; + double kFixedOverHead = 100000; + for (int nt = 2; nt <= this->m_device.numThreads(); nt += 2) { + double sequential_cost = + kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead); + double parallel_cost = total_parallel_cost / nt + sequential_cost; + if (parallel_cost < min_cost) { + num_threads = nt; + min_cost = parallel_cost; + } + } + return num_threads; + } + + double computeBandwidth(bool shard_by_col, Index bm, Index bn, + Index bk) const { + // Peak VFMA bandwidth is 0.5. However if we have not enough data for + // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined + // experimentally. + double computeBandwidth = + bk == 1 ? 4.0 + : (shard_by_col ? bn : bm) < Traits::nr || + (shard_by_col ? bm : bn) < Traits::mr + ? 2.0 + : 0.5; +#ifndef EIGEN_VECTORIZE_FMA + // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors. + // However for MULPS/ADDPS we have dependent sequence of 2 such + // instructions, + // so overall bandwidth is 1.0. + if (computeBandwidth == 0.5) computeBandwidth = 1.0; +#endif + return computeBandwidth; + } + +}; + +} // end namespace Eigen + +#endif // EIGEN_USE_THREADS +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorConversion.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorConversion.h new file mode 100644 index 0000000..09d2da9 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorConversion.h @@ -0,0 +1,456 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H + +namespace Eigen { + +/** \class TensorConversionOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor conversion class. This class makes it possible to vectorize + * type casting operations when the number of scalars per packet in the source + * and the destination type differ + */ +namespace internal { +template<typename TargetType, typename XprType> +struct traits<TensorConversionOp<TargetType, XprType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef TargetType Scalar; + typedef typename traits<XprType>::StorageKind StorageKind; + typedef typename traits<XprType>::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = traits<XprType>::NumDimensions; + static const int Layout = traits<XprType>::Layout; + enum { Flags = 0 }; + typedef typename TypeConversion<Scalar, typename traits<XprType>::PointerType>::type PointerType; +}; + +template<typename TargetType, typename XprType> +struct eval<TensorConversionOp<TargetType, XprType>, Eigen::Dense> +{ + typedef const TensorConversionOp<TargetType, XprType>& type; +}; + +template<typename TargetType, typename XprType> +struct nested<TensorConversionOp<TargetType, XprType>, 1, typename eval<TensorConversionOp<TargetType, XprType> >::type> +{ + typedef TensorConversionOp<TargetType, XprType> type; +}; + +} // end namespace internal + + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> +struct PacketConverter; + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> +struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, 1> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketConverter(const TensorEvaluator& impl) + : m_impl(impl) {} + + template<int LoadMode, typename Index> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { + return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index)); + } + + private: + const TensorEvaluator& m_impl; +}; + + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> +struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketConverter(const TensorEvaluator& impl) + : m_impl(impl) {} + + template<int LoadMode, typename Index> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { + const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; + + SrcPacket src1 = m_impl.template packet<LoadMode>(index); + SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); + TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2); + return result; + } + + private: + const TensorEvaluator& m_impl; +}; + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> +struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketConverter(const TensorEvaluator& impl) + : m_impl(impl) {} + + template<int LoadMode, typename Index> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { + const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; + + SrcPacket src1 = m_impl.template packet<LoadMode>(index); + SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); + SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize); + SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize); + TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4); + return result; + } + + private: + const TensorEvaluator& m_impl; +}; + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket> +struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 8, 1> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketConverter(const TensorEvaluator& impl) + : m_impl(impl) {} + + template<int LoadMode, typename Index> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { + const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; + + SrcPacket src1 = m_impl.template packet<LoadMode>(index); + SrcPacket src2 = m_impl.template packet<LoadMode>(index + 1 * SrcPacketSize); + SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize); + SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize); + SrcPacket src5 = m_impl.template packet<LoadMode>(index + 4 * SrcPacketSize); + SrcPacket src6 = m_impl.template packet<LoadMode>(index + 5 * SrcPacketSize); + SrcPacket src7 = m_impl.template packet<LoadMode>(index + 6 * SrcPacketSize); + SrcPacket src8 = m_impl.template packet<LoadMode>(index + 7 * SrcPacketSize); + TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4, src5, src6, src7, src8); + return result; + } + + private: + const TensorEvaluator& m_impl; +}; + +template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int TgtCoeffRatio> +struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, TgtCoeffRatio> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketConverter(const TensorEvaluator& impl) + : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {} + + template<int LoadMode, typename Index> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { + const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; + // Only call m_impl.packet() when we have direct access to the underlying data. This + // ensures that we don't compute the subexpression twice. We may however load some + // coefficients twice, but in practice this doesn't negatively impact performance. + if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) { + // Force unaligned memory loads since we can't ensure alignment anymore + return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<Unaligned>(index)); + } else { + const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; + typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; + typedef typename internal::unpacket_traits<TgtPacket>::type TgtType; + internal::scalar_cast_op<SrcType, TgtType> converter; + EIGEN_ALIGN_MAX typename internal::unpacket_traits<TgtPacket>::type values[TgtPacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < TgtPacketSize; ++i) { + values[i] = converter(m_impl.coeff(index+i)); + } + TgtPacket rslt = internal::pload<TgtPacket>(values); + return rslt; + } + } + + private: + const TensorEvaluator& m_impl; + const typename TensorEvaluator::Index m_maxIndex; +}; + +template<typename TargetType, typename XprType> +class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename internal::traits<TensorConversionOp>::Scalar Scalar; + typedef typename internal::traits<TensorConversionOp>::StorageKind StorageKind; + typedef typename internal::traits<TensorConversionOp>::Index Index; + typedef typename internal::nested<TensorConversionOp>::type Nested; + typedef Scalar CoeffReturnType; + typedef typename NumTraits<Scalar>::Real RealScalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr) + : m_xpr(xpr) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; +}; + +template <bool SameType, typename Eval, typename EvalPointerType> struct ConversionSubExprEval { + static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType) { + impl.evalSubExprsIfNeeded(NULL); + return true; + } +}; + +template <typename Eval, typename EvalPointerType> struct ConversionSubExprEval<true, Eval, EvalPointerType> { + static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType data) { + return impl.evalSubExprsIfNeeded(data); + } +}; + +#ifdef EIGEN_USE_THREADS +template <bool SameType, typename Eval, typename EvalPointerType, + typename EvalSubExprsCallback> +struct ConversionSubExprEvalAsync { + static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType, EvalSubExprsCallback done) { + impl.evalSubExprsIfNeededAsync(nullptr, std::move(done)); + } +}; + +template <typename Eval, typename EvalPointerType, + typename EvalSubExprsCallback> +struct ConversionSubExprEvalAsync<true, Eval, EvalPointerType, + EvalSubExprsCallback> { + static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType data, EvalSubExprsCallback done) { + impl.evalSubExprsIfNeededAsync(data, std::move(done)); + } +}; +#endif + +namespace internal { + +template <typename SrcType, typename TargetType, bool IsSameT> +struct CoeffConv { + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + internal::scalar_cast_op<SrcType, TargetType> converter; + return converter(impl.coeff(index)); + } +}; + +template <typename SrcType, typename TargetType> +struct CoeffConv<SrcType, TargetType, true> { + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + return impl.coeff(index); + } +}; + +template <typename SrcPacket, typename TargetPacket, int LoadMode, bool ActuallyVectorize, bool IsSameT> +struct PacketConv { + typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; + typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; + + static const int PacketSize = internal::unpacket_traits<TargetPacket>::size; + + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + internal::scalar_cast_op<SrcType, TargetType> converter; + EIGEN_ALIGN_MAX typename internal::remove_const<TargetType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = converter(impl.coeff(index+i)); + } + TargetPacket rslt = internal::pload<TargetPacket>(values); + return rslt; + } +}; + +template <typename SrcPacket, typename TargetPacket, int LoadMode, bool IsSameT> +struct PacketConv<SrcPacket, TargetPacket, LoadMode, true, IsSameT> { + typedef typename internal::unpacket_traits<SrcPacket>::type SrcType; + typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; + + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + const int SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; + const int TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; + PacketConverter<TensorEvaluator<ArgType, Device>, SrcPacket, TargetPacket, + SrcCoeffRatio, TgtCoeffRatio> converter(impl); + return converter.template packet<LoadMode>(index); + } +}; + +template <typename SrcPacket, typename TargetPacket, int LoadMode> +struct PacketConv<SrcPacket, TargetPacket, LoadMode, /*ActuallyVectorize=*/false, /*IsSameT=*/true> { + typedef typename internal::unpacket_traits<TargetPacket>::type TargetType; + static const int PacketSize = internal::unpacket_traits<TargetPacket>::size; + + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + EIGEN_ALIGN_MAX typename internal::remove_const<TargetType>::type values[PacketSize]; + for (int i = 0; i < PacketSize; ++i) values[i] = impl.coeff(index+i); + return internal::pload<TargetPacket>(values); + } +}; + +template <typename SrcPacket, typename TargetPacket, int LoadMode> +struct PacketConv<SrcPacket, TargetPacket, LoadMode, /*ActuallyVectorize=*/true, /*IsSameT=*/true> { + template <typename ArgType, typename Device> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator<ArgType, Device>& impl, Index index) { + return impl.template packet<LoadMode>(index); + } +}; + +} // namespace internal + +// Eval as rvalue +template<typename TargetType, typename ArgType, typename Device> +struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device> +{ + typedef TensorConversionOp<TargetType, ArgType> XprType; + typedef typename XprType::Index Index; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + typedef TargetType Scalar; + typedef TargetType CoeffReturnType; + typedef typename internal::remove_all<typename internal::traits<ArgType>::Scalar>::type SrcType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename PacketType<SrcType, Device>::type PacketSourceType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + static const bool IsSameType = internal::is_same<TargetType, SrcType>::value; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = + #ifndef EIGEN_USE_SYCL + true, + #else + TensorEvaluator<ArgType, Device>::PacketAccess & + internal::type_casting_traits<SrcType, TargetType>::VectorizedCast, + #endif + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = false + }; + + static const int NumDims = internal::array_size<Dimensions>::value; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + struct TensorConversionOpBlockFactory { + template <typename ArgXprType> + struct XprType { + typedef TensorConversionOp<TargetType, const ArgXprType> type; + }; + + template <typename ArgXprType> + typename XprType<ArgXprType>::type expr(const ArgXprType& expr) const { + return typename XprType<ArgXprType>::type(expr); + } + }; + + typedef internal::TensorUnaryExprBlock<TensorConversionOpBlockFactory, + ArgTensorBlock> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device) + { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) + { + return ConversionSubExprEval<IsSameType, TensorEvaluator<ArgType, Device>, EvaluatorPointerType>::run(m_impl, data); + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType data, EvalSubExprsCallback done) { + ConversionSubExprEvalAsync<IsSameType, TensorEvaluator<ArgType, Device>, + EvaluatorPointerType, + EvalSubExprsCallback>::run(m_impl, data, std::move(done)); + } +#endif + + EIGEN_STRONG_INLINE void cleanup() + { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return internal::CoeffConv<SrcType, TargetType, IsSameType>::run(m_impl,index); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType + packet(Index index) const { + // If we are not going to do the cast, we just need to check that base + // TensorEvaluator has packet access. Otherwise we also need to make sure, + // that we have an implementation of vectorized cast. + const bool Vectorizable = + IsSameType + ? TensorEvaluator<ArgType, Device>::PacketAccess + : int(TensorEvaluator<ArgType, Device>::PacketAccess) & + int(internal::type_casting_traits<SrcType, TargetType>::VectorizedCast); + + return internal::PacketConv<PacketSourceType, PacketReturnType, LoadMode, + Vectorizable, IsSameType>::run(m_impl, index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double cast_cost = TensorOpCost::CastCost<SrcType, TargetType>(); + if (vectorized) { + const double SrcCoeffRatio = + internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio; + const double TgtCoeffRatio = + internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio; + return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) + + TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize)); + } else { + return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return m_impl.getResourceRequirements(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + return TensorBlock(m_impl.block(desc, scratch), + TensorConversionOpBlockFactory()); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + /// required by sycl in order to extract the sycl accessor + const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + TensorEvaluator<ArgType, Device> m_impl; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolution.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolution.h new file mode 100644 index 0000000..b20f80b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolution.h @@ -0,0 +1,1132 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H + +namespace Eigen { + +/** \class TensorConvolution + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor convolution class. + * + * + */ +namespace internal { + +template <typename Index, typename InputDims, int NumKernelDims, int Layout> +class IndexMapper { + public: + IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims, + const array<Index, NumKernelDims>& indices) { + + array<Index, NumDims> dimensions = input_dims; + for (int i = 0; i < NumKernelDims; ++i) { + const Index index = indices[i]; + const Index input_dim = input_dims[index]; + const Index kernel_dim = kernel_dims[i]; + const Index result_dim = input_dim - kernel_dim + 1; + dimensions[index] = result_dim; + } + + array<Index, NumDims> inputStrides; + array<Index, NumDims> outputStrides; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + inputStrides[0] = 1; + outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + inputStrides[i] = inputStrides[i-1] * input_dims[i-1]; + outputStrides[i] = outputStrides[i-1] * dimensions[i-1]; + } + } else { + inputStrides[NumDims - 1] = 1; + outputStrides[NumDims - 1] = 1; + for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) { + inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1]; + outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1]; + } + } + + array<Index, NumDims> gpuInputDimensions; + array<Index, NumDims> gpuOutputDimensions; + array<Index, NumDims> tmp = dimensions; + array<Index, NumDims> ordering; + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + for (int i = 0; i < NumKernelDims; ++i) { + const Index index = i + offset; + ordering[index] = indices[i]; + tmp[indices[i]] = -1; + gpuInputDimensions[index] = input_dims[indices[i]]; + gpuOutputDimensions[index] = dimensions[indices[i]]; + } + + int written = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? NumKernelDims + : 0; + for (int i = 0; i < NumDims; ++i) { + if (tmp[i] >= 0) { + ordering[written] = i; + gpuInputDimensions[written] = input_dims[i]; + gpuOutputDimensions[written] = dimensions[i]; + ++written; + } + } + + for (int i = 0; i < NumDims; ++i) { + m_inputStrides[i] = inputStrides[ordering[i]]; + m_outputStrides[i] = outputStrides[ordering[i]]; + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < NumDims; ++i) { + if (i > NumKernelDims) { + m_gpuInputStrides[i] = + m_gpuInputStrides[i - 1] * gpuInputDimensions[i - 1]; + m_gpuOutputStrides[i] = + m_gpuOutputStrides[i - 1] * gpuOutputDimensions[i - 1]; + } else { + m_gpuInputStrides[i] = 1; + m_gpuOutputStrides[i] = 1; + } + } + } else { + for (int i = NumDims - 1; i >= 0; --i) { + if (static_cast<size_t>(i + 1) < offset) { + m_gpuInputStrides[i] = + m_gpuInputStrides[i + 1] * gpuInputDimensions[i + 1]; + m_gpuOutputStrides[i] = + m_gpuOutputStrides[i + 1] * gpuOutputDimensions[i + 1]; + } else { + m_gpuInputStrides[i] = 1; + m_gpuOutputStrides[i] = 1; + } + } + } + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputPlaneToTensorInputOffset(Index p) const { + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int d = NumDims - 1; d > NumKernelDims; --d) { + const Index idx = p / m_gpuInputStrides[d]; + inputIndex += idx * m_inputStrides[d]; + p -= idx * m_gpuInputStrides[d]; + } + inputIndex += p * m_inputStrides[NumKernelDims]; + } else { + std::ptrdiff_t limit = 0; + if (NumKernelDims < NumDims) { + limit = NumDims - NumKernelDims - 1; + } + for (int d = 0; d < limit; ++d) { + const Index idx = p / m_gpuInputStrides[d]; + inputIndex += idx * m_inputStrides[d]; + p -= idx * m_gpuInputStrides[d]; + } + inputIndex += p * m_inputStrides[limit]; + } + return inputIndex; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputPlaneToTensorOutputOffset(Index p) const { + Index outputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int d = NumDims - 1; d > NumKernelDims; --d) { + const Index idx = p / m_gpuOutputStrides[d]; + outputIndex += idx * m_outputStrides[d]; + p -= idx * m_gpuOutputStrides[d]; + } + outputIndex += p * m_outputStrides[NumKernelDims]; + } else { + std::ptrdiff_t limit = 0; + if (NumKernelDims < NumDims) { + limit = NumDims - NumKernelDims - 1; + } + for (int d = 0; d < limit; ++d) { + const Index idx = p / m_gpuOutputStrides[d]; + outputIndex += idx * m_outputStrides[d]; + p -= idx * m_gpuOutputStrides[d]; + } + outputIndex += p * m_outputStrides[limit]; + } + return outputIndex; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_inputStrides[offset]; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_outputStrides[offset]; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1]; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1]; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j, Index k) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] + + k * m_inputStrides[offset + 2]; + } + + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const { + const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : NumDims - NumKernelDims; + return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] + + k * m_outputStrides[offset + 2]; + } + + private: + static const int NumDims = internal::array_size<InputDims>::value; + array<Index, NumDims> m_inputStrides; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims> m_gpuInputStrides; + array<Index, NumDims> m_gpuOutputStrides; +}; + + + +template<typename Dimensions, typename InputXprType, typename KernelXprType> +struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename promote_storage_type<typename InputXprType::Scalar, + typename KernelXprType::Scalar>::ret Scalar; + typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind, + typename traits<KernelXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type<typename traits<InputXprType>::Index, + typename traits<KernelXprType>::Index>::type Index; + typedef typename InputXprType::Nested LhsNested; + typedef typename KernelXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + static const int NumDimensions = traits<InputXprType>::NumDimensions; + static const int Layout = traits<InputXprType>::Layout; + typedef typename conditional<Pointer_type_promotion<typename InputXprType::Scalar, Scalar>::val, + typename traits<InputXprType>::PointerType, typename traits<KernelXprType>::PointerType>::type PointerType; + + enum { + Flags = 0 + }; +}; + +template<typename Dimensions, typename InputXprType, typename KernelXprType> +struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense> +{ + typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type; +}; + +template<typename Dimensions, typename InputXprType, typename KernelXprType> +struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type> +{ + typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type; +}; + +} // end namespace internal + + + +template<typename Indices, typename InputXprType, typename KernelXprType> +class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType, + typename KernelXprType::CoeffReturnType>::ret CoeffReturnType; + typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested; + typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims) + : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Indices& indices() const { return m_indices; } + + /** \returns the nested expressions */ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all<typename InputXprType::Nested>::type& + inputExpression() const { return m_input_xpr; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all<typename KernelXprType::Nested>::type& + kernelExpression() const { return m_kernel_xpr; } + + protected: + typename InputXprType::Nested m_input_xpr; + typename KernelXprType::Nested m_kernel_xpr; + const Indices m_indices; +}; + + +template<typename Indices, typename InputArgType, typename KernelArgType, typename Device> +struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device> +{ + typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType; + + static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value; + static const int NumKernelDims = internal::array_size<Indices>::value; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumDims> Dimensions; + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = int(TensorEvaluator<InputArgType, Device>::IsAligned) & int(TensorEvaluator<KernelArgType, Device>::IsAligned), + PacketAccess = int(TensorEvaluator<InputArgType, Device>::PacketAccess) & int(TensorEvaluator<KernelArgType, Device>::PacketAccess), + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<InputArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); + + const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions(); + const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions(); + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputStride[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1]; + } + } else { + m_inputStride[NumDims - 1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1]; + } + } + + m_dimensions = m_inputImpl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < NumKernelDims; ++i) { + const Index index = op.indices()[i]; + const Index input_dim = input_dims[index]; + const Index kernel_dim = kernel_dims[i]; + const Index result_dim = input_dim - kernel_dim + 1; + m_dimensions[index] = result_dim; + if (i > 0) { + m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1]; + } else { + m_kernelStride[0] = 1; + } + m_indexStride[i] = m_inputStride[index]; + } + + m_outputStride[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1]; + } + } else { + for (int i = NumKernelDims - 1; i >= 0; --i) { + const Index index = op.indices()[i]; + const Index input_dim = input_dims[index]; + const Index kernel_dim = kernel_dims[i]; + const Index result_dim = input_dim - kernel_dim + 1; + m_dimensions[index] = result_dim; + if (i < NumKernelDims - 1) { + m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1]; + } else { + m_kernelStride[NumKernelDims - 1] = 1; + } + m_indexStride[i] = m_inputStride[index]; + } + + m_outputStride[NumDims - 1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { + m_inputImpl.evalSubExprsIfNeeded(NULL); + preloadKernel(); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_inputImpl.cleanup(); + if (m_local_kernel) { + m_device.deallocate((void*)m_kernel); + m_local_kernel = false; + } + m_kernel = NULL; + } + + void evalTo(typename XprType::Scalar* buffer) { + evalSubExprsIfNeeded(NULL); + for (int i = 0; i < dimensions().TotalSize(); ++i) { + buffer[i] += coeff(i); + } + cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + CoeffReturnType result = CoeffReturnType(0); + convolve(firstInput(index), 0, NumKernelDims-1, result); + return result; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const + { + Index indices[2] = {index, index+PacketSize-1}; + Index startInputs[2] = {0, 0}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + const Index idx0 = indices[0] / m_outputStride[i]; + const Index idx1 = indices[1] / m_outputStride[i]; + startInputs[0] += idx0 * m_inputStride[i]; + startInputs[1] += idx1 * m_inputStride[i]; + indices[0] -= idx0 * m_outputStride[i]; + indices[1] -= idx1 * m_outputStride[i]; + } + } else { + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx0 = indices[0] / m_outputStride[i]; + const Index idx1 = indices[1] / m_outputStride[i]; + startInputs[0] += idx0 * m_inputStride[i]; + startInputs[1] += idx1 * m_inputStride[i]; + indices[0] -= idx0 * m_outputStride[i]; + indices[1] -= idx1 * m_outputStride[i]; + } + } + startInputs[0] += indices[0]; + startInputs[1] += indices[1]; + + if (startInputs[1]-startInputs[0] == PacketSize-1) { + PacketReturnType result = internal::pset1<PacketReturnType>(0); + convolvePacket(startInputs[0], 0, NumKernelDims-1, result); + return result; + } else { + EIGEN_ALIGN_MAX Scalar data[PacketSize]; + data[0] = Scalar(0); + convolve(startInputs[0], 0, NumKernelDims-1, data[0]); + for (int i = 1; i < PacketSize-1; ++i) { + data[i] = Scalar(0); + convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]); + } + data[PacketSize-1] = Scalar(0); + convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]); + return internal::pload<PacketReturnType>(data); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double kernel_size = m_kernelImpl.dimensions().TotalSize(); + // We ignore the use of fused multiply-add. + const double convolve_compute_cost = + TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>(); + const double firstIndex_compute_cost = + NumDims * + (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>()); + return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) + + kernel_size * (m_inputImpl.costPerCoeff(vectorized) + + m_kernelImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, convolve_compute_cost, vectorized, + PacketSize)); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { + Index startInput = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStride[i]; + startInput += idx * m_inputStride[i]; + index -= idx * m_outputStride[i]; + } + } else { + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStride[i]; + startInput += idx * m_inputStride[i]; + index -= idx * m_outputStride[i]; + } + } + startInput += index; + return startInput; + } + + EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const { + for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) { + const Index input = firstIndex + j * m_indexStride[DimIndex]; + const Index kernel = firstKernel + j * m_kernelStride[DimIndex]; + if (DimIndex > 0) { + convolve(input, kernel, DimIndex-1, accum); + } else { + accum += m_inputImpl.coeff(input) * m_kernel[kernel]; + } + } + } + + template <typename Packet> + EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const { + for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) { + const Index input = firstIndex + j * m_indexStride[DimIndex]; + const Index kernel = firstKernel + j * m_kernelStride[DimIndex]; + if (DimIndex > 0) { + convolvePacket(input, kernel, DimIndex-1, accum); + } else { + accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() { + // Don't make a local copy of the kernel unless we have to (i.e. it's an + // expression that needs to be evaluated) + const Scalar* in_place = m_kernelImpl.data(); + if (in_place) { + m_kernel = in_place; + m_local_kernel = false; + } else { + size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar); + Scalar* local = (Scalar*)m_device.allocate_temp(kernel_sz); + typedef TensorEvalToOp<const KernelArgType> EvalTo; + EvalTo evalToTmp(local, m_kernelArg); + const bool Vectorize = internal::IsVectorizable<Device, KernelArgType>::value; + internal::TensorExecutor<const EvalTo, Device, Vectorize>::run(evalToTmp, m_device); + + m_kernel = local; + m_local_kernel = true; + } + } + + array<Index, NumDims> m_inputStride; + array<Index, NumDims> m_outputStride; + + array<Index, NumKernelDims> m_indexStride; + array<Index, NumKernelDims> m_kernelStride; + TensorEvaluator<InputArgType, Device> m_inputImpl; + TensorEvaluator<KernelArgType, Device> m_kernelImpl; + Dimensions m_dimensions; + + KernelArgType m_kernelArg; + const Scalar* m_kernel; + bool m_local_kernel; + const Device EIGEN_DEVICE_REF m_device; +}; + + + + +// Use an optimized implementation of the evaluation code for GPUs whenever possible. +#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) + +template <int StaticKernelSize> +struct GetKernelSize { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const { + return StaticKernelSize; + } +}; +template <> +struct GetKernelSize<Dynamic> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const { + return kernelSize; + } +}; + +template <typename InputEvaluator, typename Index, typename InputDims, + int StaticKernelSize> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel1D( + InputEvaluator eval, + const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout> + indexMapper, + const float* __restrict kernel, const int numPlanes, const int numX, + const int maxX, const int kernelSize, float* buffer) { +#if defined(EIGEN_HIPCC) + HIP_DYNAMIC_SHARED(float, s) +#else + extern __shared__ float s[]; +#endif + + const int first_x = blockIdx.x * maxX; + const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; + const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize); + const int num_x_output = last_x - first_x + 1; + + const int first_plane = blockIdx.y * blockDim.y; + const int plane_stride = blockDim.y * gridDim.y; + + for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) { + // Load inputs to shared memory + const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p); + const int plane_kernel_offset = threadIdx.y * num_x_input; + #pragma unroll + for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { + const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x); + s[i + plane_kernel_offset] = eval.coeff(tensor_index); + } + + __syncthreads(); + + // Compute the convolution + const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p); + + #pragma unroll + for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { + const int kernel_offset = plane_kernel_offset + i; + float result = 0.0f; + #pragma unroll + for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) { + result += s[k + kernel_offset] * kernel[k]; + } + const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x); + buffer[tensor_index] = result; + } + __syncthreads(); + } +}; + +template <typename InputEvaluator, typename Index, typename InputDims, + int StaticKernelSizeX, int StaticKernelSizeY> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel2D( + InputEvaluator eval, + const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout> + indexMapper, + const float* __restrict kernel, const int numPlanes, const int numX, + const int maxX, const int numY, const int maxY, const int kernelSizeX, + const int kernelSizeY, float* buffer) { +#if defined(EIGEN_HIPCC) + HIP_DYNAMIC_SHARED(float, s) +#else + extern __shared__ float s[]; +#endif + + const int first_x = blockIdx.x * maxX; + const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; + const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX); + const int num_x_output = last_x - first_x + 1; + + const int first_y = blockIdx.y * maxY; + const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1; + const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY); + const int num_y_output = last_y - first_y + 1; + + const int first_plane = blockIdx.z * blockDim.z; + const int plane_stride = blockDim.z * gridDim.z; + + for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) { + + const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p); + const int plane_kernel_offset = threadIdx.z * num_y_input; + + // Load inputs to shared memory + #pragma unroll + for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) { + const int input_offset = num_x_input * (j + plane_kernel_offset); + #pragma unroll + for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { + const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y); + s[i + input_offset] = eval.coeff(tensor_index); + } + } + + __syncthreads(); + + // Convolution + const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p); + + #pragma unroll + for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) { + #pragma unroll + for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { + float result = 0.0f; + #pragma unroll + for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) { + const int kernel_offset = kernelSizeX * l; + const int input_offset = i + num_x_input * (j + l + plane_kernel_offset); + #pragma unroll + for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) { + result += s[k + input_offset] * kernel[k + kernel_offset]; + } + } + const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y); + buffer[tensor_index] = result; + } + } + + __syncthreads(); + } +}; + +template <typename InputEvaluator, typename Index, typename InputDims> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel3D( + InputEvaluator eval, + const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout> + indexMapper, + const float* __restrict kernel, const size_t numPlanes, const size_t numX, + const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ, + const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY, + const size_t kernelSizeZ, float* buffer) { +#if defined(EIGEN_HIPCC) + HIP_DYNAMIC_SHARED(float, s) +#else + extern __shared__ float s[]; +#endif + + // Load inputs to shared memory + const int first_x = blockIdx.x * maxX; + const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1; + const int num_x_input = last_x - first_x + kernelSizeX; + + const int first_y = blockIdx.y * maxY; + const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1; + const int num_y_input = last_y - first_y + kernelSizeY; + + const int first_z = blockIdx.z * maxZ; + const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1; + const int num_z_input = last_z - first_z + kernelSizeZ; + + for (int p = 0; p < numPlanes; ++p) { + + const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p); + const int plane_kernel_offset = 0; + + for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) { + for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) { + for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) { + const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z); + s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index); + } + } + } + + __syncthreads(); + + // Convolution + const int num_z_output = last_z - first_z + 1; + const int num_y_output = last_y - first_y + 1; + const int num_x_output = last_x - first_x + 1; + const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p); + + for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) { + for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) { + for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) { + float result = 0.0f; + for (int n = 0; n < kernelSizeZ; ++n) { + for (int m = 0; m < kernelSizeY; ++m) { + for (int l = 0; l < kernelSizeX; ++l) { + result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)]; + } + } + } + const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z); + buffer[tensor_index] = result; + } + } + } + __syncthreads(); + } +}; + + + +template<typename Indices, typename InputArgType, typename KernelArgType> +struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice> +{ + typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType; + + static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value; + static const int NumKernelDims = internal::array_size<Indices>::value; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions; + + enum { + IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + TensorEvaluator(const XprType& op, const GpuDevice& device) + : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); + + const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions(); + const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions(); + + m_dimensions = m_inputImpl.dimensions(); + for (int i = 0; i < NumKernelDims; ++i) { + const Index index = op.indices()[i]; + const Index input_dim = input_dims[index]; + const Index kernel_dim = kernel_dims[i]; + const Index result_dim = input_dim - kernel_dim + 1; + m_dimensions[index] = result_dim; + } + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType; + typedef typename InputArgType::Scalar Scalar; + static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { + preloadKernel(); + m_inputImpl.evalSubExprsIfNeeded(NULL); + if (data) { + executeEval(data); + return false; + } else { + m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)); + executeEval(m_buf); + return true; + } + } + + EIGEN_STRONG_INLINE void cleanup() { + m_inputImpl.cleanup(); + if (m_buf) { + m_device.deallocate(m_buf); + m_buf = NULL; + } + if (m_local_kernel) { + m_device.deallocate((void*)m_kernel); + m_local_kernel = false; + } + m_kernel = NULL; + } + + EIGEN_STRONG_INLINE void preloadKernel() { + // Don't make a local copy of the kernel unless we have to (i.e. it's an + // expression that needs to be evaluated) + const Scalar* in_place = m_kernelImpl.data(); + if (in_place) { + m_kernel = in_place; + m_local_kernel = false; + } else { + size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar); + Scalar* local = (Scalar*)m_device.allocate(kernel_sz); + typedef TensorEvalToOp<const KernelArgType> EvalTo; + EvalTo evalToTmp(local, m_kernelArg); + const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value; + internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device); + + m_kernel = local; + m_local_kernel = true; + } + } + + static unsigned int ceil(unsigned int num, unsigned int denom) { + const unsigned int rounded_toward_zero = num / denom; + if (num > rounded_toward_zero * denom) { + return rounded_toward_zero + 1; + } + return rounded_toward_zero; + } + + void executeEval(Scalar* data) const { + typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims; + + const int maxSharedMem = m_device.sharedMemPerBlock(); + const int maxThreadsPerBlock = m_device.maxGpuThreadsPerBlock(); + const int maxBlocksPerProcessor = m_device.maxGpuThreadsPerMultiProcessor() / maxThreadsPerBlock; + const int numMultiProcessors = m_device.getNumGpuMultiProcessors(); + const int warpSize = 32; + + switch (NumKernelDims) { + case 1: { + const int kernel_size = m_kernelImpl.dimensions().TotalSize(); + + const int numX = dimensions()[m_indices[0]]; + const int numP = dimensions().TotalSize() / numX; + int maxX; + dim3 block_size; + + const int single_stride_dim = + static_cast<int>(Layout) == static_cast<int>(ColMajor) + ? 0 + : m_inputImpl.dimensions().rank() - 1; + if (m_indices[0] == single_stride_dim) { + // Maximum the reuse + const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32; + maxX = numext::mini<int>(inner_dim, numX); + const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP); + block_size.x = numext::mini(maxThreadsPerBlock, maxX); + block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP); + } + else { + // Read as much as possible alongside the inner most dimension, that is the plane + const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar)); + const int maxP = numext::mini<int>(inner_dim, numP); + maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX); + + block_size.x = numext::mini(warpSize, maxX); + block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP); + } + + const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar); + gpu_assert(shared_mem <= maxSharedMem); + + const int num_x_blocks = ceil(numX, maxX); + const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem); + const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks); + + dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y))); + + + //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; + + const array<Index, 1> indices(m_indices[0]); + const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]); + internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper( + m_inputImpl.dimensions(), kernel_dims, indices); + switch(kernel_size) { + case 4: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data); + break; + } + case 7: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data); + break; + } + default: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data); + } + } + break; + } + + case 2: { + const int idxX = + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1; + const int idxY = + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0; + const int kernel_size_x = m_kernelImpl.dimensions()[idxX]; + const int kernel_size_y = m_kernelImpl.dimensions()[idxY]; + + const int numX = dimensions()[m_indices[idxX]]; + const int numY = dimensions()[m_indices[idxY]]; + const int numP = dimensions().TotalSize() / (numX*numY); + + const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x)); + + // Snap maxX to warp size + int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32; + const int maxX = numext::mini<int>(inner_dim, numX); + const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY); + const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP); + + dim3 block_size; + block_size.x = numext::mini(1024, maxX); + block_size.y = numext::mini<int>(1024/block_size.x, maxY); + block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP); + + const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar); + gpu_assert(shared_mem <= maxSharedMem); + + const int num_x_blocks = ceil(numX, maxX); + const int num_y_blocks = ceil(numY, maxY); + const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem); + const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks); + + dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z))); + + + //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; + + const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]); + const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX], + m_kernelImpl.dimensions()[idxY]); + internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper( + m_inputImpl.dimensions(), kernel_dims, indices); + switch (kernel_size_x) { + case 4: { + switch (kernel_size_y) { + case 7: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data); + break; + } + default: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data); + break; + } + } + break; + } + case 7: { + switch (kernel_size_y) { + case 4: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data); + break; + } + default: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data); + break; + } + } + break; + } + default: { + LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data); + break; + } + } + break; + } + + case 3: { + const int idxX = + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2; + const int idxY = + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1; + const int idxZ = + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0; + + const int kernel_size_x = m_kernelImpl.dimensions()[idxX]; + const int kernel_size_y = m_kernelImpl.dimensions()[idxY]; + const int kernel_size_z = m_kernelImpl.dimensions()[idxZ]; + + const int numX = dimensions()[m_indices[idxX]]; + const int numY = dimensions()[m_indices[idxY]]; + const int numZ = dimensions()[m_indices[idxZ]]; + const int numP = dimensions().TotalSize() / (numX*numY*numZ); + + const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX)); + const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY)); + const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ)); + + dim3 block_size; + block_size.x = numext::mini(32, maxX); + block_size.y = numext::mini(32, maxY); + block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ); + dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ)); + + const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar); + gpu_assert(shared_mem <= maxSharedMem); + + //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl; + const array<Index, 3> indices(m_indices[idxX], m_indices[idxY], + m_indices[idxZ]); + const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX], + m_kernelImpl.dimensions()[idxY], + m_kernelImpl.dimensions()[idxZ]); + internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper( + m_inputImpl.dimensions(), kernel_dims, indices); + + LAUNCH_GPU_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data); + break; + } + + default: { + EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + eigen_assert(m_buf); + eigen_assert(index < m_dimensions.TotalSize()); + return m_buf[index]; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const + { + eigen_assert(m_buf); + eigen_assert(index < m_dimensions.TotalSize()); + return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost + // model. + const double kernel_size = m_kernelImpl.dimensions().TotalSize(); + // We ignore the use of fused multiply-add. + const double convolve_compute_cost = + TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>(); + const double firstIndex_compute_cost = + NumDims * + (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>()); + return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) + + kernel_size * (m_inputImpl.costPerCoeff(vectorized) + + m_kernelImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, convolve_compute_cost, vectorized, + PacketSize)); + } + + private: + // No assignment (copies are needed by the kernels) + TensorEvaluator& operator = (const TensorEvaluator&); + + TensorEvaluator<InputArgType, GpuDevice> m_inputImpl; + TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl; + KernelArgType m_kernelArg; + Indices m_indices; + Dimensions m_dimensions; + Scalar* m_buf; + const Scalar* m_kernel; + bool m_local_kernel; + + const GpuDevice& m_device; +}; +#endif + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolutionSycl.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolutionSycl.h new file mode 100644 index 0000000..033318f --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorConvolutionSycl.h @@ -0,0 +1,544 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> + +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H + +namespace Eigen { + +/** \class TensorConvolution + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor convolution class. + * + * + */ + +enum class convolution_type { CONV1D, CONV2D, CONV3D }; +template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims, + typename Kernel_accessor, typename Buffer_accessor, convolution_type Conv_Dim> +struct EigenConvolutionKernel; +template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims, + typename Kernel_accessor, typename Buffer_accessor> +struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, + Buffer_accessor, convolution_type::CONV1D> { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + Local_accessor; + Local_accessor local_acc; + Evaluator device_evaluator; + Kernel_accessor kernel_filter; + Buffer_accessor buffer_acc; + internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper; + const size_t kernelSize; + const cl::sycl::range<2> input_range; + EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_, + Buffer_accessor buffer_acc_, + internal::IndexMapper<Index, InputDims, 1, Evaluator::Layout> indexMapper_, + const size_t kernelSize_, const cl::sycl::range<2> input_range_) + : local_acc(local_acc_), + device_evaluator(device_evaluator_), + kernel_filter(kernel_filter_), + buffer_acc(buffer_acc_), + indexMapper(indexMapper_), + kernelSize(kernelSize_), + input_range(input_range_) {} + + template <typename BooleanDim2> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim2 boolean_check) { + return (boolean_check[0] && boolean_check[1]); + } + void operator()(cl::sycl::nd_item<2> itemID) { + auto buffer_ptr = buffer_acc.get_pointer(); + auto kernel_ptr = kernel_filter.get_pointer(); + // the required row to be calculated for the for each plane in shered memory + const size_t num_input = (itemID.get_local_range()[0] + kernelSize - 1); + const size_t plane_kernel_offset = itemID.get_local_id(1) * num_input; + const size_t input_offset = itemID.get_group(0) * itemID.get_local_range()[0]; + const size_t plane_tensor_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(1)); + /// fill the shared memory + for (size_t i = itemID.get_local_id(0); i < num_input; i += itemID.get_local_range()[0]) { + const size_t local_index = i + plane_kernel_offset; + const size_t tensor_index = + plane_tensor_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i + input_offset); + + local_acc[local_index] = + (((i + input_offset) < (input_range[0] + kernelSize - 1)) && itemID.get_global_id(1) < input_range[1]) + ? device_evaluator.coeff(tensor_index) + : CoeffReturnType(0); + } + + itemID.barrier(cl::sycl::access::fence_space::local_space); + + // calculate the convolution // output start x + const size_t first_output_start = itemID.get_group(0) * (itemID.get_local_range()[0]); + if (boundary_check(itemID.get_global_id() < input_range)) { + CoeffReturnType result = static_cast<CoeffReturnType>(0); + const size_t index = plane_kernel_offset + itemID.get_local_id(0); + for (size_t k = 0; k < kernelSize; ++k) { + result += (local_acc[k + index] * kernel_ptr[k]); + } + const size_t tensor_index = + indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(1)) + + indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + first_output_start); + buffer_ptr[tensor_index] = result; + } + } +}; + +template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims, + typename Kernel_accessor, typename Buffer_accessor> +struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, + Buffer_accessor, convolution_type::CONV2D> { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + Local_accessor; + Local_accessor local_acc; + Evaluator device_evaluator; + Kernel_accessor kernel_filter; + Buffer_accessor buffer_acc; + internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper; + const cl::sycl::range<2> kernel_size; + const cl::sycl::range<3> input_range; + EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_, + Buffer_accessor buffer_acc_, + internal::IndexMapper<Index, InputDims, 2, Evaluator::Layout> indexMapper_, + const cl::sycl::range<2> kernel_size_, const cl::sycl::range<3> input_range_) + : local_acc(local_acc_), + device_evaluator(device_evaluator_), + kernel_filter(kernel_filter_), + buffer_acc(buffer_acc_), + indexMapper(indexMapper_), + kernel_size(kernel_size_), + input_range(input_range_) {} + template <typename BooleanDim3> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) { + return (boolean_check[0] && boolean_check[1] && boolean_check[2]); + } + + void operator()(cl::sycl::nd_item<3> itemID) { + auto buffer_ptr = buffer_acc.get_pointer(); + auto kernel_ptr = kernel_filter.get_pointer(); + // the required row to be calculated for the for each plane in shered memory + const auto num_input = cl::sycl::range<2>{ + (cl::sycl::range<2>(itemID.get_local_range()[0], itemID.get_local_range()[1]) + kernel_size - 1)}; + + const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(itemID.get_global_id(2)); + const size_t plane_kernel_offset = itemID.get_local_id(2) * num_input[1]; + + const auto input_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0], + itemID.get_group(1) * itemID.get_local_range()[1]}; + + // fill the local memory + bool in_range_dim2 = itemID.get_global_id(2) < input_range[2]; + for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) { + const size_t local_input_offset = num_input[0] * (j + plane_kernel_offset); + bool in_range_dim1 = ((j + input_offset[1]) < (input_range[1] + kernel_size[1] - 1)); + for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) { + const size_t local_index = i + local_input_offset; + const size_t tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset( + i + input_offset[0], j + input_offset[1]); + local_acc[local_index] = (((i + input_offset[0]) < (input_range[0] + kernel_size[0] - 1)) && + in_range_dim1 && in_range_dim2) + ? device_evaluator.coeff(tensor_index) + : CoeffReturnType(0); + } + } + + itemID.barrier(cl::sycl::access::fence_space::local_space); + + // output offset start for each thread + const auto output_offset = cl::sycl::range<2>{itemID.get_group(0) * itemID.get_local_range()[0], + itemID.get_group(1) * itemID.get_local_range()[1]}; + + if (boundary_check(itemID.get_global_id() < input_range)) { + CoeffReturnType result = static_cast<CoeffReturnType>(0); + + for (size_t j = 0; j < kernel_size[1]; j++) { + size_t kernel_offset = kernel_size[0] * j; + const size_t index = + (num_input[0] * (plane_kernel_offset + j + itemID.get_local_id(1))) + itemID.get_local_id(0); + for (size_t i = 0; i < kernel_size[0]; i++) { + result += (local_acc[i + index] * kernel_ptr[i + kernel_offset]); + } + } + const size_t tensor_index = + indexMapper.mapGpuOutputPlaneToTensorOutputOffset(itemID.get_global_id(2)) + + indexMapper.mapGpuOutputKernelToTensorOutputOffset(itemID.get_local_id(0) + output_offset[0], + itemID.get_local_id(1) + output_offset[1]); + + buffer_ptr[tensor_index] = result; + } + } +}; + +template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims, + typename Kernel_accessor, typename Buffer_accessor> +struct EigenConvolutionKernel<Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, + Buffer_accessor, convolution_type::CONV3D> { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + Local_accessor; + Local_accessor local_acc; + Evaluator device_evaluator; + Kernel_accessor kernel_filter; + Buffer_accessor buffer_acc; + internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper; + const cl::sycl::range<3> kernel_size; + const cl::sycl::range<3> input_range; + const size_t numP; + + EigenConvolutionKernel(Local_accessor local_acc_, Evaluator device_evaluator_, Kernel_accessor kernel_filter_, + Buffer_accessor buffer_acc_, + internal::IndexMapper<Index, InputDims, 3, Evaluator::Layout> indexMapper_, + const cl::sycl::range<3> kernel_size_, const cl::sycl::range<3> input_range_, + const size_t numP_) + : local_acc(local_acc_), + device_evaluator(device_evaluator_), + kernel_filter(kernel_filter_), + buffer_acc(buffer_acc_), + indexMapper(indexMapper_), + kernel_size(kernel_size_), + input_range(input_range_), + numP(numP_) {} + template <typename BooleanDim3> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool boundary_check(const BooleanDim3 boolean_check) { + return (boolean_check[0] && boolean_check[1] && boolean_check[2]); + } + void operator()(cl::sycl::nd_item<3> itemID) { + auto buffer_ptr = buffer_acc.get_pointer(); + auto kernel_ptr = kernel_filter.get_pointer(); + const auto num_input = cl::sycl::range<3>{itemID.get_local_range() + kernel_size - 1}; + + const auto input_offset = cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range()}; + + const auto output_offset = + cl::sycl::range<3>{itemID.get_group().get_id() * itemID.get_local_range() + itemID.get_local_id()}; + + for (size_t p = 0; p < numP; p++) { + /// fill the shared memory + const size_t plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p); + for (size_t k = itemID.get_local_id(2); k < num_input[2]; k += itemID.get_local_range()[2]) { + size_t local_index_dim2 = num_input[0] * num_input[1] * k; + bool cond_k_dim = (k + input_offset[2] < (input_range[2] + kernel_size[2] - 1)); + for (size_t j = itemID.get_local_id(1); j < num_input[1]; j += itemID.get_local_range()[1]) { + bool cond_j_dim = cond_k_dim && (j + input_offset[1] < (input_range[1] + kernel_size[1] - 1)); + size_t local_index_dim1 = (num_input[0] * j) + local_index_dim2; + for (size_t i = itemID.get_local_id(0); i < num_input[0]; i += itemID.get_local_range()[0]) { + bool conds = cond_j_dim && (i + input_offset[0] < (input_range[0] + kernel_size[0] - 1)); + const size_t local_index = local_index_dim1 + i; + const size_t tensor_index = + plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset( + i + input_offset[0], j + input_offset[1], k + input_offset[2]); + local_acc[local_index] = conds ? device_evaluator.coeff(tensor_index) : CoeffReturnType(0); + } + } + } + itemID.barrier(cl::sycl::access::fence_space::local_space); + + // calculate the convolution + + if (boundary_check(itemID.get_global_id() < input_range)) { + CoeffReturnType result = static_cast<CoeffReturnType>(0); + for (size_t k = 0; k < kernel_size[2]; k++) { + for (size_t j = 0; j < kernel_size[1]; j++) { + for (size_t i = 0; i < kernel_size[0]; i++) { + const size_t kernel_index = i + kernel_size[0] * (j + kernel_size[1] * k); + const size_t local_index = + ((i + itemID.get_local_id(0)) + + num_input[0] * ((j + itemID.get_local_id(1)) + num_input[1] * (k + itemID.get_local_id(2)))); + + result += (local_acc[local_index] * kernel_ptr[kernel_index]); + } + } + } + const size_t tensor_index = + indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p) + + indexMapper.mapGpuOutputKernelToTensorOutputOffset(output_offset[0], output_offset[1], output_offset[2]); + buffer_ptr[tensor_index] = result; + } + + itemID.barrier(cl::sycl::access::fence_space::local_space); + } + } +}; + +template <typename Indices, typename InputArgType, typename KernelArgType> +struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Eigen::SyclDevice> { + typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType; + + static const int NumDims = + internal::array_size<typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions>::value; + static const int NumKernelDims = internal::array_size<Indices>::value; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions KernelDimensions; + typedef const Eigen::SyclDevice Device; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Eigen::SyclDevice>::type PacketReturnType; + typedef typename InputArgType::Scalar Scalar; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Eigen::SyclDevice> Storage; + typedef typename Storage::Type EvaluatorPointerType; + typedef StorageMemory<const CoeffReturnType, Eigen::SyclDevice> KernelStorage; + + enum { + IsAligned = TensorEvaluator<InputArgType, Eigen::SyclDevice>::IsAligned & + TensorEvaluator<KernelArgType, Eigen::SyclDevice>::IsAligned, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + TensorEvaluator(const XprType &op, const Eigen::SyclDevice &device) + : m_inputImpl(op.inputExpression(), device), + m_kernelArg(op.kernelExpression()), + m_kernelImpl(op.kernelExpression(), device), + m_indices(op.indices()), + m_buf(NULL), + m_kernel(NULL), + m_local_kernel(false), + m_device(device) { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Eigen::SyclDevice>::Layout) == + static_cast<int>(TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Layout)), + YOU_MADE_A_PROGRAMMING_MISTAKE); + + const typename TensorEvaluator<InputArgType, Eigen::SyclDevice>::Dimensions &input_dims = m_inputImpl.dimensions(); + const typename TensorEvaluator<KernelArgType, Eigen::SyclDevice>::Dimensions &kernel_dims = + m_kernelImpl.dimensions(); + + m_dimensions = m_inputImpl.dimensions(); + for (int i = 0; i < NumKernelDims; ++i) { + const Index index = op.indices()[i]; + const Index input_dim = input_dims[index]; + const Index kernel_dim = kernel_dims[i]; + const Index result_dim = input_dim - kernel_dim + 1; + m_dimensions[index] = result_dim; + } + } + + EIGEN_DEVICE_FUNC const Dimensions &dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + preloadKernel(); + m_inputImpl.evalSubExprsIfNeeded(NULL); + if (data) { + executeEval(data); + return false; + } else { + m_buf = (EvaluatorPointerType)m_device.get( + (Scalar *)m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar))); + executeEval(m_buf); + return true; + } + } + + EIGEN_STRONG_INLINE void cleanup() { + m_inputImpl.cleanup(); + if (m_buf) { + m_device.deallocate_temp(m_buf); + m_buf = NULL; + } + if (m_local_kernel) { + m_device.deallocate_temp(m_kernel); + m_local_kernel = false; + } + m_kernel = NULL; + } + /// used by sycl in order to build the sycl buffer + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device &device() const { return m_device; } + /// used by sycl in order to build the sycl buffer + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return m_buf; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() { + // Don't make a local copy of the kernel unless we have to (i.e. it's an + // expression that needs to be evaluated) + typename KernelStorage::Type in_place = m_kernelImpl.data(); + if (in_place) { + m_kernel = in_place; + m_local_kernel = false; + } else { + ptrdiff_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar); + EvaluatorPointerType local = (EvaluatorPointerType)m_device.get((Scalar *)m_device.allocate_temp(kernel_sz)); + typedef TensorEvalToOp<const KernelArgType> EvalTo; + EvalTo evalToTmp(m_device.get(local), m_kernelArg); + const bool PacketAccess = internal::IsVectorizable<Eigen::SyclDevice, KernelArgType>::value; + internal::TensorExecutor<const EvalTo, Eigen::SyclDevice, PacketAccess>::run(evalToTmp, m_device); + m_kernel = local; + m_local_kernel = true; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void executeEval(EvaluatorPointerType data) const { + typedef TensorEvaluator<InputArgType, Eigen::SyclDevice> InputEvaluator; + typedef typename InputEvaluator::Dimensions InputDims; + switch (NumKernelDims) { + case 1: { + const size_t numX = dimensions()[m_indices[0]]; + const size_t numP = dimensions().TotalSize() / numX; + const auto input_dim = std::array<size_t, 2>{numX, numP}; + auto global_range = cl::sycl::range<2>{}; + auto local_range = cl::sycl::range<2>{}; + const size_t kernel_size = m_kernelImpl.dimensions().TotalSize(); + + m_device.parallel_for_setup(input_dim, global_range, local_range); + const size_t local_memory_size = (local_range[0] + kernel_size - 1) * (local_range[1]); + gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock()); + const array<Index, 1> indices{{m_indices[0]}}; + const array<Index, 1> kernel_dims{{m_kernelImpl.dimensions()[0]}}; + internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices); + + typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims, + typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV1D> + ConvKernel; + + m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>( + m_inputImpl, m_kernel, data, cl::sycl::nd_range<2>(global_range, local_range), local_memory_size, + indexMapper, kernel_size, cl::sycl::range<2>(input_dim[0], input_dim[1])); + break; + } + + case 2: { + auto kernel_index = std::array<size_t, 2>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1, + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0}; + auto kernel_size = cl::sycl::range<2>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]], + (size_t)m_kernelImpl.dimensions()[kernel_index[1]]}; + const size_t numX = dimensions()[m_indices[kernel_index[0]]]; + const size_t numY = dimensions()[m_indices[kernel_index[1]]]; + const size_t numP = dimensions().TotalSize() / (numX * numY); + auto input_dim = std::array<size_t, 3>{numX, numY, numP}; + + auto global_range = cl::sycl::range<3>{}; + auto local_range = cl::sycl::range<3>{}; + + m_device.parallel_for_setup(input_dim, global_range, local_range); + + const size_t local_memory_size = + (local_range[0] + kernel_size[0] - 1) * (local_range[1] + kernel_size[1] - 1) * local_range[2]; + gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock()); + const array<Index, 2> indices{{m_indices[kernel_index[0]], m_indices[kernel_index[1]]}}; + const array<Index, 2> kernel_dims{ + {m_kernelImpl.dimensions()[kernel_index[0]], m_kernelImpl.dimensions()[kernel_index[1]]}}; + internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices); + typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims, + typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV2D> + ConvKernel; + m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>( + m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size, + indexMapper, kernel_size, cl::sycl::range<3>{input_dim[0], input_dim[1], input_dim[2]}); + break; + } + + case 3: { + auto kernel_index = std::array<size_t, 3>{static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2, + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1, + static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0}; + + auto kernel_size = cl::sycl::range<3>{(size_t)m_kernelImpl.dimensions()[kernel_index[0]], + (size_t)m_kernelImpl.dimensions()[kernel_index[1]], + (size_t)m_kernelImpl.dimensions()[kernel_index[2]]}; + + const size_t numX = dimensions()[m_indices[kernel_index[0]]]; + const size_t numY = dimensions()[m_indices[kernel_index[1]]]; + const size_t numZ = dimensions()[m_indices[kernel_index[2]]]; + auto input_dim = std::array<size_t, 3>{numX, numY, numZ}; + const size_t numP = dimensions().TotalSize() / (numX * numY * numZ); + + const array<Index, 3> indices{ + {m_indices[kernel_index[0]], m_indices[kernel_index[1]], m_indices[kernel_index[2]]}}; + const array<Index, 3> kernel_dims{{m_kernelImpl.dimensions()[kernel_index[0]], + m_kernelImpl.dimensions()[kernel_index[1]], + m_kernelImpl.dimensions()[kernel_index[2]]}}; + + internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices); + + auto global_range = cl::sycl::range<3>{}; + auto local_range = cl::sycl::range<3>{}; + + m_device.parallel_for_setup(input_dim, global_range, local_range); + auto local_memory_range = (local_range + kernel_size - 1); + const size_t local_memory_size = local_memory_range[0] * local_memory_range[1] * local_memory_range[2]; + + gpu_assert(static_cast<unsigned long>(local_memory_size) <= m_device.sharedMemPerBlock()); + typedef EigenConvolutionKernel<InputEvaluator, CoeffReturnType, Scalar, Index, InputDims, + typename KernelStorage::Type, EvaluatorPointerType, convolution_type::CONV3D> + ConvKernel; + m_device.template binary_kernel_launcher<CoeffReturnType, ConvKernel>( + m_inputImpl, m_kernel, data, cl::sycl::nd_range<3>(global_range, local_range), local_memory_size, + indexMapper, kernel_size, cl::sycl::range<3>(input_dim[0], input_dim[1], input_dim[2]), numP); + break; + } + + default: { + EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), + THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + eigen_assert(m_buf != NULL); + eigen_assert(index < m_dimensions.TotalSize()); + return m_buf[index]; + } + + template <int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const { + eigen_assert(m_buf != NULL); + eigen_assert(index < m_dimensions.TotalSize()); + return internal::ploadt<PacketReturnType, LoadMode>(m_buf + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost + // model. + const double kernel_size = m_kernelImpl.dimensions().TotalSize(); + // We ignore the use of fused multiply-add. + const double convolve_compute_cost = TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>(); + const double firstIndex_compute_cost = + NumDims * + (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>()); + return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) + + kernel_size * (m_inputImpl.costPerCoeff(vectorized) + m_kernelImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, convolve_compute_cost, vectorized, PacketSize)); + } + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_kernelImpl.bind(cgh); + m_inputImpl.bind(cgh); + m_buf.bind(cgh); + m_kernel.bind(cgh); + } + + private: + // No assignment (copies are needed by the kernels) + TensorEvaluator &operator=(const TensorEvaluator &); + TensorEvaluator<InputArgType, Eigen::SyclDevice> m_inputImpl; + KernelArgType m_kernelArg; + TensorEvaluator<KernelArgType, Eigen::SyclDevice> m_kernelImpl; + Indices m_indices; + Dimensions m_dimensions; + EvaluatorPointerType m_buf; + typename KernelStorage::Type m_kernel; + bool m_local_kernel; + const Eigen::SyclDevice EIGEN_DEVICE_REF m_device; +}; // namespace Eigen + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorCostModel.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorCostModel.h new file mode 100644 index 0000000..195267c --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorCostModel.h @@ -0,0 +1,214 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H +#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H + +namespace Eigen { + +/** \class TensorEvaluator + * \ingroup CXX11_Tensor_Module + * + * \brief A cost model used to limit the number of threads used for evaluating + * tensor expression. + * + */ + +// Class storing the cost of evaluating a tensor expression in terms of the +// estimated number of operand bytes loads, bytes stored, and compute cycles. +class TensorOpCost { + public: + // TODO(rmlarsen): Fix the scalar op costs in Eigen proper. Even a simple + // model based on minimal reciprocal throughput numbers from Intel or + // Agner Fog's tables would be better than what is there now. + template <typename ArgType> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int MulCost() { + return internal::functor_traits< + internal::scalar_product_op<ArgType, ArgType> >::Cost; + } + template <typename ArgType> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int AddCost() { + return internal::functor_traits<internal::scalar_sum_op<ArgType> >::Cost; + } + template <typename ArgType> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int DivCost() { + return internal::functor_traits< + internal::scalar_quotient_op<ArgType, ArgType> >::Cost; + } + template <typename ArgType> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int ModCost() { + return internal::functor_traits<internal::scalar_mod_op<ArgType> >::Cost; + } + template <typename SrcType, typename TargetType> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int CastCost() { + return internal::functor_traits< + internal::scalar_cast_op<SrcType, TargetType> >::Cost; + } + + EIGEN_DEVICE_FUNC + TensorOpCost() : bytes_loaded_(0), bytes_stored_(0), compute_cycles_(0) {} + EIGEN_DEVICE_FUNC + TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles) + : bytes_loaded_(bytes_loaded), + bytes_stored_(bytes_stored), + compute_cycles_(compute_cycles) {} + + EIGEN_DEVICE_FUNC + TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles, + bool vectorized, double packet_size) + : bytes_loaded_(bytes_loaded), + bytes_stored_(bytes_stored), + compute_cycles_(vectorized ? compute_cycles / packet_size + : compute_cycles) { + eigen_assert(bytes_loaded >= 0 && (numext::isfinite)(bytes_loaded)); + eigen_assert(bytes_stored >= 0 && (numext::isfinite)(bytes_stored)); + eigen_assert(compute_cycles >= 0 && (numext::isfinite)(compute_cycles)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_loaded() const { + return bytes_loaded_; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_stored() const { + return bytes_stored_; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double compute_cycles() const { + return compute_cycles_; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double total_cost( + double load_cost, double store_cost, double compute_cost) const { + return load_cost * bytes_loaded_ + store_cost * bytes_stored_ + + compute_cost * compute_cycles_; + } + + // Drop memory access component. Intended for cases when memory accesses are + // sequential or are completely masked by computations. + EIGEN_DEVICE_FUNC void dropMemoryCost() { + bytes_loaded_ = 0; + bytes_stored_ = 0; + } + + // TODO(rmlarsen): Define min in terms of total cost, not elementwise. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMin( + const TensorOpCost& rhs) const { + double bytes_loaded = numext::mini(bytes_loaded_, rhs.bytes_loaded()); + double bytes_stored = numext::mini(bytes_stored_, rhs.bytes_stored()); + double compute_cycles = numext::mini(compute_cycles_, rhs.compute_cycles()); + return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles); + } + + // TODO(rmlarsen): Define max in terms of total cost, not elementwise. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMax( + const TensorOpCost& rhs) const { + double bytes_loaded = numext::maxi(bytes_loaded_, rhs.bytes_loaded()); + double bytes_stored = numext::maxi(bytes_stored_, rhs.bytes_stored()); + double compute_cycles = numext::maxi(compute_cycles_, rhs.compute_cycles()); + return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator+=( + const TensorOpCost& rhs) { + bytes_loaded_ += rhs.bytes_loaded(); + bytes_stored_ += rhs.bytes_stored(); + compute_cycles_ += rhs.compute_cycles(); + return *this; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator*=(double rhs) { + bytes_loaded_ *= rhs; + bytes_stored_ *= rhs; + compute_cycles_ *= rhs; + return *this; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator+( + TensorOpCost lhs, const TensorOpCost& rhs) { + lhs += rhs; + return lhs; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*( + TensorOpCost lhs, double rhs) { + lhs *= rhs; + return lhs; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*( + double lhs, TensorOpCost rhs) { + rhs *= lhs; + return rhs; + } + + friend std::ostream& operator<<(std::ostream& os, const TensorOpCost& tc) { + return os << "[bytes_loaded = " << tc.bytes_loaded() + << ", bytes_stored = " << tc.bytes_stored() + << ", compute_cycles = " << tc.compute_cycles() << "]"; + } + + private: + double bytes_loaded_; + double bytes_stored_; + double compute_cycles_; +}; + +// TODO(rmlarsen): Implement a policy that chooses an "optimal" number of theads +// in [1:max_threads] instead of just switching multi-threading off for small +// work units. +template <typename Device> +class TensorCostModel { + public: + // Scaling from Eigen compute cost to device cycles. + static const int kDeviceCyclesPerComputeCycle = 1; + + // Costs in device cycles. + static const int kStartupCycles = 100000; + static const int kPerThreadCycles = 100000; + static const int kTaskSize = 40000; + + // Returns the number of threads in [1:max_threads] to use for + // evaluating an expression with the given output size and cost per + // coefficient. + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads( + double output_size, const TensorOpCost& cost_per_coeff, int max_threads) { + double cost = totalCost(output_size, cost_per_coeff); + double threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9; + // Make sure we don't invoke undefined behavior when we convert to an int. + threads = numext::mini<double>(threads, GenericNumTraits<int>::highest()); + return numext::mini(max_threads, + numext::maxi<int>(1, static_cast<int>(threads))); + } + + // taskSize assesses parallel task size. + // Value of 1.0 means ideal parallel task size. Values < 1.0 mean that task + // granularity needs to be increased to mitigate parallelization overheads. + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double taskSize( + double output_size, const TensorOpCost& cost_per_coeff) { + return totalCost(output_size, cost_per_coeff) / kTaskSize; + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost( + double output_size, const TensorOpCost& cost_per_coeff) { + // Cost of memory fetches from L2 cache. 64 is typical cache line size. + // 11 is L2 cache latency on Haswell. + // We don't know whether data is in L1, L2 or L3. But we are most interested + // in single-threaded computational time around 100us-10ms (smaller time + // is too small for parallelization, larger time is not interesting + // either because we are probably using all available threads already). + // And for the target time range, L2 seems to be what matters. Data set + // fitting into L1 is too small to take noticeable time. Data set fitting + // only into L3 presumably will take more than 10ms to load and process. + const double kLoadCycles = 1.0 / 64 * 11; + const double kStoreCycles = 1.0 / 64 * 11; + // Scaling from Eigen compute cost to device cycles. + return output_size * + cost_per_coeff.total_cost(kLoadCycles, kStoreCycles, + kDeviceCyclesPerComputeCycle); + } +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorCustomOp.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorCustomOp.h new file mode 100644 index 0000000..95a8a84 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorCustomOp.h @@ -0,0 +1,347 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H +#define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H + +namespace Eigen { + +/** \class TensorCustomUnaryOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor custom class. + * + * + */ +namespace internal { +template<typename CustomUnaryFunc, typename XprType> +struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > +{ + typedef typename XprType::Scalar Scalar; + typedef typename XprType::StorageKind StorageKind; + typedef typename XprType::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = traits<XprType>::NumDimensions; + static const int Layout = traits<XprType>::Layout; + typedef typename traits<XprType>::PointerType PointerType; +}; + +template<typename CustomUnaryFunc, typename XprType> +struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense> +{ + typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename CustomUnaryFunc, typename XprType> +struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > +{ + typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type; +}; + +} // end namespace internal + + + +template<typename CustomUnaryFunc, typename XprType> +class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename internal::nested<TensorCustomUnaryOp>::type Nested; + typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind; + typedef typename internal::traits<TensorCustomUnaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func) + : m_expr(expr), m_func(func) {} + + EIGEN_DEVICE_FUNC + const CustomUnaryFunc& func() const { return m_func; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_expr; } + + protected: + typename XprType::Nested m_expr; + const CustomUnaryFunc m_func; +}; + + +// Eval as rvalue +template<typename CustomUnaryFunc, typename XprType, typename Device> +struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device> +{ + typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType; + typedef typename internal::traits<ArgType>::Index Index; + static const int NumDims = internal::traits<ArgType>::NumDimensions; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename internal::remove_const<typename ArgType::Scalar>::type Scalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<XprType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device) + : m_op(op), m_device(device), m_result(NULL) + { + m_dimensions = op.func().dimensions(op.expression()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + if (data) { + evalTo(data); + return false; + } else { + m_result = static_cast<EvaluatorPointerType>(m_device.get( (CoeffReturnType*) + m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)))); + evalTo(m_result); + return true; + } + } + + EIGEN_STRONG_INLINE void cleanup() { + if (m_result) { + m_device.deallocate_temp(m_result); + m_result = NULL; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + return m_result[index]; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { + return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + // TODO(rmlarsen): Extend CustomOp API to return its cost estimate. + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_result.bind(cgh); + } +#endif + + protected: + void evalTo(EvaluatorPointerType data) { + TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(m_device.get(data), m_dimensions); + m_op.func().eval(m_op.expression(), result, m_device); + } + + Dimensions m_dimensions; + const ArgType m_op; + const Device EIGEN_DEVICE_REF m_device; + EvaluatorPointerType m_result; +}; + + + +/** \class TensorCustomBinaryOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor custom class. + * + * + */ +namespace internal { +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> +struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> > +{ + typedef typename internal::promote_storage_type<typename LhsXprType::Scalar, + typename RhsXprType::Scalar>::ret Scalar; + typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType, + typename RhsXprType::CoeffReturnType>::ret CoeffReturnType; + typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, + typename traits<RhsXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type<typename traits<LhsXprType>::Index, + typename traits<RhsXprType>::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + static const int NumDimensions = traits<LhsXprType>::NumDimensions; + static const int Layout = traits<LhsXprType>::Layout; + typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val, + typename traits<LhsXprType>::PointerType, typename traits<RhsXprType>::PointerType>::type PointerType; +}; + +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> +struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense> +{ + typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type; +}; + +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> +struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> > +{ + typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type; +}; + +} // end namespace internal + + + +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> +class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors> +{ + public: + typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType; + typedef typename internal::nested<TensorCustomBinaryOp>::type Nested; + typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind; + typedef typename internal::traits<TensorCustomBinaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func) + + : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {} + + EIGEN_DEVICE_FUNC + const CustomBinaryFunc& func() const { return m_func; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename LhsXprType::Nested>::type& + lhsExpression() const { return m_lhs_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename RhsXprType::Nested>::type& + rhsExpression() const { return m_rhs_xpr; } + + protected: + typename LhsXprType::Nested m_lhs_xpr; + typename RhsXprType::Nested m_rhs_xpr; + const CustomBinaryFunc m_func; +}; + + +// Eval as rvalue +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device> +struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device> +{ + typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType; + typedef typename internal::traits<XprType>::Index Index; + static const int NumDims = internal::traits<XprType>::NumDimensions; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<LhsXprType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_op(op), m_device(device), m_result(NULL) + { + m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + if (data) { + evalTo(data); + return false; + } else { + m_result = static_cast<EvaluatorPointerType>(m_device.get( (CoeffReturnType*) + m_device.allocate_temp(dimensions().TotalSize() * sizeof(CoeffReturnType)))); + evalTo(m_result); + return true; + } + } + + EIGEN_STRONG_INLINE void cleanup() { + if (m_result != NULL) { + m_device.deallocate_temp(m_result); + m_result = NULL; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + return m_result[index]; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { + return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + // TODO(rmlarsen): Extend CustomOp API to return its cost estimate. + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_result.bind(cgh); + } +#endif + + protected: + void evalTo(EvaluatorPointerType data) { + TensorMap<Tensor<CoeffReturnType, NumDims, Layout> > result(m_device.get(data), m_dimensions); + m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device); + } + + Dimensions m_dimensions; + const XprType m_op; + const Device EIGEN_DEVICE_REF m_device; + EvaluatorPointerType m_result; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDevice.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDevice.h new file mode 100644 index 0000000..96fa46c --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDevice.h @@ -0,0 +1,137 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H +#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H + +namespace Eigen { + +/** \class TensorDevice + * \ingroup CXX11_Tensor_Module + * + * \brief Pseudo expression providing an operator = that will evaluate its argument + * on the specified computing 'device' (GPU, thread pool, ...) + * + * Example: + * C.device(EIGEN_GPU) = A + B; + * + * Todo: operator *= and /=. + */ + +template <typename ExpressionType, typename DeviceType> class TensorDevice { + public: + TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {} + + EIGEN_DEFAULT_COPY_CONSTRUCTOR(TensorDevice) + + template<typename OtherDerived> + EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) { + typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; + Assign assign(m_expression, other); + internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); + return *this; + } + + template<typename OtherDerived> + EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) { + typedef typename OtherDerived::Scalar Scalar; + typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum; + Sum sum(m_expression, other); + typedef TensorAssignOp<ExpressionType, const Sum> Assign; + Assign assign(m_expression, sum); + internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); + return *this; + } + + template<typename OtherDerived> + EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) { + typedef typename OtherDerived::Scalar Scalar; + typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> Difference; + Difference difference(m_expression, other); + typedef TensorAssignOp<ExpressionType, const Difference> Assign; + Assign assign(m_expression, difference); + internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device); + return *this; + } + + protected: + const DeviceType& m_device; + ExpressionType& m_expression; +}; + +/** \class TensorAsyncDevice + * \ingroup CXX11_Tensor_Module + * + * \brief Pseudo expression providing an operator = that will evaluate its + * argument asynchronously on the specified device. Currently only + * ThreadPoolDevice implements proper asynchronous execution, while the default + * and GPU devices just run the expression synchronously and call m_done() on + * completion.. + * + * Example: + * auto done = []() { ... expression evaluation done ... }; + * C.device(thread_pool_device, std::move(done)) = A + B; + */ + +template <typename ExpressionType, typename DeviceType, typename DoneCallback> +class TensorAsyncDevice { + public: + TensorAsyncDevice(const DeviceType& device, ExpressionType& expression, + DoneCallback done) + : m_device(device), m_expression(expression), m_done(std::move(done)) {} + + template <typename OtherDerived> + EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { + typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; + typedef internal::TensorExecutor<const Assign, DeviceType> Executor; + + Assign assign(m_expression, other); + Executor::run(assign, m_device); + m_done(); + + return *this; + } + + protected: + const DeviceType& m_device; + ExpressionType& m_expression; + DoneCallback m_done; +}; + + +#ifdef EIGEN_USE_THREADS +template <typename ExpressionType, typename DoneCallback> +class TensorAsyncDevice<ExpressionType, ThreadPoolDevice, DoneCallback> { + public: + TensorAsyncDevice(const ThreadPoolDevice& device, ExpressionType& expression, + DoneCallback done) + : m_device(device), m_expression(expression), m_done(std::move(done)) {} + + template <typename OtherDerived> + EIGEN_STRONG_INLINE TensorAsyncDevice& operator=(const OtherDerived& other) { + typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign; + typedef internal::TensorAsyncExecutor<const Assign, ThreadPoolDevice, DoneCallback> Executor; + + // WARNING: After assignment 'm_done' callback will be in undefined state. + Assign assign(m_expression, other); + Executor::runAsync(assign, m_device, std::move(m_done)); + + return *this; + } + + protected: + const ThreadPoolDevice& m_device; + ExpressionType& m_expression; + DoneCallback m_done; +}; +#endif + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceCuda.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceCuda.h new file mode 100644 index 0000000..f779239 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceCuda.h @@ -0,0 +1,6 @@ + +#if defined(__clang__) || defined(__GNUC__) +#warning "Deprecated header file, please either include the main Eigen/CXX11/Tensor header or the respective TensorDeviceGpu.h file" +#endif + +#include "TensorDeviceGpu.h" diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceDefault.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceDefault.h new file mode 100644 index 0000000..46b9d3a --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceDefault.h @@ -0,0 +1,104 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H +#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H + + +namespace Eigen { + +// Default device for the machine (typically a single cpu core) +struct DefaultDevice { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { + return internal::aligned_malloc(num_bytes); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const { + internal::aligned_free(buffer); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate_temp(size_t num_bytes) const { + return allocate(num_bytes); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate_temp(void* buffer) const { + deallocate(buffer); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { + ::memcpy(dst, src, n); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { + memcpy(dst, src, n); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { + memcpy(dst, src, n); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { + ::memset(buffer, c, n); + } + template<typename Type> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Type get(Type data) const { + return data; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const { +#if !defined(EIGEN_GPU_COMPILE_PHASE) + // Running on the host CPU + return 1; +#elif defined(EIGEN_HIP_DEVICE_COMPILE) + // Running on a HIP device + return 64; +#else + // Running on a CUDA device + return 32; +#endif + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { +#if !defined(EIGEN_GPU_COMPILE_PHASE) && !defined(SYCL_DEVICE_ONLY) + // Running on the host CPU + return l1CacheSize(); +#elif defined(EIGEN_HIP_DEVICE_COMPILE) + // Running on a HIP device + return 48*1024; // FIXME : update this number for HIP +#else + // Running on a CUDA device, return the amount of shared memory available. + return 48*1024; +#endif + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { +#if !defined(EIGEN_GPU_COMPILE_PHASE) && !defined(SYCL_DEVICE_ONLY) + // Running single threaded on the host CPU + return l3CacheSize(); +#elif defined(EIGEN_HIP_DEVICE_COMPILE) + // Running on a HIP device + return firstLevelCacheSize(); // FIXME : update this number for HIP +#else + // Running on a CUDA device + return firstLevelCacheSize(); +#endif + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const { +#if !defined(EIGEN_GPU_COMPILE_PHASE) + // Running single threaded on the host CPU + // Should return an enum that encodes the ISA supported by the CPU + return 1; +#elif defined(EIGEN_HIP_DEVICE_COMPILE) + // Running on a HIP device + // return 1 as major for HIP + return 1; +#else + // Running on a CUDA device + return EIGEN_CUDA_ARCH / 100; +#endif + } +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceGpu.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceGpu.h new file mode 100644 index 0000000..ec2e3cb --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceGpu.h @@ -0,0 +1,389 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H) +#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H + +// This header file container defines fo gpu* macros which will resolve to +// their equivalent hip* or cuda* versions depending on the compiler in use +// A separate header (included at the end of this file) will undefine all +#include "TensorGpuHipCudaDefines.h" + +namespace Eigen { + +static const int kGpuScratchSize = 1024; + +// This defines an interface that GPUDevice can take to use +// HIP / CUDA streams underneath. +class StreamInterface { + public: + virtual ~StreamInterface() {} + + virtual const gpuStream_t& stream() const = 0; + virtual const gpuDeviceProp_t& deviceProperties() const = 0; + + // Allocate memory on the actual device where the computation will run + virtual void* allocate(size_t num_bytes) const = 0; + virtual void deallocate(void* buffer) const = 0; + + // Return a scratchpad buffer of size 1k + virtual void* scratchpad() const = 0; + + // Return a semaphore. The semaphore is initially initialized to 0, and + // each kernel using it is responsible for resetting to 0 upon completion + // to maintain the invariant that the semaphore is always equal to 0 upon + // each kernel start. + virtual unsigned int* semaphore() const = 0; +}; + +class GpuDeviceProperties { + public: + GpuDeviceProperties() : + initialized_(false), first_(true), device_properties_(nullptr) {} + + ~GpuDeviceProperties() { + if (device_properties_) { + delete[] device_properties_; + } + } + + EIGEN_STRONG_INLINE const gpuDeviceProp_t& get(int device) const { + return device_properties_[device]; + } + + EIGEN_STRONG_INLINE bool isInitialized() const { + return initialized_; + } + + void initialize() { + if (!initialized_) { + // Attempts to ensure proper behavior in the case of multiple threads + // calling this function simultaneously. This would be trivial to + // implement if we could use std::mutex, but unfortunately mutex don't + // compile with nvcc, so we resort to atomics and thread fences instead. + // Note that if the caller uses a compiler that doesn't support c++11 we + // can't ensure that the initialization is thread safe. + if (first_.exchange(false)) { + // We're the first thread to reach this point. + int num_devices; + gpuError_t status = gpuGetDeviceCount(&num_devices); + if (status != gpuSuccess) { + std::cerr << "Failed to get the number of GPU devices: " + << gpuGetErrorString(status) + << std::endl; + gpu_assert(status == gpuSuccess); + } + device_properties_ = new gpuDeviceProp_t[num_devices]; + for (int i = 0; i < num_devices; ++i) { + status = gpuGetDeviceProperties(&device_properties_[i], i); + if (status != gpuSuccess) { + std::cerr << "Failed to initialize GPU device #" + << i + << ": " + << gpuGetErrorString(status) + << std::endl; + gpu_assert(status == gpuSuccess); + } + } + + std::atomic_thread_fence(std::memory_order_release); + initialized_ = true; + } else { + // Wait for the other thread to inititialize the properties. + while (!initialized_) { + std::atomic_thread_fence(std::memory_order_acquire); + std::this_thread::sleep_for(std::chrono::milliseconds(1000)); + } + } + } + } + + private: + volatile bool initialized_; + std::atomic<bool> first_; + gpuDeviceProp_t* device_properties_; +}; + +EIGEN_ALWAYS_INLINE const GpuDeviceProperties& GetGpuDeviceProperties() { + static GpuDeviceProperties* deviceProperties = new GpuDeviceProperties(); + if (!deviceProperties->isInitialized()) { + deviceProperties->initialize(); + } + return *deviceProperties; +} + +EIGEN_ALWAYS_INLINE const gpuDeviceProp_t& GetGpuDeviceProperties(int device) { + return GetGpuDeviceProperties().get(device); +} + +static const gpuStream_t default_stream = gpuStreamDefault; + +class GpuStreamDevice : public StreamInterface { + public: + // Use the default stream on the current device + GpuStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) { + gpuGetDevice(&device_); + } + // Use the default stream on the specified device + GpuStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {} + // Use the specified stream. Note that it's the + // caller responsibility to ensure that the stream can run on + // the specified device. If no device is specified the code + // assumes that the stream is associated to the current gpu device. + GpuStreamDevice(const gpuStream_t* stream, int device = -1) + : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) { + if (device < 0) { + gpuGetDevice(&device_); + } else { + int num_devices; + gpuError_t err = gpuGetDeviceCount(&num_devices); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + gpu_assert(device < num_devices); + device_ = device; + } + } + + virtual ~GpuStreamDevice() { + if (scratch_) { + deallocate(scratch_); + } + } + + const gpuStream_t& stream() const { return *stream_; } + const gpuDeviceProp_t& deviceProperties() const { + return GetGpuDeviceProperties(device_); + } + virtual void* allocate(size_t num_bytes) const { + gpuError_t err = gpuSetDevice(device_); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + void* result; + err = gpuMalloc(&result, num_bytes); + gpu_assert(err == gpuSuccess); + gpu_assert(result != NULL); + return result; + } + virtual void deallocate(void* buffer) const { + gpuError_t err = gpuSetDevice(device_); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + gpu_assert(buffer != NULL); + err = gpuFree(buffer); + gpu_assert(err == gpuSuccess); + } + + virtual void* scratchpad() const { + if (scratch_ == NULL) { + scratch_ = allocate(kGpuScratchSize + sizeof(unsigned int)); + } + return scratch_; + } + + virtual unsigned int* semaphore() const { + if (semaphore_ == NULL) { + char* scratch = static_cast<char*>(scratchpad()) + kGpuScratchSize; + semaphore_ = reinterpret_cast<unsigned int*>(scratch); + gpuError_t err = gpuMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + } + return semaphore_; + } + + private: + const gpuStream_t* stream_; + int device_; + mutable void* scratch_; + mutable unsigned int* semaphore_; +}; + +struct GpuDevice { + // The StreamInterface is not owned: the caller is + // responsible for its initialization and eventual destruction. + explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) { + eigen_assert(stream); + } + explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) { + eigen_assert(stream); + } + // TODO(bsteiner): This is an internal API, we should not expose it. + EIGEN_STRONG_INLINE const gpuStream_t& stream() const { + return stream_->stream(); + } + + EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { + return stream_->allocate(num_bytes); + } + + EIGEN_STRONG_INLINE void deallocate(void* buffer) const { + stream_->deallocate(buffer); + } + + EIGEN_STRONG_INLINE void* allocate_temp(size_t num_bytes) const { + return stream_->allocate(num_bytes); + } + + EIGEN_STRONG_INLINE void deallocate_temp(void* buffer) const { + stream_->deallocate(buffer); + } + + template<typename Type> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Type get(Type data) const { + return data; + } + + EIGEN_STRONG_INLINE void* scratchpad() const { + return stream_->scratchpad(); + } + + EIGEN_STRONG_INLINE unsigned int* semaphore() const { + return stream_->semaphore(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { +#ifndef EIGEN_GPU_COMPILE_PHASE + gpuError_t err = gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToDevice, + stream_->stream()); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); +#else + EIGEN_UNUSED_VARIABLE(dst); + EIGEN_UNUSED_VARIABLE(src); + EIGEN_UNUSED_VARIABLE(n); + eigen_assert(false && "The default device should be used instead to generate kernel code"); +#endif + } + + EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { + gpuError_t err = + gpuMemcpyAsync(dst, src, n, gpuMemcpyHostToDevice, stream_->stream()); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + } + + EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { + gpuError_t err = + gpuMemcpyAsync(dst, src, n, gpuMemcpyDeviceToHost, stream_->stream()); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { +#ifndef EIGEN_GPU_COMPILE_PHASE + gpuError_t err = gpuMemsetAsync(buffer, c, n, stream_->stream()); + EIGEN_UNUSED_VARIABLE(err) + gpu_assert(err == gpuSuccess); +#else + eigen_assert(false && "The default device should be used instead to generate kernel code"); +#endif + } + + EIGEN_STRONG_INLINE size_t numThreads() const { + // FIXME + return 32; + } + + EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { + // FIXME + return 48*1024; + } + + EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { + // We won't try to take advantage of the l2 cache for the time being, and + // there is no l3 cache on hip/cuda devices. + return firstLevelCacheSize(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const { +#ifndef EIGEN_GPU_COMPILE_PHASE + gpuError_t err = gpuStreamSynchronize(stream_->stream()); + if (err != gpuSuccess) { + std::cerr << "Error detected in GPU stream: " + << gpuGetErrorString(err) + << std::endl; + gpu_assert(err == gpuSuccess); + } +#else + gpu_assert(false && "The default device should be used instead to generate kernel code"); +#endif + } + + EIGEN_STRONG_INLINE int getNumGpuMultiProcessors() const { + return stream_->deviceProperties().multiProcessorCount; + } + EIGEN_STRONG_INLINE int maxGpuThreadsPerBlock() const { + return stream_->deviceProperties().maxThreadsPerBlock; + } + EIGEN_STRONG_INLINE int maxGpuThreadsPerMultiProcessor() const { + return stream_->deviceProperties().maxThreadsPerMultiProcessor; + } + EIGEN_STRONG_INLINE int sharedMemPerBlock() const { + return stream_->deviceProperties().sharedMemPerBlock; + } + EIGEN_STRONG_INLINE int majorDeviceVersion() const { + return stream_->deviceProperties().major; + } + EIGEN_STRONG_INLINE int minorDeviceVersion() const { + return stream_->deviceProperties().minor; + } + + EIGEN_STRONG_INLINE int maxBlocks() const { + return max_blocks_; + } + + // This function checks if the GPU runtime recorded an error for the + // underlying stream device. + inline bool ok() const { +#ifdef EIGEN_GPUCC + gpuError_t error = gpuStreamQuery(stream_->stream()); + return (error == gpuSuccess) || (error == gpuErrorNotReady); +#else + return false; +#endif + } + + private: + const StreamInterface* stream_; + int max_blocks_; +}; + +#if defined(EIGEN_HIPCC) + +#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \ + hipLaunchKernelGGL(kernel, dim3(gridsize), dim3(blocksize), (sharedmem), (device).stream(), __VA_ARGS__); \ + gpu_assert(hipGetLastError() == hipSuccess); + +#else + +#define LAUNCH_GPU_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \ + (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \ + gpu_assert(cudaGetLastError() == cudaSuccess); + +#endif + +// FIXME: Should be device and kernel specific. +#ifdef EIGEN_GPUCC +static EIGEN_DEVICE_FUNC inline void setGpuSharedMemConfig(gpuSharedMemConfig config) { +#ifndef EIGEN_GPU_COMPILE_PHASE + gpuError_t status = gpuDeviceSetSharedMemConfig(config); + EIGEN_UNUSED_VARIABLE(status) + gpu_assert(status == gpuSuccess); +#else + EIGEN_UNUSED_VARIABLE(config) +#endif +} +#endif + +} // end namespace Eigen + +// undefine all the gpu* macros we defined at the beginning of the file +#include "TensorGpuHipCudaUndefines.h" + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_GPU_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceSycl.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceSycl.h new file mode 100644 index 0000000..df591c2 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceSycl.h @@ -0,0 +1,1048 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> + +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H) +#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H +#include <unordered_set> + +namespace Eigen { + +namespace TensorSycl { +namespace internal { + +/// Cache all the device information needed +struct SyclDeviceInfo { + SyclDeviceInfo(cl::sycl::queue queue) + : local_mem_type( + queue.get_device() + .template get_info<cl::sycl::info::device::local_mem_type>()), + max_work_item_sizes( + queue.get_device() + .template get_info< + cl::sycl::info::device::max_work_item_sizes>()), + max_mem_alloc_size( + queue.get_device() + .template get_info< + cl::sycl::info::device::max_mem_alloc_size>()), + max_compute_units(queue.get_device() + .template get_info< + cl::sycl::info::device::max_compute_units>()), + max_work_group_size( + queue.get_device() + .template get_info< + cl::sycl::info::device::max_work_group_size>()), + local_mem_size( + queue.get_device() + .template get_info<cl::sycl::info::device::local_mem_size>()), + platform_name(queue.get_device() + .get_platform() + .template get_info<cl::sycl::info::platform::name>()), + device_name(queue.get_device() + .template get_info<cl::sycl::info::device::name>()), + device_vendor( + queue.get_device() + .template get_info<cl::sycl::info::device::vendor>()) {} + + cl::sycl::info::local_mem_type local_mem_type; + cl::sycl::id<3> max_work_item_sizes; + unsigned long max_mem_alloc_size; + unsigned long max_compute_units; + unsigned long max_work_group_size; + size_t local_mem_size; + std::string platform_name; + std::string device_name; + std::string device_vendor; +}; + +} // end namespace internal +} // end namespace TensorSycl + +typedef TensorSycl::internal::buffer_data_type_t buffer_scalar_t; +// All devices (even AMD CPU with intel OpenCL runtime) that support OpenCL and +// can consume SPIR or SPIRV can use the Eigen SYCL backend and consequently +// TensorFlow via the Eigen SYCL Backend. +EIGEN_STRONG_INLINE auto get_sycl_supported_devices() + -> decltype(cl::sycl::device::get_devices()) { +#ifdef EIGEN_SYCL_USE_DEFAULT_SELECTOR + return {cl::sycl::device(cl::sycl::default_selector())}; +#else + std::vector<cl::sycl::device> supported_devices; + auto platform_list = cl::sycl::platform::get_platforms(); + for (const auto &platform : platform_list) { + auto device_list = platform.get_devices(); + auto platform_name = + platform.template get_info<cl::sycl::info::platform::name>(); + std::transform(platform_name.begin(), platform_name.end(), + platform_name.begin(), ::tolower); + for (const auto &device : device_list) { + auto vendor = device.template get_info<cl::sycl::info::device::vendor>(); + std::transform(vendor.begin(), vendor.end(), vendor.begin(), ::tolower); + bool unsupported_condition = + (device.is_cpu() && platform_name.find("amd") != std::string::npos && + vendor.find("apu") == std::string::npos) || + (platform_name.find("experimental") != std::string::npos) || + device.is_host(); + if (!unsupported_condition) { + supported_devices.push_back(device); + } + } + } + return supported_devices; +#endif +} + +class QueueInterface { + public: + /// Creating device by using cl::sycl::selector or cl::sycl::device. + template <typename DeviceOrSelector> + explicit QueueInterface( + const DeviceOrSelector &dev_or_sel, cl::sycl::async_handler handler, + unsigned num_threads = std::thread::hardware_concurrency()) + : m_queue(dev_or_sel, handler), +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + m_prog(m_queue.get_context(), get_sycl_supported_devices()), +#endif + m_thread_pool(num_threads), + m_device_info(m_queue) { +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + m_prog.build_with_kernel_type<DeviceOrSelector>(); + auto f = [&](cl::sycl::handler &cgh) { + cgh.single_task<DeviceOrSelector>(m_prog.get_kernel<DeviceOrSelector>(), + [=]() {}) + }; + EIGEN_SYCL_TRY_CATCH(m_queue.submit(f)); +#endif + } + + template <typename DeviceOrSelector> + explicit QueueInterface( + const DeviceOrSelector &dev_or_sel, + unsigned num_threads = std::thread::hardware_concurrency()) + : QueueInterface(dev_or_sel, + [this](cl::sycl::exception_list l) { + this->exception_caught_ = this->sycl_async_handler(l); + }, + num_threads) {} + +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + EIGEN_STRONG_INLINE cl::sycl::program &program() const { return m_prog; } +#endif + + /// Attach an existing buffer to the pointer map, Eigen will not reuse it + EIGEN_STRONG_INLINE void *attach_buffer( + cl::sycl::buffer<buffer_scalar_t, 1> &buf) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + return static_cast<void *>(pMapper.add_pointer(buf)); + } + + /// Detach previously attached buffer + EIGEN_STRONG_INLINE void detach_buffer(void *p) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + TensorSycl::internal::SYCLfree<false>(p, pMapper); + } + + /// Allocating device pointer. This pointer is actually an 8 bytes host + /// pointer used as key to access the sycl device buffer. The reason is that + /// we cannot use device buffer as a pointer as a m_data in Eigen leafNode + /// expressions. So we create a key pointer to be used in Eigen expression + /// construction. When we convert the Eigen construction into the sycl + /// construction we use this pointer as a key in our buffer_map and we make + /// sure that we dedicate only one buffer only for this pointer. The device + /// pointer would be deleted by calling deallocate function. + EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const { +#if EIGEN_MAX_ALIGN_BYTES > 0 + size_t align = num_bytes % EIGEN_MAX_ALIGN_BYTES; + if (align > 0) { + num_bytes += EIGEN_MAX_ALIGN_BYTES - align; + } +#endif + std::lock_guard<std::mutex> lock(pmapper_mutex_); + return TensorSycl::internal::SYCLmalloc(num_bytes, pMapper); + } + + EIGEN_STRONG_INLINE void *allocate_temp(size_t num_bytes) const { +#if EIGEN_MAX_ALIGN_BYTES > 0 + size_t align = num_bytes % EIGEN_MAX_ALIGN_BYTES; + if (align > 0) { + num_bytes += EIGEN_MAX_ALIGN_BYTES - align; + } +#endif + std::lock_guard<std::mutex> lock(pmapper_mutex_); +#ifndef EIGEN_SYCL_NO_REUSE_BUFFERS + if (scratch_buffers.empty()) { + return TensorSycl::internal::SYCLmalloc(num_bytes, pMapper); + ; + } else { + for (auto it = scratch_buffers.begin(); it != scratch_buffers.end();) { + auto buff = pMapper.get_buffer(*it); + if (buff.get_size() >= num_bytes) { + auto ptr = *it; + scratch_buffers.erase(it); + return ptr; + } else { + ++it; + } + } + return TensorSycl::internal::SYCLmalloc(num_bytes, pMapper); + } +#else + return TensorSycl::internal::SYCLmalloc(num_bytes, pMapper); +#endif + } + template <typename data_t> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSycl::internal::RangeAccess< + cl::sycl::access::mode::read_write, data_t> + get(data_t *data) const { + return get_range_accessor<cl::sycl::access::mode::read_write, data_t>(data); + } + template <typename data_t> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE data_t *get( + TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, + data_t> + data) const { + return static_cast<data_t *>(data.get_virtual_pointer()); + } + + EIGEN_STRONG_INLINE void deallocate_temp(void *p) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); +#ifndef EIGEN_SYCL_NO_REUSE_BUFFERS + scratch_buffers.insert(p); +#else + TensorSycl::internal::SYCLfree(p, pMapper); +#endif + } + template <cl::sycl::access::mode AcMd, typename T> + EIGEN_STRONG_INLINE void deallocate_temp( + const TensorSycl::internal::RangeAccess<AcMd, T> &p) const { + deallocate_temp(p.get_virtual_pointer()); + } + + /// This is used to deallocate the device pointer. p is used as a key inside + /// the map to find the device buffer and delete it. + EIGEN_STRONG_INLINE void deallocate(void *p) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + TensorSycl::internal::SYCLfree(p, pMapper); + } + + EIGEN_STRONG_INLINE void deallocate_all() const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + TensorSycl::internal::SYCLfreeAll(pMapper); +#ifndef EIGEN_SYCL_NO_REUSE_BUFFERS + scratch_buffers.clear(); +#endif + } + + /// The memcpyHostToDevice is used to copy the data from host to device + /// The destination pointer could be deleted before the copy happend which is + /// why a callback function is needed. By default if none is provided, the + /// function is blocking. + EIGEN_STRONG_INLINE void memcpyHostToDevice( + void *dst, const void *src, size_t n, + std::function<void()> callback) const { + static const auto write_mode = cl::sycl::access::mode::discard_write; + static const auto global_access = cl::sycl::access::target::global_buffer; + typedef cl::sycl::accessor<buffer_scalar_t, 1, write_mode, global_access> + write_accessor; + if (n == 0) { + if (callback) callback(); + return; + } + n /= sizeof(buffer_scalar_t); + auto f = [&](cl::sycl::handler &cgh) { + write_accessor dst_acc = get_range_accessor<write_mode>(cgh, dst, n); + buffer_scalar_t const *ptr = static_cast<buffer_scalar_t const *>(src); + auto non_deleter = [](buffer_scalar_t const *) {}; + std::shared_ptr<const buffer_scalar_t> s_ptr(ptr, non_deleter); + cgh.copy(s_ptr, dst_acc); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(f)); + synchronize_and_callback(e, callback); + } + + /// The memcpyDeviceToHost is used to copy the data from device to host. + /// The source pointer could be deleted before the copy happend which is + /// why a callback function is needed. By default if none is provided, the + /// function is blocking. + EIGEN_STRONG_INLINE void memcpyDeviceToHost( + void *dst, const void *src, size_t n, + std::function<void()> callback) const { + static const auto read_mode = cl::sycl::access::mode::read; + static const auto global_access = cl::sycl::access::target::global_buffer; + typedef cl::sycl::accessor<buffer_scalar_t, 1, read_mode, global_access> + read_accessor; + if (n == 0) { + if (callback) callback(); + return; + } + n /= sizeof(buffer_scalar_t); + auto f = [&](cl::sycl::handler &cgh) { + read_accessor src_acc = get_range_accessor<read_mode>(cgh, src, n); + buffer_scalar_t *ptr = static_cast<buffer_scalar_t *>(dst); + auto non_deleter = [](buffer_scalar_t *) {}; + std::shared_ptr<buffer_scalar_t> s_ptr(ptr, non_deleter); + cgh.copy(src_acc, s_ptr); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(f)); + synchronize_and_callback(e, callback); + } + + /// The memcpy function. + /// No callback is required here as both arguments are on the device + /// and SYCL can handle the dependency. + EIGEN_STRONG_INLINE void memcpy(void *dst, const void *src, size_t n) const { + static const auto read_mode = cl::sycl::access::mode::read; + static const auto write_mode = cl::sycl::access::mode::discard_write; + if (n == 0) { + return; + } + n /= sizeof(buffer_scalar_t); + auto f = [&](cl::sycl::handler &cgh) { + auto src_acc = get_range_accessor<read_mode>(cgh, src, n); + auto dst_acc = get_range_accessor<write_mode>(cgh, dst, n); + cgh.copy(src_acc, dst_acc); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(f)); + async_synchronize(e); + } + + /// the memset function. + /// No callback is required here as both arguments are on the device + /// and SYCL can handle the dependency. + EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const { + static const auto write_mode = cl::sycl::access::mode::discard_write; + if (n == 0) { + return; + } + n /= sizeof(buffer_scalar_t); + auto f = [&](cl::sycl::handler &cgh) { + auto dst_acc = get_range_accessor<write_mode>(cgh, data, n); + // The cast to uint8_t is here to match the behaviour of the standard + // memset. The cast to buffer_scalar_t is needed to match the type of the + // accessor (in case buffer_scalar_t is not uint8_t) + cgh.fill(dst_acc, static_cast<buffer_scalar_t>(static_cast<uint8_t>(c))); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(f)); + async_synchronize(e); + } + + /// Get a range accessor to the virtual pointer's device memory. This range + /// accessor will allow access to the memory from the pointer to the end of + /// the buffer. + /// + /// NOTE: Inside a kernel the range accessor will always be indexed from the + /// start of the buffer, so the offset in the accessor is only used by + /// methods like handler::copy and will not be available inside a kernel. + template <cl::sycl::access::mode AcMd, typename T> + EIGEN_STRONG_INLINE TensorSycl::internal::RangeAccess<AcMd, T> + get_range_accessor(const void *ptr) const { + static const auto global_access = cl::sycl::access::target::global_buffer; + static const auto is_place_holder = cl::sycl::access::placeholder::true_t; + typedef TensorSycl::internal::RangeAccess<AcMd, T> ret_type; + typedef const TensorSycl::internal::buffer_data_type_t *internal_ptr_t; + + std::lock_guard<std::mutex> lock(pmapper_mutex_); + + auto original_buffer = pMapper.get_buffer(ptr); + const ptrdiff_t offset = pMapper.get_offset(ptr); + const ptrdiff_t typed_offset = offset / sizeof(T); + eigen_assert(typed_offset >= 0); + const auto typed_size = original_buffer.get_size() / sizeof(T); + auto buffer = original_buffer.template reinterpret< + typename Eigen::internal::remove_const<T>::type>( + cl::sycl::range<1>(typed_size)); + const ptrdiff_t size = buffer.get_count() - typed_offset; + eigen_assert(size >= 0); + typedef cl::sycl::accessor<typename Eigen::internal::remove_const<T>::type, + 1, AcMd, global_access, is_place_holder> + placeholder_accessor_t; + const auto start_ptr = static_cast<internal_ptr_t>(ptr) - offset; + return ret_type(placeholder_accessor_t(buffer, cl::sycl::range<1>(size), + cl::sycl::id<1>(typed_offset)), + static_cast<size_t>(typed_offset), + reinterpret_cast<std::intptr_t>(start_ptr)); + } + + /// Get a range accessor to the virtual pointer's device memory with a + /// specified size. + template <cl::sycl::access::mode AcMd, typename Index> + EIGEN_STRONG_INLINE cl::sycl::accessor< + buffer_scalar_t, 1, AcMd, cl::sycl::access::target::global_buffer> + get_range_accessor(cl::sycl::handler &cgh, const void *ptr, + const Index n_bytes) const { + static const auto global_access = cl::sycl::access::target::global_buffer; + eigen_assert(n_bytes >= 0); + std::lock_guard<std::mutex> lock(pmapper_mutex_); + auto buffer = pMapper.get_buffer(ptr); + const ptrdiff_t offset = pMapper.get_offset(ptr); + eigen_assert(offset >= 0); + eigen_assert(offset + n_bytes <= buffer.get_size()); + return buffer.template get_access<AcMd, global_access>( + cgh, cl::sycl::range<1>(n_bytes), cl::sycl::id<1>(offset)); + } + + /// Creation of sycl accessor for a buffer. This function first tries to find + /// the buffer in the buffer_map. If found it gets the accessor from it, if + /// not, the function then adds an entry by creating a sycl buffer for that + /// particular pointer. + template <cl::sycl::access::mode AcMd> + EIGEN_STRONG_INLINE cl::sycl::accessor< + buffer_scalar_t, 1, AcMd, cl::sycl::access::target::global_buffer> + get_sycl_accessor(cl::sycl::handler &cgh, const void *ptr) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + return pMapper.get_buffer(ptr) + .template get_access<AcMd, cl::sycl::access::target::global_buffer>( + cgh); + } + + EIGEN_STRONG_INLINE cl::sycl::buffer<buffer_scalar_t, 1> get_sycl_buffer( + const void *ptr) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + return pMapper.get_buffer(ptr); + } + + EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const { + std::lock_guard<std::mutex> lock(pmapper_mutex_); + return pMapper.get_offset(ptr); + } + + template <typename OutScalar, typename sycl_kernel, typename Lhs, + typename Rhs, typename OutPtr, typename Range, typename Index, + typename... T> + EIGEN_ALWAYS_INLINE void binary_kernel_launcher(const Lhs &lhs, + const Rhs &rhs, OutPtr outptr, + Range thread_range, + Index scratchSize, + T... var) const { + auto kernel_functor = [=](cl::sycl::handler &cgh) { + // binding the placeholder accessors to a commandgroup handler + lhs.bind(cgh); + rhs.bind(cgh); + outptr.bind(cgh); + typedef cl::sycl::accessor<OutScalar, 1, + cl::sycl::access::mode::read_write, + cl::sycl::access::target::local> + LocalAccessor; + + LocalAccessor scratch(cl::sycl::range<1>(scratchSize), cgh); + cgh.parallel_for( +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + program().template get_kernel<sycl_kernel>(), +#endif + thread_range, sycl_kernel(scratch, lhs, rhs, outptr, var...)); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(kernel_functor)); + async_synchronize(e); + } + + template <typename OutScalar, typename sycl_kernel, typename InPtr, + typename OutPtr, typename Range, typename Index, typename... T> + EIGEN_ALWAYS_INLINE void unary_kernel_launcher(const InPtr &inptr, + OutPtr &outptr, + Range thread_range, + Index scratchSize, + T... var) const { + auto kernel_functor = [=](cl::sycl::handler &cgh) { + // binding the placeholder accessors to a commandgroup handler + inptr.bind(cgh); + outptr.bind(cgh); + typedef cl::sycl::accessor<OutScalar, 1, + cl::sycl::access::mode::read_write, + cl::sycl::access::target::local> + LocalAccessor; + + LocalAccessor scratch(cl::sycl::range<1>(scratchSize), cgh); + cgh.parallel_for( +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + program().template get_kernel<sycl_kernel>(), +#endif + thread_range, sycl_kernel(scratch, inptr, outptr, var...)); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(kernel_functor)); + async_synchronize(e); + } + + template <typename OutScalar, typename sycl_kernel, typename InPtr, + typename Range, typename Index, typename... T> + EIGEN_ALWAYS_INLINE void nullary_kernel_launcher(const InPtr &inptr, + Range thread_range, + Index scratchSize, + T... var) const { + auto kernel_functor = [=](cl::sycl::handler &cgh) { + // binding the placeholder accessors to a commandgroup handler + inptr.bind(cgh); + typedef cl::sycl::accessor<OutScalar, 1, + cl::sycl::access::mode::read_write, + cl::sycl::access::target::local> + LocalAccessor; + + LocalAccessor scratch(cl::sycl::range<1>(scratchSize), cgh); + cgh.parallel_for( +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + program().template get_kernel<sycl_kernel>(), +#endif + thread_range, sycl_kernel(scratch, inptr, var...)); + }; + cl::sycl::event e; + EIGEN_SYCL_TRY_CATCH(e = m_queue.submit(kernel_functor)); + async_synchronize(e); + } + + + EIGEN_STRONG_INLINE void synchronize() const { +#ifdef EIGEN_EXCEPTIONS + m_queue.wait_and_throw(); +#else + m_queue.wait(); +#endif + } + + + EIGEN_STRONG_INLINE void async_synchronize(cl::sycl::event e) const { + set_latest_event(e); +#ifndef EIGEN_SYCL_ASYNC_EXECUTION + synchronize(); +#endif + } + + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, + Index &rng, Index &GRange) const { + tileSize = static_cast<Index>(getNearestPowerOfTwoWorkGroupSize()); + tileSize = std::min(static_cast<Index>(EIGEN_SYCL_LOCAL_THREAD_DIM0 * + EIGEN_SYCL_LOCAL_THREAD_DIM1), + static_cast<Index>(tileSize)); + rng = n; + if (rng == 0) rng = static_cast<Index>(1); + GRange = rng; + if (tileSize > GRange) + tileSize = GRange; + else if (GRange > tileSize) { + Index xMode = static_cast<Index>(GRange % tileSize); + if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode); + } + } + + /// This is used to prepare the number of threads and also the number of + /// threads per block for sycl kernels + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup( + const std::array<Index, 2> &input_dim, cl::sycl::range<2> &global_range, + cl::sycl::range<2> &local_range) const { + std::array<Index, 2> input_range = input_dim; + Index max_workgroup_Size = + static_cast<Index>(getNearestPowerOfTwoWorkGroupSize()); + max_workgroup_Size = + std::min(static_cast<Index>(EIGEN_SYCL_LOCAL_THREAD_DIM0 * + EIGEN_SYCL_LOCAL_THREAD_DIM1), + static_cast<Index>(max_workgroup_Size)); + Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size)); + local_range[1] = + static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2 / 2))); + input_range[1] = input_dim[1]; + if (input_range[1] == 0) input_range[1] = static_cast<Index>(1); + global_range[1] = input_range[1]; + if (local_range[1] > global_range[1]) + local_range[1] = global_range[1]; + else if (global_range[1] > local_range[1]) { + Index xMode = static_cast<Index>(global_range[1] % local_range[1]); + if (xMode != 0) + global_range[1] += static_cast<Index>(local_range[1] - xMode); + } + local_range[0] = static_cast<Index>(max_workgroup_Size / local_range[1]); + input_range[0] = input_dim[0]; + if (input_range[0] == 0) input_range[0] = static_cast<Index>(1); + global_range[0] = input_range[0]; + if (local_range[0] > global_range[0]) + local_range[0] = global_range[0]; + else if (global_range[0] > local_range[0]) { + Index xMode = static_cast<Index>(global_range[0] % local_range[0]); + if (xMode != 0) + global_range[0] += static_cast<Index>(local_range[0] - xMode); + } + } + + /// This is used to prepare the number of threads and also the number of + /// threads per block for sycl kernels + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup( + const std::array<Index, 3> &input_dim, cl::sycl::range<3> &global_range, + cl::sycl::range<3> &local_range) const { + std::array<Index, 3> input_range = input_dim; + Index max_workgroup_Size = + static_cast<Index>(getNearestPowerOfTwoWorkGroupSize()); + max_workgroup_Size = + std::min(static_cast<Index>(EIGEN_SYCL_LOCAL_THREAD_DIM0 * + EIGEN_SYCL_LOCAL_THREAD_DIM1), + static_cast<Index>(max_workgroup_Size)); + Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size)); + local_range[2] = + static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2 / 3))); + input_range[2] = input_dim[2]; + if (input_range[2] == 0) input_range[1] = static_cast<Index>(1); + global_range[2] = input_range[2]; + if (local_range[2] > global_range[2]) + local_range[2] = global_range[2]; + else if (global_range[2] > local_range[2]) { + Index xMode = static_cast<Index>(global_range[2] % local_range[2]); + if (xMode != 0) + global_range[2] += static_cast<Index>(local_range[2] - xMode); + } + pow_of_2 = static_cast<Index>( + std::log2(static_cast<Index>(max_workgroup_Size / local_range[2]))); + local_range[1] = + static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2 / 2))); + input_range[1] = input_dim[1]; + if (input_range[1] == 0) input_range[1] = static_cast<Index>(1); + global_range[1] = input_range[1]; + if (local_range[1] > global_range[1]) + local_range[1] = global_range[1]; + else if (global_range[1] > local_range[1]) { + Index xMode = static_cast<Index>(global_range[1] % local_range[1]); + if (xMode != 0) + global_range[1] += static_cast<Index>(local_range[1] - xMode); + } + local_range[0] = static_cast<Index>(max_workgroup_Size / + (local_range[1] * local_range[2])); + input_range[0] = input_dim[0]; + if (input_range[0] == 0) input_range[0] = static_cast<Index>(1); + global_range[0] = input_range[0]; + if (local_range[0] > global_range[0]) + local_range[0] = global_range[0]; + else if (global_range[0] > local_range[0]) { + Index xMode = static_cast<Index>(global_range[0] % local_range[0]); + if (xMode != 0) + global_range[0] += static_cast<Index>(local_range[0] - xMode); + } + } + + EIGEN_STRONG_INLINE bool has_local_memory() const { +#if !defined(EIGEN_SYCL_LOCAL_MEM) && defined(EIGEN_SYCL_NO_LOCAL_MEM) + return false; +#elif defined(EIGEN_SYCL_LOCAL_MEM) && !defined(EIGEN_SYCL_NO_LOCAL_MEM) + return true; +#else + return m_device_info.local_mem_type == + cl::sycl::info::local_mem_type::local; +#endif + } + + EIGEN_STRONG_INLINE unsigned long max_buffer_size() const { + return m_device_info.max_mem_alloc_size; + } + + EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const { + return m_device_info.max_compute_units; + } + + EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const { + return m_device_info.max_work_group_size; + } + + EIGEN_STRONG_INLINE cl::sycl::id<3> maxWorkItemSizes() const { + return m_device_info.max_work_item_sizes; + } + + /// No need for sycl it should act the same as CPU version + EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; } + + EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const { + // OpenCL doesnot have such concept + return 2; + } + + EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const { + return m_device_info.local_mem_size; + } + + // This function returns the nearest power of 2 Work-group size which is <= + // maximum device workgroup size. + EIGEN_STRONG_INLINE size_t getNearestPowerOfTwoWorkGroupSize() const { + return getPowerOfTwo(m_device_info.max_work_group_size, false); + } + + EIGEN_STRONG_INLINE std::string getPlatformName() const { + return m_device_info.platform_name; + } + + EIGEN_STRONG_INLINE std::string getDeviceName() const { + return m_device_info.device_name; + } + + EIGEN_STRONG_INLINE std::string getDeviceVendor() const { + return m_device_info.device_vendor; + } + + // This function returns the nearest power of 2 + // if roundup is true returns result>=wgsize + // else it return result <= wgsize + EIGEN_STRONG_INLINE size_t getPowerOfTwo(size_t wGSize, bool roundUp) const { + if (roundUp) --wGSize; + wGSize |= (wGSize >> 1); + wGSize |= (wGSize >> 2); + wGSize |= (wGSize >> 4); + wGSize |= (wGSize >> 8); + wGSize |= (wGSize >> 16); +#if EIGEN_ARCH_x86_64 || EIGEN_ARCH_ARM64 || EIGEN_OS_WIN64 + wGSize |= (wGSize >> 32); +#endif + return ((!roundUp) ? (wGSize - (wGSize >> 1)) : ++wGSize); + } + + EIGEN_STRONG_INLINE cl::sycl::queue &sycl_queue() const { return m_queue; } + + // This function checks if the runtime recorded an error for the + // underlying stream device. + EIGEN_STRONG_INLINE bool ok() const { + if (!exception_caught_) { + synchronize(); + } + return !exception_caught_; + } + + EIGEN_STRONG_INLINE cl::sycl::event get_latest_event() const { +#ifdef EIGEN_SYCL_STORE_LATEST_EVENT + std::lock_guard<std::mutex> lock(event_mutex_); + return latest_events_[std::this_thread::get_id()]; +#else + eigen_assert(false); + return cl::sycl::event(); +#endif + } + + // destructor + ~QueueInterface() { + pMapper.clear(); +#ifndef EIGEN_SYCL_NO_REUSE_BUFFERS + scratch_buffers.clear(); +#endif + } + + protected: + EIGEN_STRONG_INLINE void set_latest_event(cl::sycl::event e) const { +#ifdef EIGEN_SYCL_STORE_LATEST_EVENT + std::lock_guard<std::mutex> lock(event_mutex_); + latest_events_[std::this_thread::get_id()] = e; +#else + EIGEN_UNUSED_VARIABLE(e); +#endif + } + + void synchronize_and_callback(cl::sycl::event e, + const std::function<void()> &callback) const { + set_latest_event(e); + if (callback) { + auto callback_ = [=]() { +#ifdef EIGEN_EXCEPTIONS + cl::sycl::event(e).wait_and_throw(); +#else + cl::sycl::event(e).wait(); +#endif + callback(); + }; + m_thread_pool.Schedule(std::move(callback_)); + } else { +#ifdef EIGEN_EXCEPTIONS + m_queue.wait_and_throw(); +#else + m_queue.wait(); +#endif + } + } + + bool sycl_async_handler(cl::sycl::exception_list exceptions) const { + bool exception_caught = false; + for (const auto &e : exceptions) { + if (e) { + exception_caught = true; + EIGEN_THROW_X(e); + } + } + return exception_caught; + } + + /// class members: + bool exception_caught_ = false; + + mutable std::mutex pmapper_mutex_; + +#ifdef EIGEN_SYCL_STORE_LATEST_EVENT + mutable std::mutex event_mutex_; + mutable std::unordered_map<std::thread::id, cl::sycl::event> latest_events_; +#endif + + /// std::map is the container used to make sure that we create only one buffer + /// per pointer. The lifespan of the buffer now depends on the lifespan of + /// SyclDevice. If a non-read-only pointer is needed to be accessed on the + /// host we should manually deallocate it. + mutable TensorSycl::internal::PointerMapper pMapper; +#ifndef EIGEN_SYCL_NO_REUSE_BUFFERS + mutable std::unordered_set<void *> scratch_buffers; +#endif + /// sycl queue + mutable cl::sycl::queue m_queue; +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + mutable cl::sycl::program m_prog; +#endif + + /// The thread pool is used to wait on events and call callbacks + /// asynchronously + mutable Eigen::ThreadPool m_thread_pool; + + const TensorSycl::internal::SyclDeviceInfo m_device_info; +}; + +struct SyclDeviceBase { + /// QueueInterface is not owned. it is the caller's responsibility to destroy + /// it + const QueueInterface *m_queue_stream; + explicit SyclDeviceBase(const QueueInterface *queue_stream) + : m_queue_stream(queue_stream) {} + EIGEN_STRONG_INLINE const QueueInterface *queue_stream() const { + return m_queue_stream; + } +}; + +// Here is a sycl device struct which accept the sycl queue interface +// as an input +struct SyclDevice : public SyclDeviceBase { + explicit SyclDevice(const QueueInterface *queue_stream) + : SyclDeviceBase(queue_stream) {} + + // this is the accessor used to construct the evaluator + template <cl::sycl::access::mode AcMd, typename T> + EIGEN_STRONG_INLINE TensorSycl::internal::RangeAccess<AcMd, T> + get_range_accessor(const void *ptr) const { + return queue_stream()->template get_range_accessor<AcMd, T>(ptr); + } + + // get sycl accessor + template <cl::sycl::access::mode AcMd> + EIGEN_STRONG_INLINE cl::sycl::accessor< + buffer_scalar_t, 1, AcMd, cl::sycl::access::target::global_buffer> + get_sycl_accessor(cl::sycl::handler &cgh, const void *ptr) const { + return queue_stream()->template get_sycl_accessor<AcMd>(cgh, ptr); + } + + /// Accessing the created sycl device buffer for the device pointer + EIGEN_STRONG_INLINE cl::sycl::buffer<buffer_scalar_t, 1> get_sycl_buffer( + const void *ptr) const { + return queue_stream()->get_sycl_buffer(ptr); + } + + /// This is used to prepare the number of threads and also the number of + /// threads per block for sycl kernels + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, + Index &rng, Index &GRange) const { + queue_stream()->parallel_for_setup(n, tileSize, rng, GRange); + } + + /// This is used to prepare the number of threads and also the number of + /// threads per block for sycl kernels + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup( + const std::array<Index, 2> &input_dim, cl::sycl::range<2> &global_range, + cl::sycl::range<2> &local_range) const { + queue_stream()->parallel_for_setup(input_dim, global_range, local_range); + } + + /// This is used to prepare the number of threads and also the number of + /// threads per block for sycl kernels + template <typename Index> + EIGEN_STRONG_INLINE void parallel_for_setup( + const std::array<Index, 3> &input_dim, cl::sycl::range<3> &global_range, + cl::sycl::range<3> &local_range) const { + queue_stream()->parallel_for_setup(input_dim, global_range, local_range); + } + + /// allocate device memory + EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const { + return queue_stream()->allocate(num_bytes); + } + + EIGEN_STRONG_INLINE void *allocate_temp(size_t num_bytes) const { + return queue_stream()->allocate_temp(num_bytes); + } + + /// deallocate device memory + EIGEN_STRONG_INLINE void deallocate(void *p) const { + queue_stream()->deallocate(p); + } + + EIGEN_STRONG_INLINE void deallocate_temp(void *buffer) const { + queue_stream()->deallocate_temp(buffer); + } + template <cl::sycl::access::mode AcMd, typename T> + EIGEN_STRONG_INLINE void deallocate_temp( + const TensorSycl::internal::RangeAccess<AcMd, T> &buffer) const { + queue_stream()->deallocate_temp(buffer); + } + EIGEN_STRONG_INLINE void deallocate_all() const { + queue_stream()->deallocate_all(); + } + + template <typename data_t> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSycl::internal::RangeAccess< + cl::sycl::access::mode::read_write, data_t> + get(data_t *data) const { + return queue_stream()->get(data); + } + template <typename data_t> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE data_t *get( + TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, + data_t> + data) const { + return queue_stream()->get(data); + } + + /// attach existing buffer + EIGEN_STRONG_INLINE void *attach_buffer( + cl::sycl::buffer<buffer_scalar_t, 1> &buf) const { + return queue_stream()->attach_buffer(buf); + } + /// detach buffer + EIGEN_STRONG_INLINE void detach_buffer(void *p) const { + queue_stream()->detach_buffer(p); + } + EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const { + return queue_stream()->get_offset(ptr); + } + + // some runtime conditions that can be applied here + EIGEN_STRONG_INLINE bool isDeviceSuitable() const { return true; } + + /// memcpyHostToDevice + template <typename Index> + EIGEN_STRONG_INLINE void memcpyHostToDevice( + Index *dst, const Index *src, size_t n, + std::function<void()> callback = {}) const { + queue_stream()->memcpyHostToDevice(dst, src, n, callback); + } + /// memcpyDeviceToHost + template <typename Index> + EIGEN_STRONG_INLINE void memcpyDeviceToHost( + void *dst, const Index *src, size_t n, + std::function<void()> callback = {}) const { + queue_stream()->memcpyDeviceToHost(dst, src, n, callback); + } + /// the memcpy function + template <typename Index> + EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const { + queue_stream()->memcpy(dst, src, n); + } + /// the memset function + EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const { + queue_stream()->memset(data, c, n); + } + /// returning the sycl queue + EIGEN_STRONG_INLINE cl::sycl::queue &sycl_queue() const { + return queue_stream()->sycl_queue(); + } +#ifdef EIGEN_SYCL_USE_PROGRAM_CLASS + EIGEN_STRONG_INLINE cl::sycl::program &program() const { + return queue_stream()->program(); + } +#endif + + EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { return 48 * 1024; } + + EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { + // We won't try to take advantage of the l2 cache for the time being, and + // there is no l3 cache on sycl devices. + return firstLevelCacheSize(); + } + EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const { + return queue_stream()->getNumSyclMultiProcessors(); + } + EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const { + return queue_stream()->maxSyclThreadsPerBlock(); + } + EIGEN_STRONG_INLINE cl::sycl::id<3> maxWorkItemSizes() const { + return queue_stream()->maxWorkItemSizes(); + } + EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const { + // OpenCL doesnot have such concept + return queue_stream()->maxSyclThreadsPerMultiProcessor(); + } + EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const { + return queue_stream()->sharedMemPerBlock(); + } + EIGEN_STRONG_INLINE size_t getNearestPowerOfTwoWorkGroupSize() const { + return queue_stream()->getNearestPowerOfTwoWorkGroupSize(); + } + + EIGEN_STRONG_INLINE size_t getPowerOfTwo(size_t val, bool roundUp) const { + return queue_stream()->getPowerOfTwo(val, roundUp); + } + /// No need for sycl it should act the same as CPU version + EIGEN_STRONG_INLINE int majorDeviceVersion() const { + return queue_stream()->majorDeviceVersion(); + } + + EIGEN_STRONG_INLINE void synchronize() const { + queue_stream()->synchronize(); + } + EIGEN_STRONG_INLINE void async_synchronize( + cl::sycl::event e = cl::sycl::event()) const { + queue_stream()->async_synchronize(e); + } + EIGEN_STRONG_INLINE cl::sycl::event get_latest_event() const { + return queue_stream()->get_latest_event(); + } + + // This function checks if the runtime recorded an error for the + // underlying stream device. + EIGEN_STRONG_INLINE bool ok() const { return queue_stream()->ok(); } + + EIGEN_STRONG_INLINE bool has_local_memory() const { + return queue_stream()->has_local_memory(); + } + EIGEN_STRONG_INLINE long max_buffer_size() const { + return queue_stream()->max_buffer_size(); + } + EIGEN_STRONG_INLINE std::string getPlatformName() const { + return queue_stream()->getPlatformName(); + } + EIGEN_STRONG_INLINE std::string getDeviceName() const { + return queue_stream()->getDeviceName(); + } + EIGEN_STRONG_INLINE std::string getDeviceVendor() const { + return queue_stream()->getDeviceVendor(); + } + template <typename OutScalar, typename KernelType, typename... T> + EIGEN_ALWAYS_INLINE void binary_kernel_launcher(T... var) const { + queue_stream()->template binary_kernel_launcher<OutScalar, KernelType>( + var...); + } + template <typename OutScalar, typename KernelType, typename... T> + EIGEN_ALWAYS_INLINE void unary_kernel_launcher(T... var) const { + queue_stream()->template unary_kernel_launcher<OutScalar, KernelType>( + var...); + } + + template <typename OutScalar, typename KernelType, typename... T> + EIGEN_ALWAYS_INLINE void nullary_kernel_launcher(T... var) const { + queue_stream()->template nullary_kernel_launcher<OutScalar, KernelType>( + var...); + } +}; +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceThreadPool.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceThreadPool.h new file mode 100644 index 0000000..e524b53 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDeviceThreadPool.h @@ -0,0 +1,409 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H) +#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H + +namespace Eigen { + +// Runs an arbitrary function and then calls Notify() on the passed in +// Notification. +template <typename Function, typename... Args> struct FunctionWrapperWithNotification +{ + static void run(Notification* n, Function f, Args... args) { + f(args...); + if (n) { + n->Notify(); + } + } +}; + +template <typename Function, typename... Args> struct FunctionWrapperWithBarrier +{ + static void run(Barrier* b, Function f, Args... args) { + f(args...); + if (b) { + b->Notify(); + } + } +}; + +template <typename SyncType> +static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) { + if (n) { + n->Wait(); + } +} + +// An abstract interface to a device specific memory allocator. +class Allocator { + public: + virtual ~Allocator() {} + virtual void* allocate(size_t num_bytes) const = 0; + virtual void deallocate(void* buffer) const = 0; +}; + +// Build a thread pool device on top the an existing pool of threads. +struct ThreadPoolDevice { + // The ownership of the thread pool remains with the caller. + ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores, Allocator* allocator = nullptr) + : pool_(pool), num_threads_(num_cores), allocator_(allocator) { } + + EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { + return allocator_ ? allocator_->allocate(num_bytes) + : internal::aligned_malloc(num_bytes); + } + + EIGEN_STRONG_INLINE void deallocate(void* buffer) const { + if (allocator_) { + allocator_->deallocate(buffer); + } else { + internal::aligned_free(buffer); + } + } + + EIGEN_STRONG_INLINE void* allocate_temp(size_t num_bytes) const { + return allocate(num_bytes); + } + + EIGEN_STRONG_INLINE void deallocate_temp(void* buffer) const { + deallocate(buffer); + } + + template<typename Type> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Type get(Type data) const { + return data; + } + + EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { +#ifdef __ANDROID__ + ::memcpy(dst, src, n); +#else + // TODO(rmlarsen): Align blocks on cache lines. + // We have observed that going beyond 4 threads usually just wastes + // CPU cycles due to the threads competing for memory bandwidth, so we + // statically schedule at most 4 block copies here. + const size_t kMinBlockSize = 32768; + const size_t num_threads = CostModel::numThreads(n, TensorOpCost(1.0, 1.0, 0), 4); + if (n <= kMinBlockSize || num_threads < 2) { + ::memcpy(dst, src, n); + } else { + const char* src_ptr = static_cast<const char*>(src); + char* dst_ptr = static_cast<char*>(dst); + const size_t blocksize = (n + (num_threads - 1)) / num_threads; + Barrier barrier(static_cast<int>(num_threads - 1)); + // Launch the last 3 blocks on worker threads. + for (size_t i = 1; i < num_threads; ++i) { + enqueue_with_barrier(&barrier, [n, i, src_ptr, dst_ptr, blocksize] { + ::memcpy(dst_ptr + i * blocksize, src_ptr + i * blocksize, + numext::mini(blocksize, n - (i * blocksize))); + }); + } + // Launch the first block on the main thread. + ::memcpy(dst_ptr, src_ptr, blocksize); + barrier.Wait(); + } +#endif + } + EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { + memcpy(dst, src, n); + } + EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { + memcpy(dst, src, n); + } + + EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { + ::memset(buffer, c, n); + } + + EIGEN_STRONG_INLINE int numThreads() const { + return num_threads_; + } + + // Number of theads available in the underlying thread pool. This number can + // be different from the value returned by numThreads(). + EIGEN_STRONG_INLINE int numThreadsInPool() const { + return pool_->NumThreads(); + } + + EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { + return l1CacheSize(); + } + + EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { + // The l3 cache size is shared between all the cores. + return l3CacheSize() / num_threads_; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const { + // Should return an enum that encodes the ISA supported by the CPU + return 1; + } + + template <class Function, class... Args> + EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, + Args&&... args) const { + Notification* n = new Notification(); + pool_->Schedule( + std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, + std::move(f), args...)); + return n; + } + + template <class Function, class... Args> + EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b, Function&& f, + Args&&... args) const { + pool_->Schedule( + std::bind(&FunctionWrapperWithBarrier<Function, Args...>::run, b, + std::move(f), args...)); + } + + template <class Function, class... Args> + EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, + Args&&... args) const { + if (sizeof...(args) > 0) { + pool_->Schedule(std::bind(std::move(f), args...)); + } else { + pool_->Schedule(std::move(f)); + } + } + + // Returns a logical thread index between 0 and pool_->NumThreads() - 1 if + // called from one of the threads in pool_. Returns -1 otherwise. + EIGEN_STRONG_INLINE int currentThreadId() const { + return pool_->CurrentThreadId(); + } + + // WARNING: This function is synchronous and will block the calling thread. + // + // Synchronous parallelFor executes f with [0, n) arguments in parallel and + // waits for completion. F accepts a half-open interval [first, last). Block + // size is chosen based on the iteration cost and resulting parallel + // efficiency. If block_align is not nullptr, it is called to round up the + // block size. + void parallelFor(Index n, const TensorOpCost& cost, + std::function<Index(Index)> block_align, + std::function<void(Index, Index)> f) const { + if (EIGEN_PREDICT_FALSE(n <= 0)){ + return; + // Compute small problems directly in the caller thread. + } else if (n == 1 || numThreads() == 1 || + CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) { + f(0, n); + return; + } + + // Compute block size and total count of blocks. + ParallelForBlock block = CalculateParallelForBlock(n, cost, block_align); + + // Recursively divide size into halves until we reach block_size. + // Division code rounds mid to block_size, so we are guaranteed to get + // block_count leaves that do actual computations. + Barrier barrier(static_cast<unsigned int>(block.count)); + std::function<void(Index, Index)> handleRange; + handleRange = [=, &handleRange, &barrier, &f](Index firstIdx, + Index lastIdx) { + while (lastIdx - firstIdx > block.size) { + // Split into halves and schedule the second half on a different thread. + const Index midIdx = firstIdx + divup((lastIdx - firstIdx) / 2, block.size) * block.size; + pool_->Schedule([=, &handleRange]() { handleRange(midIdx, lastIdx); }); + lastIdx = midIdx; + } + // Single block or less, execute directly. + f(firstIdx, lastIdx); + barrier.Notify(); + }; + + if (block.count <= numThreads()) { + // Avoid a thread hop by running the root of the tree and one block on the + // main thread. + handleRange(0, n); + } else { + // Execute the root in the thread pool to avoid running work on more than + // numThreads() threads. + pool_->Schedule([=, &handleRange]() { handleRange(0, n); }); + } + + barrier.Wait(); + } + + // Convenience wrapper for parallelFor that does not align blocks. + void parallelFor(Index n, const TensorOpCost& cost, + std::function<void(Index, Index)> f) const { + parallelFor(n, cost, nullptr, std::move(f)); + } + + // WARNING: This function is asynchronous and will not block the calling thread. + // + // Asynchronous parallelFor executes f with [0, n) arguments in parallel + // without waiting for completion. When the last block finished, it will call + // 'done' callback. F accepts a half-open interval [first, last). Block size + // is chosen based on the iteration cost and resulting parallel efficiency. If + // block_align is not nullptr, it is called to round up the block size. + void parallelForAsync(Index n, const TensorOpCost& cost, + std::function<Index(Index)> block_align, + std::function<void(Index, Index)> f, + std::function<void()> done) const { + // Compute small problems directly in the caller thread. + if (n <= 1 || numThreads() == 1 || + CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) { + f(0, n); + done(); + return; + } + + // Compute block size and total count of blocks. + ParallelForBlock block = CalculateParallelForBlock(n, cost, block_align); + + ParallelForAsyncContext* const ctx = + new ParallelForAsyncContext(block.count, std::move(f), std::move(done)); + + // Recursively divide size into halves until we reach block_size. + // Division code rounds mid to block_size, so we are guaranteed to get + // block_count leaves that do actual computations. + ctx->handle_range = [this, ctx, block](Index firstIdx, Index lastIdx) { + while (lastIdx - firstIdx > block.size) { + // Split into halves and schedule the second half on a different thread. + const Index midIdx = firstIdx + divup((lastIdx - firstIdx) / 2, block.size) * block.size; + pool_->Schedule( + [ctx, midIdx, lastIdx]() { ctx->handle_range(midIdx, lastIdx); }); + lastIdx = midIdx; + } + + // Single block or less, execute directly. + ctx->f(firstIdx, lastIdx); + + // Delete async context if it was the last block. + if (ctx->count.fetch_sub(1) == 1) delete ctx; + }; + + if (block.count <= numThreads()) { + // Avoid a thread hop by running the root of the tree and one block on the + // main thread. + ctx->handle_range(0, n); + } else { + // Execute the root in the thread pool to avoid running work on more than + // numThreads() threads. + pool_->Schedule([ctx, n]() { ctx->handle_range(0, n); }); + } + } + + // Convenience wrapper for parallelForAsync that does not align blocks. + void parallelForAsync(Index n, const TensorOpCost& cost, + std::function<void(Index, Index)> f, + std::function<void()> done) const { + parallelForAsync(n, cost, nullptr, std::move(f), std::move(done)); + } + + // Thread pool accessor. + ThreadPoolInterface* getPool() const { return pool_; } + + // Allocator accessor. + Allocator* allocator() const { return allocator_; } + + private: + typedef TensorCostModel<ThreadPoolDevice> CostModel; + + // For parallelForAsync we must keep passed in closures on the heap, and + // delete them only after `done` callback finished. + struct ParallelForAsyncContext { + ParallelForAsyncContext(Index block_count, + std::function<void(Index, Index)> block_f, + std::function<void()> done_callback) + : count(block_count), + f(std::move(block_f)), + done(std::move(done_callback)) {} + ~ParallelForAsyncContext() { done(); } + + std::atomic<Index> count; + std::function<void(Index, Index)> f; + std::function<void()> done; + + std::function<void(Index, Index)> handle_range; + }; + + struct ParallelForBlock { + Index size; // block size + Index count; // number of blocks + }; + + // Calculates block size based on (1) the iteration cost and (2) parallel + // efficiency. We want blocks to be not too small to mitigate parallelization + // overheads; not too large to mitigate tail effect and potential load + // imbalance and we also want number of blocks to be evenly dividable across + // threads. + ParallelForBlock CalculateParallelForBlock( + const Index n, const TensorOpCost& cost, + std::function<Index(Index)> block_align) const { + const double block_size_f = 1.0 / CostModel::taskSize(1, cost); + const Index max_oversharding_factor = 4; + Index block_size = numext::mini( + n, numext::maxi<Index>( + divup<Index>(n, max_oversharding_factor * numThreads()), + block_size_f)); + const Index max_block_size = numext::mini(n, 2 * block_size); + + if (block_align) { + Index new_block_size = block_align(block_size); + eigen_assert(new_block_size >= block_size); + block_size = numext::mini(n, new_block_size); + } + + Index block_count = divup(n, block_size); + + // Calculate parallel efficiency as fraction of total CPU time used for + // computations: + double max_efficiency = + static_cast<double>(block_count) / + (divup<int>(block_count, numThreads()) * numThreads()); + + // Now try to increase block size up to max_block_size as long as it + // doesn't decrease parallel efficiency. + for (Index prev_block_count = block_count; + max_efficiency < 1.0 && prev_block_count > 1;) { + // This is the next block size that divides size into a smaller number + // of blocks than the current block_size. + Index coarser_block_size = divup(n, prev_block_count - 1); + if (block_align) { + Index new_block_size = block_align(coarser_block_size); + eigen_assert(new_block_size >= coarser_block_size); + coarser_block_size = numext::mini(n, new_block_size); + } + if (coarser_block_size > max_block_size) { + break; // Reached max block size. Stop. + } + // Recalculate parallel efficiency. + const Index coarser_block_count = divup(n, coarser_block_size); + eigen_assert(coarser_block_count < prev_block_count); + prev_block_count = coarser_block_count; + const double coarser_efficiency = + static_cast<double>(coarser_block_count) / + (divup<int>(coarser_block_count, numThreads()) * numThreads()); + if (coarser_efficiency + 0.01 >= max_efficiency) { + // Taking it. + block_size = coarser_block_size; + block_count = coarser_block_count; + if (max_efficiency < coarser_efficiency) { + max_efficiency = coarser_efficiency; + } + } + } + + return {block_size, block_count}; + } + + ThreadPoolInterface* pool_; + int num_threads_; + Allocator* allocator_; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensionList.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensionList.h new file mode 100644 index 0000000..1a30e45 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensionList.h @@ -0,0 +1,236 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H +#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H + +namespace Eigen { + +/** \internal + * + * \class TensorDimensionList + * \ingroup CXX11_Tensor_Module + * + * \brief Special case of tensor index list used to list all the dimensions of a tensor of rank n. + * + * \sa Tensor + */ + +template <typename Index, std::size_t Rank> struct DimensionList { + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + const Index operator[] (const Index i) const { return i; } +}; + +namespace internal { + +template<typename Index, std::size_t Rank> struct array_size<DimensionList<Index, Rank> > { + static const size_t value = Rank; +}; +template<typename Index, std::size_t Rank> struct array_size<const DimensionList<Index, Rank> > { + static const size_t value = Rank; +}; + +template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(DimensionList<Index, Rank>&) { + return n; +} +template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(const DimensionList<Index, Rank>&) { + return n; +} + + +#if EIGEN_HAS_CONSTEXPR +template <typename Index, std::size_t Rank> +struct index_known_statically_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct index_known_statically_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct all_indices_known_statically_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_eq_impl<DimensionList<Index, Rank> > { + static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i == value; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_eq_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i == value; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_ne_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i != value; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_ne_impl<const DimensionList<Index, Rank> > { + static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i != value; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_gt_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i > value; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_gt_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i > value; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_lt_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i < value; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_lt_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { + return i < value; + } +}; + +#else +template <typename Index, std::size_t Rank> +struct index_known_statically_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct index_known_statically_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct all_indices_known_statically_impl<DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > { + EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { + return true; + } +}; +template <typename Index, std::size_t Rank> +struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { + return true; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_eq_impl<DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_eq_impl<const DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_ne_impl<DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex){ + return false; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_ne_impl<const DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_gt_impl<DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_gt_impl<const DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; + +template <typename Index, std::size_t Rank> +struct index_statically_lt_impl<DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; +template <typename Index, std::size_t Rank> +struct index_statically_lt_impl<const DimensionList<Index, Rank> > { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) { + return false; + } +}; +#endif + +} // end namespace internal +} // end namespace Eigen + + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensions.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensions.h new file mode 100644 index 0000000..f0f1e83 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorDimensions.h @@ -0,0 +1,490 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H +#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H + + +namespace Eigen { + +/** \internal + * + * \class TensorDimensions + * \ingroup CXX11_Tensor_Module + * + * \brief Set of classes used to encode and store the dimensions of a Tensor. + * + * The Sizes class encodes as part of the type the number of dimensions and the + * sizes corresponding to each dimension. It uses no storage space since it is + * entirely known at compile time. + * The DSizes class is its dynamic sibling: the number of dimensions is known + * at compile time but the sizes are set during execution. + * + * \sa Tensor + */ + +// Boilerplate code +namespace internal { + +template<std::ptrdiff_t n, typename Dimension> struct dget { + static const std::ptrdiff_t value = get<n, Dimension>::value; +}; + + +template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor> +struct fixed_size_tensor_index_linearization_helper +{ + template <typename Dimensions> EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const& indices, + const Dimensions& dimensions) + { + return array_get<RowMajor ? n - 1 : (NumIndices - n)>(indices) + + dget<RowMajor ? n - 1 : (NumIndices - n), Dimensions>::value * + fixed_size_tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); + } +}; + +template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor> +struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor> +{ + template <typename Dimensions> EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Index run(array<Index, NumIndices> const&, const Dimensions&) + { + return 0; + } +}; + +template<typename Index, std::ptrdiff_t n> +struct fixed_size_tensor_index_extraction_helper +{ + template <typename Dimensions> EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Index run(const Index index, + const Dimensions& dimensions) + { + const Index mult = (index == n-1) ? 1 : 0; + return array_get<n-1>(dimensions) * mult + + fixed_size_tensor_index_extraction_helper<Index, n - 1>::run(index, dimensions); + } +}; + +template<typename Index> +struct fixed_size_tensor_index_extraction_helper<Index, 0> +{ + template <typename Dimensions> EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE Index run(const Index, + const Dimensions&) + { + return 0; + } + }; + +} // end namespace internal + + +// Fixed size +#ifndef EIGEN_EMULATE_CXX11_META_H +template <typename std::ptrdiff_t... Indices> +struct Sizes { + typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base; + const Base t = Base(); + static const std::ptrdiff_t total_size = internal::arg_prod(Indices...); + static const ptrdiff_t count = Base::count; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t rank() const { + return Base::count; + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t TotalSize() { + return internal::arg_prod(Indices...); + } + + EIGEN_DEVICE_FUNC Sizes() { } + template <typename DenseIndex> + explicit EIGEN_DEVICE_FUNC Sizes(const array<DenseIndex, Base::count>& /*indices*/) { + // todo: add assertion + } +#if EIGEN_HAS_VARIADIC_TEMPLATES + template <typename... DenseIndex> EIGEN_DEVICE_FUNC Sizes(DenseIndex...) { } + explicit EIGEN_DEVICE_FUNC Sizes(std::initializer_list<std::ptrdiff_t> /*l*/) { + // todo: add assertion + } +#endif + + template <typename T> Sizes& operator = (const T& /*other*/) { + // add assertion failure if the size of other is different + return *this; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::ptrdiff_t index) const { + return internal::fixed_size_tensor_index_extraction_helper<std::ptrdiff_t, Base::count>::run(index, t); + } + + template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ptrdiff_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const { + return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, t); + } + template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ptrdiff_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const { + return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, t); + } +}; + +namespace internal { +template <typename std::ptrdiff_t... Indices> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<Indices...>&) { + return Sizes<Indices...>::total_size; +} +} + +#else + +template <std::ptrdiff_t n> +struct non_zero_size { + typedef internal::type2val<std::ptrdiff_t, n> type; +}; +template <> +struct non_zero_size<0> { + typedef internal::null_type type; +}; + +template <std::ptrdiff_t V1=0, std::ptrdiff_t V2=0, std::ptrdiff_t V3=0, std::ptrdiff_t V4=0, std::ptrdiff_t V5=0> struct Sizes { + typedef typename internal::make_type_list<typename non_zero_size<V1>::type, typename non_zero_size<V2>::type, typename non_zero_size<V3>::type, typename non_zero_size<V4>::type, typename non_zero_size<V5>::type >::type Base; + static const std::ptrdiff_t count = Base::count; + static const std::ptrdiff_t total_size = internal::arg_prod<Base>::value; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptrdiff_t rank() const { + return count; + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptrdiff_t TotalSize() { + return internal::arg_prod<Base>::value; + } + + Sizes() { } + template <typename DenseIndex> + explicit Sizes(const array<DenseIndex, Base::count>& /*indices*/) { + // todo: add assertion + } + template <typename T> Sizes& operator = (const T& /*other*/) { + // add assertion failure if the size of other is different + return *this; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template <typename... DenseIndex> Sizes(DenseIndex... /*indices*/) { } + explicit Sizes(std::initializer_list<std::ptrdiff_t>) { + // todo: add assertion + } +#else + EIGEN_DEVICE_FUNC explicit Sizes(const DenseIndex) { + } + EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex) { + } + EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex) { + } + EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) { + } + EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) { + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index operator[] (const Index index) const { + switch (index) { + case 0: + return internal::get<0, Base>::value; + case 1: + return internal::get<1, Base>::value; + case 2: + return internal::get<2, Base>::value; + case 3: + return internal::get<3, Base>::value; + case 4: + return internal::get<4, Base>::value; + default: + eigen_assert(false && "index overflow"); + return static_cast<Index>(-1); + } + } + + template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ptrdiff_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const { + return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *reinterpret_cast<const Base*>(this)); + } + template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ptrdiff_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const { + return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *reinterpret_cast<const Base*>(this)); + } +}; + +namespace internal { +template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) { + return Sizes<V1, V2, V3, V4, V5>::total_size; +} +} + +#endif + +// Boilerplate +namespace internal { +template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor> +struct tensor_index_linearization_helper +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const& dimensions) + { + return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) + + array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) * + tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); + } +}; + +template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor> +struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor> +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const&) + { + return array_get<RowMajor ? 0 : NumIndices - 1>(indices); + } +}; +} // end namespace internal + + + +// Dynamic size +template <typename DenseIndex, int NumDims> +struct DSizes : array<DenseIndex, NumDims> { + typedef array<DenseIndex, NumDims> Base; + static const int count = NumDims; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { + return NumDims; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const { + return (NumDims == 0) ? 1 : internal::array_prod(*static_cast<const Base*>(this)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DSizes() { + for (int i = 0 ; i < NumDims; ++i) { + (*this)[i] = 0; + } + } + EIGEN_DEVICE_FUNC explicit DSizes(const array<DenseIndex, NumDims>& a) : Base(a) { } + + EIGEN_DEVICE_FUNC explicit DSizes(const DenseIndex i0) { + eigen_assert(NumDims == 1); + (*this)[0] = i0; + } + + EIGEN_DEVICE_FUNC DSizes(const DimensionList<DenseIndex, NumDims>& a) { + for (int i = 0 ; i < NumDims; ++i) { + (*this)[i] = a[i]; + } + } + + // Enable DSizes index type promotion only if we are promoting to the + // larger type, e.g. allow to promote dimensions of type int to long. + template<typename OtherIndex> + EIGEN_DEVICE_FUNC + explicit DSizes(const array<OtherIndex, NumDims>& other, + // Default template parameters require c++11. + typename internal::enable_if< + internal::is_same< + DenseIndex, + typename internal::promote_index_type< + DenseIndex, + OtherIndex + >::type + >::value, void*>::type = 0) { + for (int i = 0; i < NumDims; ++i) { + (*this)[i] = static_cast<DenseIndex>(other[i]); + } + } + +#ifdef EIGEN_HAS_INDEX_LIST + template <typename FirstType, typename... OtherTypes> + EIGEN_DEVICE_FUNC + explicit DSizes(const Eigen::IndexList<FirstType, OtherTypes...>& dimensions) { + for (int i = 0; i < dimensions.count; ++i) { + (*this)[i] = dimensions[i]; + } + } +#endif + +#ifndef EIGEN_EMULATE_CXX11_META_H + template <typename std::ptrdiff_t... Indices> + EIGEN_DEVICE_FUNC DSizes(const Sizes<Indices...>& a) { + for (int i = 0 ; i < NumDims; ++i) { + (*this)[i] = a[i]; + } + } +#else + template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> + EIGEN_DEVICE_FUNC DSizes(const Sizes<V1, V2, V3, V4, V5>& a) { + for (int i = 0 ; i < NumDims; ++i) { + (*this)[i] = a[i]; + } + } +#endif + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE explicit DSizes(DenseIndex firstDimension, DenseIndex secondDimension, IndexTypes... otherDimensions) : Base({{firstDimension, secondDimension, otherDimensions...}}) { + EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 2 == NumDims, YOU_MADE_A_PROGRAMMING_MISTAKE) + } +#else + EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1) { + eigen_assert(NumDims == 2); + (*this)[0] = i0; + (*this)[1] = i1; + } + EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2) { + eigen_assert(NumDims == 3); + (*this)[0] = i0; + (*this)[1] = i1; + (*this)[2] = i2; + } + EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3) { + eigen_assert(NumDims == 4); + (*this)[0] = i0; + (*this)[1] = i1; + (*this)[2] = i2; + (*this)[3] = i3; + } + EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3, const DenseIndex i4) { + eigen_assert(NumDims == 5); + (*this)[0] = i0; + (*this)[1] = i1; + (*this)[2] = i2; + (*this)[3] = i3; + (*this)[4] = i4; + } +#endif + + EIGEN_DEVICE_FUNC DSizes& operator = (const array<DenseIndex, NumDims>& other) { + *static_cast<Base*>(this) = other; + return *this; + } + + // A constexpr would be so much better here + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfColMajor(const array<DenseIndex, NumDims>& indices) const { + return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, false>::run(indices, *static_cast<const Base*>(this)); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfRowMajor(const array<DenseIndex, NumDims>& indices) const { + return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, true>::run(indices, *static_cast<const Base*>(this)); + } +}; + +template <typename IndexType, int NumDims> +std::ostream& operator<<(std::ostream& os, + const DSizes<IndexType, NumDims>& dims) { + os << "["; + for (int i = 0; i < NumDims; ++i) { + if (i > 0) os << ", "; + os << dims[i]; + } + os << "]"; + return os; +} + +// Boilerplate +namespace internal { +template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor> +struct tensor_vsize_index_linearization_helper +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const& dimensions) + { + return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) + + array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) * + tensor_vsize_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions); + } +}; + +template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor> +struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor> +{ + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const&) + { + return array_get<RowMajor ? 0 : NumIndices - 1>(indices); + } +}; +} // end namespace internal + + +namespace internal { + +template <typename DenseIndex, int NumDims> struct array_size<const DSizes<DenseIndex, NumDims> > { + static const ptrdiff_t value = NumDims; +}; +template <typename DenseIndex, int NumDims> struct array_size<DSizes<DenseIndex, NumDims> > { + static const ptrdiff_t value = NumDims; +}; +#ifndef EIGEN_EMULATE_CXX11_META_H +template <typename std::ptrdiff_t... Indices> struct array_size<const Sizes<Indices...> > { +static const std::ptrdiff_t value = Sizes<Indices...>::count; +}; +template <typename std::ptrdiff_t... Indices> struct array_size<Sizes<Indices...> > { +static const std::ptrdiff_t value = Sizes<Indices...>::count; +}; +template <std::ptrdiff_t n, typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<Indices...>&) { + return get<n, internal::numeric_list<std::ptrdiff_t, Indices...> >::value; +} +template <std::ptrdiff_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<>&) { + eigen_assert(false && "should never be called"); + return -1; +} +#else +template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > { + static const ptrdiff_t value = Sizes<V1,V2,V3,V4,V5>::count; +}; +template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > { + static const ptrdiff_t value = Sizes<V1,V2,V3,V4,V5>::count; +}; +template <std::ptrdiff_t n, std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<V1,V2,V3,V4,V5>&) { + return get<n, typename Sizes<V1,V2,V3,V4,V5>::Base>::value; +} + +#endif + + +template <typename Dims1, typename Dims2, ptrdiff_t n, ptrdiff_t m> +struct sizes_match_below_dim { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Dims1&, Dims2&) { + return false; + } +}; +template <typename Dims1, typename Dims2, ptrdiff_t n> +struct sizes_match_below_dim<Dims1, Dims2, n, n> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Dims1& dims1, Dims2& dims2) { + return (array_get<n-1>(dims1) == array_get<n-1>(dims2)) && + sizes_match_below_dim<Dims1, Dims2, n-1, n-1>::run(dims1, dims2); + } +}; +template <typename Dims1, typename Dims2> +struct sizes_match_below_dim<Dims1, Dims2, 0, 0> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Dims1&, Dims2&) { + return true; + } +}; + +} // end namespace internal + + +template <typename Dims1, typename Dims2> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool dimensions_match(Dims1 dims1, Dims2 dims2) { + return internal::sizes_match_below_dim<Dims1, Dims2, internal::array_size<Dims1>::value, internal::array_size<Dims2>::value>::run(dims1, dims2); +} + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorEvalTo.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorEvalTo.h new file mode 100644 index 0000000..a48d035 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorEvalTo.h @@ -0,0 +1,236 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H +#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H + +namespace Eigen { + +/** \class TensorForcedEval + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reshaping class. + * + * + */ +namespace internal { +template<typename XprType, template <class> class MakePointer_> +struct traits<TensorEvalToOp<XprType, MakePointer_> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename MakePointer_<Scalar>::Type PointerType; + + enum { + Flags = 0 + }; + template <class T> + struct MakePointer { + // Intermediate typedef to workaround MSVC issue. + typedef MakePointer_<T> MakePointerT; + typedef typename MakePointerT::Type Type; + + + }; +}; + +template<typename XprType, template <class> class MakePointer_> +struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense> +{ + typedef const TensorEvalToOp<XprType, MakePointer_>& type; +}; + +template<typename XprType, template <class> class MakePointer_> +struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type> +{ + typedef TensorEvalToOp<XprType, MakePointer_> type; +}; + +} // end namespace internal + + + + +template<typename XprType, template <class> class MakePointer_> +class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename MakePointer_<CoeffReturnType>::Type PointerType; + typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested; + typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index; + + static const int NumDims = Eigen::internal::traits<TensorEvalToOp>::NumDimensions; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr) + : m_xpr(expr), m_buffer(buffer) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; } + + protected: + typename XprType::Nested m_xpr; + PointerType m_buffer; +}; + + + +template<typename ArgType, typename Device, template <class> class MakePointer_> +struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device> +{ + typedef TensorEvalToOp<ArgType, MakePointer_> XprType; + typedef typename ArgType::Scalar Scalar; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + typedef typename XprType::Index Index; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = true, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = true + }; + + static const int NumDims = internal::traits<ArgType>::NumDimensions; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + typedef internal::TensorBlockAssignment< + CoeffReturnType, NumDims, typename ArgTensorBlock::XprType, Index> + TensorBlockAssignment; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_buffer(device.get(op.buffer())), m_expression(op.expression()){} + + + EIGEN_STRONG_INLINE ~TensorEvaluator() { + } + + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType scalar) { + EIGEN_UNUSED_VARIABLE(scalar); + eigen_assert(scalar == NULL); + return m_impl.evalSubExprsIfNeeded(m_buffer); + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType scalar, EvalSubExprsCallback done) { + EIGEN_UNUSED_VARIABLE(scalar); + eigen_assert(scalar == NULL); + m_impl.evalSubExprsIfNeededAsync(m_buffer, std::move(done)); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) { + m_buffer[i] = m_impl.coeff(i); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) { + internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return m_impl.getResourceRequirements(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock( + TensorBlockDesc& desc, TensorBlockScratch& scratch) { + // Add `m_buffer` as destination buffer to the block descriptor. + desc.template AddDestinationBuffer<Layout>( + /*dst_base=*/m_buffer + desc.offset(), + /*dst_strides=*/internal::strides<Layout>(m_impl.dimensions())); + + ArgTensorBlock block = + m_impl.block(desc, scratch, /*root_of_expr_ast=*/true); + + // If block was evaluated into a destination buffer, there is no need to do + // an assignment. + if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) { + TensorBlockAssignment::Run( + TensorBlockAssignment::target( + desc.dimensions(), internal::strides<Layout>(m_impl.dimensions()), + m_buffer, desc.offset()), + block.expr()); + } + block.cleanup(); + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_buffer[index]; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + // We assume that evalPacket or evalScalar is called to perform the + // assignment and account for the cost of the write here. + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_buffer; } + ArgType expression() const { return m_expression; } + #ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + m_buffer.bind(cgh); + } + #endif + + + private: + TensorEvaluator<ArgType, Device> m_impl; + EvaluatorPointerType m_buffer; + const ArgType m_expression; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorEvaluator.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorEvaluator.h new file mode 100644 index 0000000..3aff7fa --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorEvaluator.h @@ -0,0 +1,983 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H +#define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H + +namespace Eigen { + +/** \class TensorEvaluator + * \ingroup CXX11_Tensor_Module + * + * \brief The tensor evaluator classes. + * + * These classes are responsible for the evaluation of the tensor expression. + * + * TODO: add support for more types of expressions, in particular expressions + * leading to lvalues (slicing, reshaping, etc...) + */ + +// Generic evaluator +template<typename Derived, typename Device> +struct TensorEvaluator +{ + typedef typename Derived::Index Index; + typedef typename Derived::Scalar Scalar; + typedef typename Derived::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename Derived::Dimensions Dimensions; + typedef Derived XprType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename internal::traits<Derived>::template MakePointer<Scalar>::Type TensorPointerType; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + // NumDimensions is -1 for variable dim tensors + static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ? + internal::traits<Derived>::NumDimensions : 0; + + enum { + IsAligned = Derived::IsAligned, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = internal::is_arithmetic<typename internal::remove_const<Scalar>::type>::value, + PreferBlockAccess = false, + Layout = Derived::Layout, + CoordAccess = NumCoords > 0, + RawAccess = true + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device) + : m_data(device.get((const_cast<TensorPointerType>(m.data())))), + m_dims(m.dimensions()), + m_device(device) + { } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType dest) { + if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && dest) { + m_device.memcpy((void*)(m_device.get(dest)), m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar)); + return false; + } + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType dest, EvalSubExprsCallback done) { + // TODO(ezhulenev): ThreadPoolDevice memcpy is blockign operation. + done(evalSubExprsIfNeeded(dest)); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + eigen_assert(m_data != NULL); + return m_data[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { + eigen_assert(m_data != NULL); + return m_data[index]; + } + + template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketReturnType packet(Index index) const + { + return internal::ploadt<PacketReturnType, LoadMode>(m_data + index); + } + + // Return a packet starting at `index` where `umask` specifies which elements + // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for + // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding + // float element will be loaded, otherwise 0 will be loaded. + // Function has been templatized to enable Sfinae. + template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type + partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const + { + return internal::ploadu<PacketReturnTypeT>(m_data + index, umask); + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const { + eigen_assert(m_data != NULL); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + return m_data[m_dims.IndexOfColMajor(coords)]; + } else { + return m_data[m_dims.IndexOfRowMajor(coords)]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& + coeffRef(const array<DenseIndex, NumCoords>& coords) { + eigen_assert(m_data != NULL); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + return m_data[m_dims.IndexOfColMajor(coords)]; + } else { + return m_data[m_dims.IndexOfRowMajor(coords)]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, + PacketType<CoeffReturnType, Device>::size); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return internal::TensorBlockResourceRequirements::any(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + assert(m_data != NULL); + return TensorBlock::materialize(m_data, m_dims, desc, scratch); + } + + template<typename TensorBlock> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( + const TensorBlockDesc& desc, const TensorBlock& block) { + assert(m_data != NULL); + + typedef typename TensorBlock::XprType TensorBlockExpr; + typedef internal::TensorBlockAssignment<Scalar, NumCoords, TensorBlockExpr, + Index> + TensorBlockAssign; + + TensorBlockAssign::Run( + TensorBlockAssign::target(desc.dimensions(), + internal::strides<Layout>(m_dims), m_data, + desc.offset()), + block.expr()); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_data.bind(cgh); + } +#endif + protected: + EvaluatorPointerType m_data; + Dimensions m_dims; + const Device EIGEN_DEVICE_REF m_device; +}; + +namespace { +template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T loadConstant(const T* address) { + return *address; +} +// Use the texture cache on CUDA devices whenever possible +#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350 +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +float loadConstant(const float* address) { + return __ldg(address); +} +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +double loadConstant(const double* address) { + return __ldg(address); +} +template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +Eigen::half loadConstant(const Eigen::half* address) { + return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x))); +} +#endif +#ifdef EIGEN_USE_SYCL +// overload of load constant should be implemented here based on range access +template <cl::sycl::access::mode AcMd, typename T> +T &loadConstant(const Eigen::TensorSycl::internal::RangeAccess<AcMd, T> &address) { + return *address; +} +#endif +} + + +// Default evaluator for rvalues +template<typename Derived, typename Device> +struct TensorEvaluator<const Derived, Device> +{ + typedef typename Derived::Index Index; + typedef typename Derived::Scalar Scalar; + typedef typename Derived::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename Derived::Dimensions Dimensions; + typedef const Derived XprType; + typedef typename internal::traits<Derived>::template MakePointer<const Scalar>::Type TensorPointerType; + typedef StorageMemory<const Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + // NumDimensions is -1 for variable dim tensors + static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ? + internal::traits<Derived>::NumDimensions : 0; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + enum { + IsAligned = Derived::IsAligned, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = internal::is_arithmetic<ScalarNoConst>::value, + PreferBlockAccess = false, + Layout = Derived::Layout, + CoordAccess = NumCoords > 0, + RawAccess = true + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device) + : m_data(device.get(m.data())), m_dims(m.dimensions()), m_device(device) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) { + m_device.memcpy((void*)(m_device.get(data)),m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar)); + return false; + } + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType dest, EvalSubExprsCallback done) { + // TODO(ezhulenev): ThreadPoolDevice memcpy is a blockign operation. + done(evalSubExprsIfNeeded(dest)); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + eigen_assert(m_data != NULL); + return loadConstant(m_data+index); + } + + template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketReturnType packet(Index index) const + { + return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index); + } + + // Return a packet starting at `index` where `umask` specifies which elements + // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for + // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding + // float element will be loaded, otherwise 0 will be loaded. + // Function has been templatized to enable Sfinae. + template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type + partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const + { + return internal::ploadu<PacketReturnTypeT>(m_data + index, umask); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const { + eigen_assert(m_data != NULL); + const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords) + : m_dims.IndexOfRowMajor(coords); + return loadConstant(m_data+index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, + PacketType<CoeffReturnType, Device>::size); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return internal::TensorBlockResourceRequirements::any(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + assert(m_data != NULL); + return TensorBlock::materialize(m_data, m_dims, desc, scratch); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_data.bind(cgh); + } +#endif + protected: + EvaluatorPointerType m_data; + Dimensions m_dims; + const Device EIGEN_DEVICE_REF m_device; +}; + + + + +// -------------------- CwiseNullaryOp -------------------- + +template<typename NullaryOp, typename ArgType, typename Device> +struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device> +{ + typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType; + + TensorEvaluator(const XprType& op, const Device& device) + : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper() + { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename internal::traits<XprType>::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = true, + PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess + #ifdef EIGEN_USE_SYCL + && (PacketType<CoeffReturnType, Device>::size >1) + #endif + , + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { return true; } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + done(true); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { } + + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_wrapper(m_functor, index); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, + PacketType<CoeffReturnType, Device>::size); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_argImpl.bind(cgh); + } +#endif + + private: + const NullaryOp m_functor; + TensorEvaluator<ArgType, Device> m_argImpl; + const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper; +}; + + + +// -------------------- CwiseUnaryOp -------------------- + +template<typename UnaryOp, typename ArgType, typename Device> +struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device> +{ + typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType; + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = int(TensorEvaluator<ArgType, Device>::PacketAccess) & + int(internal::functor_traits<UnaryOp>::PacketAccess), + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + TensorEvaluator(const XprType& op, const Device& device) + : m_device(device), + m_functor(op.functor()), + m_argImpl(op.nestedExpression(), device) + { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + typedef typename internal::traits<XprType>::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + static const int NumDims = internal::array_size<Dimensions>::value; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + typedef internal::TensorCwiseUnaryBlock<UnaryOp, ArgTensorBlock> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_argImpl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_argImpl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_argImpl.cleanup(); + } + + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_functor(m_argImpl.coeff(index)); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + const double functor_cost = internal::functor_traits<UnaryOp>::Cost; + return m_argImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + static const double functor_cost = internal::functor_traits<UnaryOp>::Cost; + return m_argImpl.getResourceRequirements().addCostPerCoeff( + {0, 0, functor_cost / PacketSize}); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + return TensorBlock(m_argImpl.block(desc, scratch), m_functor); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const{ + m_argImpl.bind(cgh); + } +#endif + + + private: + const Device EIGEN_DEVICE_REF m_device; + const UnaryOp m_functor; + TensorEvaluator<ArgType, Device> m_argImpl; +}; + + +// -------------------- CwiseBinaryOp -------------------- + +template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device> +struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device> +{ + typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType; + + enum { + IsAligned = int(TensorEvaluator<LeftArgType, Device>::IsAligned) & + int(TensorEvaluator<RightArgType, Device>::IsAligned), + PacketAccess = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) & + int(TensorEvaluator<RightArgType, Device>::PacketAccess) & + int(internal::functor_traits<BinaryOp>::PacketAccess), + BlockAccess = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) & + int(TensorEvaluator<RightArgType, Device>::BlockAccess), + PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) | + int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess), + Layout = TensorEvaluator<LeftArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + TensorEvaluator(const XprType& op, const Device& device) + : m_device(device), + m_functor(op.functor()), + m_leftImpl(op.lhsExpression(), device), + m_rightImpl(op.rhsExpression(), device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); + } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename internal::traits<XprType>::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + static const int NumDims = internal::array_size< + typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const LeftArgType, Device>::TensorBlock + LeftTensorBlock; + typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock + RightTensorBlock; + + typedef internal::TensorCwiseBinaryBlock<BinaryOp, LeftTensorBlock, + RightTensorBlock> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const + { + // TODO: use right impl instead if right impl dimensions are known at compile time. + return m_leftImpl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_leftImpl.evalSubExprsIfNeeded(NULL); + m_rightImpl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + // TODO(ezhulenev): Evaluate two expression in parallel? + m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) { + m_rightImpl.evalSubExprsIfNeededAsync(nullptr, + [done](bool) { done(true); }); + }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_leftImpl.cleanup(); + m_rightImpl.cleanup(); + } + + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index)); + } + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double functor_cost = internal::functor_traits<BinaryOp>::Cost; + return m_leftImpl.costPerCoeff(vectorized) + + m_rightImpl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + static const double functor_cost = internal::functor_traits<BinaryOp>::Cost; + return internal::TensorBlockResourceRequirements::merge( + m_leftImpl.getResourceRequirements(), + m_rightImpl.getResourceRequirements()) + .addCostPerCoeff({0, 0, functor_cost / PacketSize}); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + desc.DropDestinationBuffer(); + return TensorBlock(m_leftImpl.block(desc, scratch), + m_rightImpl.block(desc, scratch), m_functor); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + #ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_leftImpl.bind(cgh); + m_rightImpl.bind(cgh); + } + #endif + private: + const Device EIGEN_DEVICE_REF m_device; + const BinaryOp m_functor; + TensorEvaluator<LeftArgType, Device> m_leftImpl; + TensorEvaluator<RightArgType, Device> m_rightImpl; +}; + +// -------------------- CwiseTernaryOp -------------------- + +template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device> +struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device> +{ + typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType; + + enum { + IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned, + PacketAccess = TensorEvaluator<Arg1Type, Device>::PacketAccess && + TensorEvaluator<Arg2Type, Device>::PacketAccess && + TensorEvaluator<Arg3Type, Device>::PacketAccess && + internal::functor_traits<TernaryOp>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<Arg1Type, Device>::PreferBlockAccess || + TensorEvaluator<Arg2Type, Device>::PreferBlockAccess || + TensorEvaluator<Arg3Type, Device>::PreferBlockAccess, + Layout = TensorEvaluator<Arg1Type, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + TensorEvaluator(const XprType& op, const Device& device) + : m_functor(op.functor()), + m_arg1Impl(op.arg1Expression(), device), + m_arg2Impl(op.arg2Expression(), device), + m_arg3Impl(op.arg3Expression(), device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + + EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind, + typename internal::traits<Arg2Type>::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind, + typename internal::traits<Arg3Type>::StorageKind>::value), + STORAGE_KIND_MUST_MATCH) + EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index, + typename internal::traits<Arg2Type>::Index>::value), + STORAGE_INDEX_MUST_MATCH) + EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index, + typename internal::traits<Arg3Type>::Index>::value), + STORAGE_INDEX_MUST_MATCH) + + eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions())); + } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename internal::traits<XprType>::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const + { + // TODO: use arg2 or arg3 dimensions if they are known at compile time. + return m_arg1Impl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_arg1Impl.evalSubExprsIfNeeded(NULL); + m_arg2Impl.evalSubExprsIfNeeded(NULL); + m_arg3Impl.evalSubExprsIfNeeded(NULL); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_arg1Impl.cleanup(); + m_arg2Impl.cleanup(); + m_arg3Impl.cleanup(); + } + + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index)); + } + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index), + m_arg2Impl.template packet<LoadMode>(index), + m_arg3Impl.template packet<LoadMode>(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double functor_cost = internal::functor_traits<TernaryOp>::Cost; + return m_arg1Impl.costPerCoeff(vectorized) + + m_arg2Impl.costPerCoeff(vectorized) + + m_arg3Impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, functor_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_arg1Impl.bind(cgh); + m_arg2Impl.bind(cgh); + m_arg3Impl.bind(cgh); + } +#endif + + private: + const TernaryOp m_functor; + TensorEvaluator<Arg1Type, Device> m_arg1Impl; + TensorEvaluator<Arg2Type, Device> m_arg2Impl; + TensorEvaluator<Arg3Type, Device> m_arg3Impl; +}; + + +// -------------------- SelectOp -------------------- + +template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device> +struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device> +{ + typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType; + typedef typename XprType::Scalar Scalar; + + enum { + IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & + TensorEvaluator<ElseArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & + TensorEvaluator<ElseArgType, Device>::PacketAccess & + PacketType<Scalar, Device>::HasBlend, + BlockAccess = TensorEvaluator<IfArgType, Device>::BlockAccess && + TensorEvaluator<ThenArgType, Device>::BlockAccess && + TensorEvaluator<ElseArgType, Device>::BlockAccess, + PreferBlockAccess = TensorEvaluator<IfArgType, Device>::PreferBlockAccess || + TensorEvaluator<ThenArgType, Device>::PreferBlockAccess || + TensorEvaluator<ElseArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<IfArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + TensorEvaluator(const XprType& op, const Device& device) + : m_condImpl(op.ifExpression(), device), + m_thenImpl(op.thenExpression(), device), + m_elseImpl(op.elseExpression(), device) + { + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions())); + eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions())); + } + + typedef typename XprType::Index Index; + typedef typename internal::traits<XprType>::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + static const int NumDims = internal::array_size<Dimensions>::value; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const IfArgType, Device>::TensorBlock + IfArgTensorBlock; + typedef typename TensorEvaluator<const ThenArgType, Device>::TensorBlock + ThenArgTensorBlock; + typedef typename TensorEvaluator<const ElseArgType, Device>::TensorBlock + ElseArgTensorBlock; + + struct TensorSelectOpBlockFactory { + template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType> + struct XprType { + typedef TensorSelectOp<const IfArgXprType, const ThenArgXprType, const ElseArgXprType> type; + }; + + template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType> + typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type expr( + const IfArgXprType& if_expr, const ThenArgXprType& then_expr, const ElseArgXprType& else_expr) const { + return typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type(if_expr, then_expr, else_expr); + } + }; + + typedef internal::TensorTernaryExprBlock<TensorSelectOpBlockFactory, + IfArgTensorBlock, ThenArgTensorBlock, + ElseArgTensorBlock> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const + { + // TODO: use then or else impl instead if they happen to be known at compile time. + return m_condImpl.dimensions(); + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_condImpl.evalSubExprsIfNeeded(NULL); + m_thenImpl.evalSubExprsIfNeeded(NULL); + m_elseImpl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_condImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) { + m_thenImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) { + m_elseImpl.evalSubExprsIfNeeded(nullptr, [done](bool) { done(true); }); + }); + }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_condImpl.cleanup(); + m_thenImpl.cleanup(); + m_elseImpl.cleanup(); + } + + EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const + { + return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index); + } + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const + { + internal::Selector<PacketSize> select; + EIGEN_UNROLL_LOOP + for (Index i = 0; i < PacketSize; ++i) { + select.select[i] = m_condImpl.coeff(index+i); + } + return internal::pblend(select, + m_thenImpl.template packet<LoadMode>(index), + m_elseImpl.template packet<LoadMode>(index)); + + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + return m_condImpl.costPerCoeff(vectorized) + + m_thenImpl.costPerCoeff(vectorized) + .cwiseMax(m_elseImpl.costPerCoeff(vectorized)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + auto then_req = m_thenImpl.getResourceRequirements(); + auto else_req = m_elseImpl.getResourceRequirements(); + + auto merged_req = + internal::TensorBlockResourceRequirements::merge(then_req, else_req); + merged_req.cost_per_coeff = + then_req.cost_per_coeff.cwiseMax(else_req.cost_per_coeff); + + return internal::TensorBlockResourceRequirements::merge( + m_condImpl.getResourceRequirements(), merged_req); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + // It's unsafe to pass destination buffer to underlying expressions, because + // output might be aliased with one of the inputs. + desc.DropDestinationBuffer(); + + return TensorBlock( + m_condImpl.block(desc, scratch), m_thenImpl.block(desc, scratch), + m_elseImpl.block(desc, scratch), TensorSelectOpBlockFactory()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_condImpl.bind(cgh); + m_thenImpl.bind(cgh); + m_elseImpl.bind(cgh); + } +#endif + private: + TensorEvaluator<IfArgType, Device> m_condImpl; + TensorEvaluator<ThenArgType, Device> m_thenImpl; + TensorEvaluator<ElseArgType, Device> m_elseImpl; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorExecutor.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorExecutor.h new file mode 100644 index 0000000..c52fb77 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorExecutor.h @@ -0,0 +1,703 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H +#define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H + +namespace Eigen { + +/** + * \class TensorExecutor + * \ingroup CXX11_Tensor_Module + * + * \brief The tensor executor class. + * + * This class is responsible for launch the evaluation of the expression on + * the specified computing device. + * + * @tparam Vectorizable can use packet math (SSE/AVX/etc... registers and + * instructions) + * @tparam Tiling can use block based tensor evaluation + * (see TensorBlock.h) + */ +namespace internal { + +/** + * Evaluating TensorBroadcastingOp via coefficient of packet path is extremely + * expensive. If expression has at least one broadcast op in it, and it supports + * block based evaluation, we always prefer it, even for the small tensors. For + * all other tileable ops, block evaluation overhead for small tensors (fits + * into L1) is too large, and we fallback on vectorized evaluation. + */ + +// TODO(ezhulenev): Add specializations for all other types of Tensor ops. + +template<typename Expression> +struct ExpressionHasTensorBroadcastingOp { + enum { value = false }; +}; + +template<typename LhsXprType, typename RhsXprType> +struct ExpressionHasTensorBroadcastingOp< + const TensorAssignOp<LhsXprType, RhsXprType> > { + enum { value = ExpressionHasTensorBroadcastingOp<RhsXprType>::value }; +}; + +template<typename UnaryOp, typename XprType> +struct ExpressionHasTensorBroadcastingOp< + const TensorCwiseUnaryOp<UnaryOp, XprType> > { + enum { value = ExpressionHasTensorBroadcastingOp<XprType>::value }; +}; + +template<typename BinaryOp, typename LhsXprType, typename RhsXprType> +struct ExpressionHasTensorBroadcastingOp< + const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> > { + enum { + value = ExpressionHasTensorBroadcastingOp<LhsXprType>::value || + ExpressionHasTensorBroadcastingOp<RhsXprType>::value + }; +}; + +template<typename Broadcast, typename XprType> +struct ExpressionHasTensorBroadcastingOp< + const TensorBroadcastingOp<Broadcast, XprType> > { + enum { value = true }; +}; + +// -------------------------------------------------------------------------- // + +/** + * Default strategy: the expression is evaluated sequentially with a single cpu + * thread, without vectorization and block evaluation. + */ +template <typename Expression, typename Device, bool Vectorizable, + TiledEvaluation Tiling> +class TensorExecutor { + public: + typedef typename Expression::Index StorageIndex; + + // Including `unsupported/Eigen/CXX11/Tensor` in different translation units + // with/without `EIGEN_USE_THREADS` or `EIGEN_USE_GPU` is a potential ODR + // violation. If this template is instantiated with a non-default device, it + // means that this header file was included without defining + // `EIGEN_USE_THREADS`, `EIGEN_USE_GPU` or `EIGEN_USE_SYCL`. + static_assert(std::is_same<Device, DefaultDevice>::value, + "Default executor instantiated with non-default device. " + "You must #define EIGEN_USE_THREADS, EIGEN_USE_GPU or " + "EIGEN_USE_SYCL before including Eigen headers."); + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(const Expression& expr, + const Device& device = Device()) { + TensorEvaluator<Expression, Device> evaluator(expr, device); + const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); + if (needs_assign) { + const StorageIndex size = array_prod(evaluator.dimensions()); + for (StorageIndex i = 0; i < size; ++i) { + evaluator.evalScalar(i); + } + } + evaluator.cleanup(); + } +}; + +/** + * Default async execution strategy is not implemented. Currently it's only + * available for ThreadPoolDevice (see definition below). + */ +template <typename Expression, typename Device, typename DoneCallback, + bool Vectorizable, TiledEvaluation Tiling> +class TensorAsyncExecutor {}; + +/** + * Process all the data with a single cpu thread, using vectorized instructions. + */ +template <typename Expression> +class TensorExecutor<Expression, DefaultDevice, /*Vectorizable=*/true, + /*Tiling=*/TiledEvaluation::Off> { + public: + typedef typename Expression::Index StorageIndex; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run( + const Expression& expr, const DefaultDevice& device = DefaultDevice()) { + TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device); + const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); + if (needs_assign) { + const StorageIndex size = array_prod(evaluator.dimensions()); + const int PacketSize = unpacket_traits<typename TensorEvaluator< + Expression, DefaultDevice>::PacketReturnType>::size; + + // Give compiler a strong possibility to unroll the loop. But don't insist + // on unrolling, because if the function is expensive compiler should not + // unroll the loop at the expense of inlining. + const StorageIndex UnrolledSize = + (size / (4 * PacketSize)) * 4 * PacketSize; + for (StorageIndex i = 0; i < UnrolledSize; i += 4 * PacketSize) { + for (StorageIndex j = 0; j < 4; j++) { + evaluator.evalPacket(i + j * PacketSize); + } + } + const StorageIndex VectorizedSize = (size / PacketSize) * PacketSize; + for (StorageIndex i = UnrolledSize; i < VectorizedSize; i += PacketSize) { + evaluator.evalPacket(i); + } + for (StorageIndex i = VectorizedSize; i < size; ++i) { + evaluator.evalScalar(i); + } + } + evaluator.cleanup(); + } +}; + +/** + * Process all the data with a single cpu thread, using blocks of data. By + * sizing a block to fit L1 cache we get better cache performance. + */ +template <typename Expression, bool Vectorizable> +class TensorExecutor<Expression, DefaultDevice, Vectorizable, + /*Tiling=*/TiledEvaluation::On> { + public: + typedef typename traits<Expression>::Scalar Scalar; + typedef typename remove_const<Scalar>::type ScalarNoConst; + + typedef TensorEvaluator<Expression, DefaultDevice> Evaluator; + typedef typename traits<Expression>::Index StorageIndex; + + static const int NumDims = traits<Expression>::NumDimensions; + + EIGEN_DEVICE_FUNC + static EIGEN_STRONG_INLINE void run(const Expression& expr, + const DefaultDevice& device = DefaultDevice()) { + typedef TensorBlockMapper<NumDims, Evaluator::Layout, StorageIndex> + TensorBlockMapper; + + typedef internal::TensorBlockDescriptor<NumDims, StorageIndex> + TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<DefaultDevice> + TensorBlockScratch; + + Evaluator evaluator(expr, device); + + // TODO(ezhulenev): Do not use tiling for small tensors? + const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); + + if (needs_assign) { + // Query expression tree for desired block size/shape. + const TensorBlockResourceRequirements requirements = + evaluator.getResourceRequirements(); + + const TensorBlockMapper block_mapper( + typename TensorBlockDesc::Dimensions(evaluator.dimensions()), + requirements); + + // Share scratch memory allocator between all blocks. + TensorBlockScratch scratch(device); + + const StorageIndex total_block_count = block_mapper.blockCount(); + for (StorageIndex i = 0; i < total_block_count; ++i) { + TensorBlockDesc desc = block_mapper.blockDescriptor(i); + evaluator.evalBlock(desc, scratch); + scratch.reset(); + } + } + evaluator.cleanup(); + } +}; + +/** + * Multicore strategy: the index space is partitioned and each partition is + * executed on a single core. + * + * (1) TensorExecutor will submit work to the ThreadPoolDevice managed thread + * pool, and will block the caller thread until all tasks are finished. + * + * (2) TensorAsyncExecutor is a non-blocking version, that will submit work to + * the ThreadPoolDevice managed thread pool, and will return immediately. + * It will call 'done' callback after all tasks are finished. + */ +#ifdef EIGEN_USE_THREADS + +template <typename TensorBlockMapper> +struct TensorExecutorTilingContext { + TensorExecutorTilingContext() = default; + TensorExecutorTilingContext(const TensorBlockMapper& b_mapper, + const TensorOpCost& b_cost, size_t b_aligned_size) + : block_mapper(b_mapper), + cost(b_cost), + aligned_blocksize(b_aligned_size) {} + + TensorBlockMapper block_mapper; // navigate through blocks + TensorOpCost cost; // cost of computing a single block + size_t aligned_blocksize; // block size after memory alignment +}; + +// Computes a block evaluation parameters, and allocates temporary memory buffer +// for blocks. See TensorExecutor/TensorAsyncExecutor (Tiling=On) below. +template <typename Evaluator, typename TensorBlockMapper, bool Vectorizable> +TensorExecutorTilingContext<TensorBlockMapper> GetTensorExecutorTilingContext( + const Evaluator& evaluator) { + // Query expression tree for desired block size/shape. + TensorBlockResourceRequirements requirements = + evaluator.getResourceRequirements(); + + // Update target block size based on cost model. + double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize( + 1, requirements.cost_per_coeff); + requirements.size = static_cast<size_t>(1.0 / taskSize); + + TensorBlockMapper block_mapper( + typename TensorBlockMapper::Dimensions(evaluator.dimensions()), + requirements); + + size_t block_size = block_mapper.blockTotalSize(); + const size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1); + const size_t aligned_blocksize = + align * + divup<size_t>(block_size * sizeof(typename Evaluator::Scalar), align); + + return {block_mapper, requirements.cost_per_coeff * block_size, + aligned_blocksize}; +} + +template <typename Evaluator, typename StorageIndex, bool Vectorizable> +struct EvalRange { + static void run(Evaluator* evaluator_in, const StorageIndex firstIdx, + const StorageIndex lastIdx) { + Evaluator evaluator = *evaluator_in; + eigen_assert(lastIdx >= firstIdx); + for (StorageIndex i = firstIdx; i < lastIdx; ++i) { + evaluator.evalScalar(i); + } + } + + static StorageIndex alignBlockSize(StorageIndex size) { return size; } +}; + +template <typename Evaluator, typename StorageIndex> +struct EvalRange<Evaluator, StorageIndex, /*Vectorizable*/ true> { + static const int PacketSize = + unpacket_traits<typename Evaluator::PacketReturnType>::size; + + static void run(Evaluator* evaluator_in, const StorageIndex firstIdx, + const StorageIndex lastIdx) { + Evaluator evaluator = *evaluator_in; + eigen_assert(lastIdx >= firstIdx); + StorageIndex i = firstIdx; + if (lastIdx - firstIdx >= PacketSize) { + eigen_assert(firstIdx % PacketSize == 0); + StorageIndex last_chunk_offset = lastIdx - 4 * PacketSize; + // Give compiler a strong possibility to unroll the loop. But don't insist + // on unrolling, because if the function is expensive compiler should not + // unroll the loop at the expense of inlining. + for (; i <= last_chunk_offset; i += 4 * PacketSize) { + for (StorageIndex j = 0; j < 4; j++) { + evaluator.evalPacket(i + j * PacketSize); + } + } + last_chunk_offset = lastIdx - PacketSize; + for (; i <= last_chunk_offset; i += PacketSize) { + evaluator.evalPacket(i); + } + } + for (; i < lastIdx; ++i) { + evaluator.evalScalar(i); + } + } + + static StorageIndex alignBlockSize(StorageIndex size) { + // Align block size to packet size and account for unrolling in run above. + if (size >= 16 * PacketSize) { + return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1); + } + // Aligning to 4 * PacketSize would increase block size by more than 25%. + return (size + PacketSize - 1) & ~(PacketSize - 1); + } +}; + +template <typename Expression, bool Vectorizable, TiledEvaluation Tiling> +class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, Tiling> { + public: + typedef typename Expression::Index StorageIndex; + + static EIGEN_STRONG_INLINE void run(const Expression& expr, + const ThreadPoolDevice& device) { + typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator; + typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange; + + Evaluator evaluator(expr, device); + const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr); + if (needs_assign) { + const StorageIndex size = array_prod(evaluator.dimensions()); + device.parallelFor(size, evaluator.costPerCoeff(Vectorizable), + EvalRange::alignBlockSize, + [&evaluator](StorageIndex firstIdx, StorageIndex lastIdx) { + EvalRange::run(&evaluator, firstIdx, lastIdx); + }); + } + evaluator.cleanup(); + } +}; + +template <typename Expression, bool Vectorizable> +class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, + /*Tiling=*/TiledEvaluation::On> { + public: + typedef typename traits<Expression>::Index IndexType; + typedef typename traits<Expression>::Scalar Scalar; + typedef typename remove_const<Scalar>::type ScalarNoConst; + + static const int NumDims = traits<Expression>::NumDimensions; + + typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator; + typedef TensorBlockMapper<NumDims, Evaluator::Layout, IndexType> BlockMapper; + typedef TensorExecutorTilingContext<BlockMapper> TilingContext; + + typedef internal::TensorBlockDescriptor<NumDims, IndexType> + TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<ThreadPoolDevice> + TensorBlockScratch; + + static EIGEN_STRONG_INLINE void run(const Expression& expr, + const ThreadPoolDevice& device) { + Evaluator evaluator(expr, device); + + const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr); + if (needs_assign) { + const TilingContext tiling = + internal::GetTensorExecutorTilingContext<Evaluator, BlockMapper, + Vectorizable>(evaluator); + + auto eval_block = [&device, &evaluator, &tiling](IndexType firstBlockIdx, + IndexType lastBlockIdx) { + TensorBlockScratch scratch(device); + + for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx; + ++block_idx) { + TensorBlockDesc desc = tiling.block_mapper.blockDescriptor(block_idx); + evaluator.evalBlock(desc, scratch); + scratch.reset(); + } + }; + + // Evaluate small expressions directly as a single block. + if (tiling.block_mapper.blockCount() == 1) { + TensorBlockScratch scratch(device); + TensorBlockDesc desc(0, tiling.block_mapper.blockDimensions()); + evaluator.evalBlock(desc, scratch); + } else { + device.parallelFor(tiling.block_mapper.blockCount(), tiling.cost, + eval_block); + } + } + evaluator.cleanup(); + } +}; + +template <typename Expression, typename DoneCallback, bool Vectorizable, + TiledEvaluation Tiling> +class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback, + Vectorizable, Tiling> { + public: + typedef typename Expression::Index StorageIndex; + typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator; + + static EIGEN_STRONG_INLINE void runAsync(const Expression& expr, + const ThreadPoolDevice& device, + DoneCallback done) { + TensorAsyncExecutorContext* const ctx = + new TensorAsyncExecutorContext(expr, device, std::move(done)); + + const auto on_eval_subexprs = [ctx, &device](bool need_assign) -> void { + if (!need_assign) { + delete ctx; + return; + } + + typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange; + const StorageIndex size = array_prod(ctx->evaluator.dimensions()); + device.parallelForAsync( + size, ctx->evaluator.costPerCoeff(Vectorizable), + EvalRange::alignBlockSize, + [ctx](StorageIndex firstIdx, StorageIndex lastIdx) { + EvalRange::run(&ctx->evaluator, firstIdx, lastIdx); + }, + [ctx]() { delete ctx; }); + }; + + ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs); + } + + private: + struct TensorAsyncExecutorContext { + TensorAsyncExecutorContext(const Expression& expr, + const ThreadPoolDevice& thread_pool, + DoneCallback done) + : evaluator(expr, thread_pool), on_done(std::move(done)) {} + + ~TensorAsyncExecutorContext() { + evaluator.cleanup(); + on_done(); + } + + Evaluator evaluator; + + private: + DoneCallback on_done; + }; +}; + +template <typename Expression, typename DoneCallback, bool Vectorizable> +class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback, + Vectorizable, /*Tileable*/ TiledEvaluation::On> { + public: + typedef typename traits<Expression>::Index IndexType; + typedef typename traits<Expression>::Scalar Scalar; + typedef typename remove_const<Scalar>::type ScalarNoConst; + + static const int NumDims = traits<Expression>::NumDimensions; + + typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator; + typedef TensorBlockMapper<NumDims, Evaluator::Layout, IndexType> BlockMapper; + typedef TensorExecutorTilingContext<BlockMapper> TilingContext; + + typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<ThreadPoolDevice> + TensorBlockScratch; + + static EIGEN_STRONG_INLINE void runAsync(const Expression& expr, + const ThreadPoolDevice& device, + DoneCallback done) { + + TensorAsyncExecutorContext* const ctx = + new TensorAsyncExecutorContext(expr, device, std::move(done)); + + const auto on_eval_subexprs = [ctx](bool need_assign) -> void { + if (!need_assign) { + delete ctx; + return; + } + + ctx->tiling = internal::GetTensorExecutorTilingContext< + Evaluator, BlockMapper, Vectorizable>(ctx->evaluator); + + auto eval_block = [ctx](IndexType firstBlockIdx, IndexType lastBlockIdx) { + TensorBlockScratch scratch(ctx->device); + + for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx; + ++block_idx) { + TensorBlockDesc desc = + ctx->tiling.block_mapper.blockDescriptor(block_idx); + ctx->evaluator.evalBlock(desc, scratch); + scratch.reset(); + } + }; + + // Evaluate small expressions directly as a single block. + if (ctx->tiling.block_mapper.blockCount() == 1) { + TensorBlockScratch scratch(ctx->device); + TensorBlockDesc desc(0, ctx->tiling.block_mapper.blockDimensions()); + ctx->evaluator.evalBlock(desc, scratch); + delete ctx; + } else { + ctx->device.parallelForAsync(ctx->tiling.block_mapper.blockCount(), + ctx->tiling.cost, eval_block, + [ctx]() { delete ctx; }); + } + }; + + ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs); + } + + private: + struct TensorAsyncExecutorContext { + TensorAsyncExecutorContext(const Expression& expr, + const ThreadPoolDevice& thread_pool, + DoneCallback done) + : device(thread_pool), + evaluator(expr, thread_pool), + on_done(std::move(done)) {} + + ~TensorAsyncExecutorContext() { + evaluator.cleanup(); + on_done(); + } + + const ThreadPoolDevice& device; + Evaluator evaluator; + TilingContext tiling; + + private: + DoneCallback on_done; + }; +}; + +#endif // EIGEN_USE_THREADS + +// GPU: the evaluation of the expression is offloaded to a GPU. +#if defined(EIGEN_USE_GPU) + +template <typename Expression, bool Vectorizable, TiledEvaluation Tiling> +class TensorExecutor<Expression, GpuDevice, Vectorizable, Tiling> { + public: + typedef typename Expression::Index StorageIndex; + static void run(const Expression& expr, const GpuDevice& device); +}; + +#if defined(EIGEN_GPUCC) +template <typename Evaluator, typename StorageIndex, bool Vectorizable> +struct EigenMetaKernelEval { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + void run(Evaluator& eval, StorageIndex firstIdx, StorageIndex lastIdx, StorageIndex step_size) { + for (StorageIndex i = firstIdx; i < lastIdx; i += step_size) { + eval.evalScalar(i); + } + } +}; + +template <typename Evaluator, typename StorageIndex> +struct EigenMetaKernelEval<Evaluator, StorageIndex, true> { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + void run(Evaluator& eval, StorageIndex firstIdx, StorageIndex lastIdx, StorageIndex step_size) { + const StorageIndex PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size; + const StorageIndex vectorized_size = (lastIdx / PacketSize) * PacketSize; + const StorageIndex vectorized_step_size = step_size * PacketSize; + + // Use the vector path + for (StorageIndex i = firstIdx * PacketSize; i < vectorized_size; + i += vectorized_step_size) { + eval.evalPacket(i); + } + for (StorageIndex i = vectorized_size + firstIdx; i < lastIdx; i += step_size) { + eval.evalScalar(i); + } + } +}; + +template <typename Evaluator, typename StorageIndex> +__global__ void +__launch_bounds__(1024) +EigenMetaKernel(Evaluator eval, StorageIndex size) { + + const StorageIndex first_index = blockIdx.x * blockDim.x + threadIdx.x; + const StorageIndex step_size = blockDim.x * gridDim.x; + + const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned; + EigenMetaKernelEval<Evaluator, StorageIndex, vectorizable>::run(eval, first_index, size, step_size); +} + +/*static*/ +template <typename Expression, bool Vectorizable, TiledEvaluation Tiling> +EIGEN_STRONG_INLINE void TensorExecutor<Expression, GpuDevice, Vectorizable, Tiling>::run( + const Expression& expr, const GpuDevice& device) { + TensorEvaluator<Expression, GpuDevice> evaluator(expr, device); + const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr); + if (needs_assign) { + + const int block_size = device.maxGpuThreadsPerBlock(); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / block_size; + const StorageIndex size = array_prod(evaluator.dimensions()); + // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0. + const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1); + + LAUNCH_GPU_KERNEL( + (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, StorageIndex>), + num_blocks, block_size, 0, device, evaluator, size); + } + evaluator.cleanup(); +} + +#endif // EIGEN_GPUCC +#endif // EIGEN_USE_GPU + +// SYCL Executor policy +#ifdef EIGEN_USE_SYCL + +template <typename Evaluator> +struct ExecExprFunctorKernel { + typedef typename Evaluator::Index Index; + Evaluator evaluator; + const Index range; + template <typename Scratch> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ExecExprFunctorKernel( + const Scratch, Evaluator evaluator_, const Index range_) + : evaluator(evaluator_), range(range_) {} + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void operator()( + cl::sycl::nd_item<1> itemID) { + compute(itemID); + } + template <bool is_vec = Evaluator::PacketAccess> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename std::enable_if<!is_vec>::type + compute(const cl::sycl::nd_item<1>& itemID) { + Index gId = static_cast<Index>(itemID.get_global_linear_id()); + Index total_threads = itemID.get_global_range(0); + + for (Index i = gId; i < range; i += total_threads) { + evaluator.evalScalar(i); + } + } + template <bool is_vec = Evaluator::PacketAccess> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename std::enable_if<is_vec>::type + compute(const cl::sycl::nd_item<1>& itemID) { + const Index vectorizedRange = + (range / Evaluator::PacketSize) * Evaluator::PacketSize; + Index gId = static_cast<Index>(itemID.get_global_linear_id()); + const Index step = Evaluator::PacketSize * itemID.get_global_range(0); + const Index start = Evaluator::PacketSize * gId; + for (Index i = start; i < vectorizedRange; i += step) { + evaluator.evalPacket(i); + } + gId += vectorizedRange; + for (Index i = gId; i < range; i += itemID.get_global_range(0)) { + evaluator.evalScalar(i); + } + } +}; + +template <typename Expression, bool Vectorizable, TiledEvaluation Tiling> +class TensorExecutor<Expression, Eigen::SyclDevice, Vectorizable, Tiling> { + public: + typedef typename Expression::Index Index; + static EIGEN_STRONG_INLINE void run(const Expression& expr, + const Eigen::SyclDevice& dev) { + typedef Eigen::TensorEvaluator<Expression, Eigen::SyclDevice> Evaluator; + Evaluator evaluator(expr, dev); + const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); + if (needs_assign) { + Index range, GRange, tileSize; + Index total_size = ::Eigen::internal::array_prod(evaluator.dimensions()); + total_size = (total_size == 0) ? 1 : total_size; + const int PacketSize = + Eigen::PacketType<typename Evaluator::CoeffReturnType, + Eigen::SyclDevice>::size; + Index vectorizable_threads = static_cast<Index>(total_size / PacketSize); + dev.parallel_for_setup(vectorizable_threads, tileSize, range, GRange); + range = total_size; + + dev.template nullary_kernel_launcher< + typename Evaluator::CoeffReturnType, + ExecExprFunctorKernel<Evaluator> >( + evaluator, + cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), + cl::sycl::range<1>(tileSize)), + Index(1), range); + } + evaluator.cleanup(); + } +}; + +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorExpr.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorExpr.h new file mode 100644 index 0000000..c9bccfc --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorExpr.h @@ -0,0 +1,388 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXPR_H +#define EIGEN_CXX11_TENSOR_TENSOR_EXPR_H + +namespace Eigen { + +/** \class TensorExpr + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor expression classes. + * + * The TensorCwiseNullaryOp class applies a nullary operators to an expression. + * This is typically used to generate constants. + * + * The TensorCwiseUnaryOp class represents an expression where a unary operator + * (e.g. cwiseSqrt) is applied to an expression. + * + * The TensorCwiseBinaryOp class represents an expression where a binary + * operator (e.g. addition) is applied to a lhs and a rhs expression. + * + */ +namespace internal { +template<typename NullaryOp, typename XprType> +struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> > + : traits<XprType> +{ + typedef traits<XprType> XprTraits; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::Nested XprTypeNested; + typedef typename remove_reference<XprTypeNested>::type _XprTypeNested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; + enum { + Flags = 0 + }; +}; + +} // end namespace internal + + + +template<typename NullaryOp, typename XprType> +class TensorCwiseNullaryOp : public TensorBase<TensorCwiseNullaryOp<NullaryOp, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef TensorCwiseNullaryOp<NullaryOp, XprType> Nested; + typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseNullaryOp(const XprType& xpr, const NullaryOp& func = NullaryOp()) + : m_xpr(xpr), m_functor(func) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + nestedExpression() const { return m_xpr; } + + EIGEN_DEVICE_FUNC + const NullaryOp& functor() const { return m_functor; } + + protected: + typename XprType::Nested m_xpr; + const NullaryOp m_functor; +}; + + + +namespace internal { +template<typename UnaryOp, typename XprType> +struct traits<TensorCwiseUnaryOp<UnaryOp, XprType> > + : traits<XprType> +{ + // TODO(phli): Add InputScalar, InputPacket. Check references to + // current Scalar/Packet to see if the intent is Input or Output. + typedef typename result_of<UnaryOp(typename XprType::Scalar)>::type Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprType::Nested XprTypeNested; + typedef typename remove_reference<XprTypeNested>::type _XprTypeNested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename TypeConversion<Scalar, + typename XprTraits::PointerType + >::type + PointerType; +}; + +template<typename UnaryOp, typename XprType> +struct eval<TensorCwiseUnaryOp<UnaryOp, XprType>, Eigen::Dense> +{ + typedef const TensorCwiseUnaryOp<UnaryOp, XprType>& type; +}; + +template<typename UnaryOp, typename XprType> +struct nested<TensorCwiseUnaryOp<UnaryOp, XprType>, 1, typename eval<TensorCwiseUnaryOp<UnaryOp, XprType> >::type> +{ + typedef TensorCwiseUnaryOp<UnaryOp, XprType> type; +}; + +} // end namespace internal + + + +template<typename UnaryOp, typename XprType> +class TensorCwiseUnaryOp : public TensorBase<TensorCwiseUnaryOp<UnaryOp, XprType>, ReadOnlyAccessors> +{ + public: + // TODO(phli): Add InputScalar, InputPacket. Check references to + // current Scalar/Packet to see if the intent is Input or Output. + typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef Scalar CoeffReturnType; + typedef typename Eigen::internal::nested<TensorCwiseUnaryOp>::type Nested; + typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) + : m_xpr(xpr), m_functor(func) {} + + EIGEN_DEVICE_FUNC + const UnaryOp& functor() const { return m_functor; } + + /** \returns the nested expression */ + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + nestedExpression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const UnaryOp m_functor; +}; + + +namespace internal { +template<typename BinaryOp, typename LhsXprType, typename RhsXprType> +struct traits<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs + // are different. + // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to + // current Scalar/Packet to see if the intent is Inputs or Output. + typedef typename result_of< + BinaryOp(typename LhsXprType::Scalar, + typename RhsXprType::Scalar)>::type Scalar; + typedef traits<LhsXprType> XprTraits; + typedef typename promote_storage_type< + typename traits<LhsXprType>::StorageKind, + typename traits<RhsXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type< + typename traits<LhsXprType>::Index, + typename traits<RhsXprType>::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference<LhsNested>::type _LhsNested; + typedef typename remove_reference<RhsNested>::type _RhsNested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename TypeConversion<Scalar, + typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val, + typename traits<LhsXprType>::PointerType, + typename traits<RhsXprType>::PointerType>::type + >::type + PointerType; + enum { + Flags = 0 + }; +}; + +template<typename BinaryOp, typename LhsXprType, typename RhsXprType> +struct eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, Eigen::Dense> +{ + typedef const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>& type; +}; + +template<typename BinaryOp, typename LhsXprType, typename RhsXprType> +struct nested<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, 1, typename eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >::type> +{ + typedef TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> type; +}; + +} // end namespace internal + + + +template<typename BinaryOp, typename LhsXprType, typename RhsXprType> +class TensorCwiseBinaryOp : public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, ReadOnlyAccessors> +{ + public: + // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to + // current Scalar/Packet to see if the intent is Inputs or Output. + typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef Scalar CoeffReturnType; + typedef typename Eigen::internal::nested<TensorCwiseBinaryOp>::type Nested; + typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const BinaryOp& func = BinaryOp()) + : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_functor(func) {} + + EIGEN_DEVICE_FUNC + const BinaryOp& functor() const { return m_functor; } + + /** \returns the nested expressions */ + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename LhsXprType::Nested>::type& + lhsExpression() const { return m_lhs_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename RhsXprType::Nested>::type& + rhsExpression() const { return m_rhs_xpr; } + + protected: + typename LhsXprType::Nested m_lhs_xpr; + typename RhsXprType::Nested m_rhs_xpr; + const BinaryOp m_functor; +}; + + +namespace internal { +template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> +struct traits<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> > +{ + // Type promotion to handle the case where the types of the args are different. + typedef typename result_of< + TernaryOp(typename Arg1XprType::Scalar, + typename Arg2XprType::Scalar, + typename Arg3XprType::Scalar)>::type Scalar; + typedef traits<Arg1XprType> XprTraits; + typedef typename traits<Arg1XprType>::StorageKind StorageKind; + typedef typename traits<Arg1XprType>::Index Index; + typedef typename Arg1XprType::Nested Arg1Nested; + typedef typename Arg2XprType::Nested Arg2Nested; + typedef typename Arg3XprType::Nested Arg3Nested; + typedef typename remove_reference<Arg1Nested>::type _Arg1Nested; + typedef typename remove_reference<Arg2Nested>::type _Arg2Nested; + typedef typename remove_reference<Arg3Nested>::type _Arg3Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename TypeConversion<Scalar, + typename conditional<Pointer_type_promotion<typename Arg2XprType::Scalar, Scalar>::val, + typename traits<Arg2XprType>::PointerType, + typename traits<Arg3XprType>::PointerType>::type + >::type + PointerType; + enum { + Flags = 0 + }; +}; + +template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> +struct eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, Eigen::Dense> +{ + typedef const TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>& type; +}; + +template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> +struct nested<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, 1, typename eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >::type> +{ + typedef TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> type; +}; + +} // end namespace internal + + + +template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> +class TensorCwiseTernaryOp : public TensorBase<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef Scalar CoeffReturnType; + typedef typename Eigen::internal::nested<TensorCwiseTernaryOp>::type Nested; + typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseTernaryOp(const Arg1XprType& arg1, const Arg2XprType& arg2, const Arg3XprType& arg3, const TernaryOp& func = TernaryOp()) + : m_arg1_xpr(arg1), m_arg2_xpr(arg2), m_arg3_xpr(arg3), m_functor(func) {} + + EIGEN_DEVICE_FUNC + const TernaryOp& functor() const { return m_functor; } + + /** \returns the nested expressions */ + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename Arg1XprType::Nested>::type& + arg1Expression() const { return m_arg1_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename Arg2XprType::Nested>::type& + arg2Expression() const { return m_arg2_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename Arg3XprType::Nested>::type& + arg3Expression() const { return m_arg3_xpr; } + + protected: + typename Arg1XprType::Nested m_arg1_xpr; + typename Arg2XprType::Nested m_arg2_xpr; + typename Arg3XprType::Nested m_arg3_xpr; + const TernaryOp m_functor; +}; + + +namespace internal { +template<typename IfXprType, typename ThenXprType, typename ElseXprType> +struct traits<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> > + : traits<ThenXprType> +{ + typedef typename traits<ThenXprType>::Scalar Scalar; + typedef traits<ThenXprType> XprTraits; + typedef typename promote_storage_type<typename traits<ThenXprType>::StorageKind, + typename traits<ElseXprType>::StorageKind>::ret StorageKind; + typedef typename promote_index_type<typename traits<ElseXprType>::Index, + typename traits<ThenXprType>::Index>::type Index; + typedef typename IfXprType::Nested IfNested; + typedef typename ThenXprType::Nested ThenNested; + typedef typename ElseXprType::Nested ElseNested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename conditional<Pointer_type_promotion<typename ThenXprType::Scalar, Scalar>::val, + typename traits<ThenXprType>::PointerType, + typename traits<ElseXprType>::PointerType>::type PointerType; +}; + +template<typename IfXprType, typename ThenXprType, typename ElseXprType> +struct eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, Eigen::Dense> +{ + typedef const TensorSelectOp<IfXprType, ThenXprType, ElseXprType>& type; +}; + +template<typename IfXprType, typename ThenXprType, typename ElseXprType> +struct nested<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, 1, typename eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >::type> +{ + typedef TensorSelectOp<IfXprType, ThenXprType, ElseXprType> type; +}; + +} // end namespace internal + + +template<typename IfXprType, typename ThenXprType, typename ElseXprType> +class TensorSelectOp : public TensorBase<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorSelectOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::promote_storage_type<typename ThenXprType::CoeffReturnType, + typename ElseXprType::CoeffReturnType>::ret CoeffReturnType; + typedef typename Eigen::internal::nested<TensorSelectOp>::type Nested; + typedef typename Eigen::internal::traits<TensorSelectOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorSelectOp>::Index Index; + + EIGEN_DEVICE_FUNC + TensorSelectOp(const IfXprType& a_condition, + const ThenXprType& a_then, + const ElseXprType& a_else) + : m_condition(a_condition), m_then(a_then), m_else(a_else) + { } + + EIGEN_DEVICE_FUNC + const IfXprType& ifExpression() const { return m_condition; } + + EIGEN_DEVICE_FUNC + const ThenXprType& thenExpression() const { return m_then; } + + EIGEN_DEVICE_FUNC + const ElseXprType& elseExpression() const { return m_else; } + + protected: + typename IfXprType::Nested m_condition; + typename ThenXprType::Nested m_then; + typename ElseXprType::Nested m_else; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_EXPR_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorFFT.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorFFT.h new file mode 100644 index 0000000..4a1a068 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorFFT.h @@ -0,0 +1,669 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Jianwei Cui <thucjw@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H +#define EIGEN_CXX11_TENSOR_TENSOR_FFT_H + +namespace Eigen { + +/** \class TensorFFT + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor FFT class. + * + * TODO: + * Vectorize the Cooley Tukey and the Bluestein algorithm + * Add support for multithreaded evaluation + * Improve the performance on GPU + */ + +template <bool NeedUprade> struct MakeComplex { + template <typename T> + EIGEN_DEVICE_FUNC + T operator() (const T& val) const { return val; } +}; + +template <> struct MakeComplex<true> { + template <typename T> + EIGEN_DEVICE_FUNC + std::complex<T> operator() (const T& val) const { return std::complex<T>(val, 0); } +}; + +template <> struct MakeComplex<false> { + template <typename T> + EIGEN_DEVICE_FUNC + std::complex<T> operator() (const std::complex<T>& val) const { return val; } +}; + +template <int ResultType> struct PartOf { + template <typename T> T operator() (const T& val) const { return val; } +}; + +template <> struct PartOf<RealPart> { + template <typename T> T operator() (const std::complex<T>& val) const { return val.real(); } +}; + +template <> struct PartOf<ImagPart> { + template <typename T> T operator() (const std::complex<T>& val) const { return val.imag(); } +}; + +namespace internal { +template <typename FFT, typename XprType, int FFTResultType, int FFTDir> +struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits<XprType> { + typedef traits<XprType> XprTraits; + typedef typename NumTraits<typename XprTraits::Scalar>::Real RealScalar; + typedef typename std::complex<RealScalar> ComplexScalar; + typedef typename XprTraits::Scalar InputScalar; + typedef typename conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename traits<XprType>::PointerType PointerType; +}; + +template <typename FFT, typename XprType, int FFTResultType, int FFTDirection> +struct eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, Eigen::Dense> { + typedef const TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>& type; +}; + +template <typename FFT, typename XprType, int FFTResultType, int FFTDirection> +struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1, typename eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> >::type> { + typedef TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> type; +}; + +} // end namespace internal + +template <typename FFT, typename XprType, int FFTResultType, int FFTDir> +class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> { + public: + typedef typename Eigen::internal::traits<TensorFFTOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename std::complex<RealScalar> ComplexScalar; + typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; + typedef OutputScalar CoeffReturnType; + typedef typename Eigen::internal::nested<TensorFFTOp>::type Nested; + typedef typename Eigen::internal::traits<TensorFFTOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorFFTOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFFTOp(const XprType& expr, const FFT& fft) + : m_xpr(expr), m_fft(fft) {} + + EIGEN_DEVICE_FUNC + const FFT& fft() const { return m_fft; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& expression() const { + return m_xpr; + } + + protected: + typename XprType::Nested m_xpr; + const FFT m_fft; +}; + +// Eval as rvalue +template <typename FFT, typename ArgType, typename Device, int FFTResultType, int FFTDir> +struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, Device> { + typedef TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename std::complex<RealScalar> ComplexScalar; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; + typedef internal::traits<XprType> XprTraits; + typedef typename XprTraits::Scalar InputScalar; + typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar; + typedef OutputScalar CoeffReturnType; + typedef typename PacketType<OutputScalar, Device>::type PacketReturnType; + static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = true, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) { + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + for (int i = 0; i < NumDims; ++i) { + eigen_assert(input_dims[i] > 0); + m_dimensions[i] = input_dims[i]; + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_strides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1]; + } + } else { + m_strides[NumDims - 1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1]; + } + } + m_size = m_dimensions.TotalSize(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_dimensions; + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + m_impl.evalSubExprsIfNeeded(NULL); + if (data) { + evalToBuf(data); + return false; + } else { + m_data = (EvaluatorPointerType)m_device.get((CoeffReturnType*)(m_device.allocate_temp(sizeof(CoeffReturnType) * m_size))); + evalToBuf(m_data); + return true; + } + } + + EIGEN_STRONG_INLINE void cleanup() { + if (m_data) { + m_device.deallocate(m_data); + m_data = NULL; + } + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const { + return m_data[index]; + } + + template <int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType + packet(Index index) const { + return internal::ploadt<PacketReturnType, LoadMode>(m_data + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_data.bind(cgh); + } +#endif + + private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(EvaluatorPointerType data) { + const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value; + ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size); + + for (Index i = 0; i < m_size; ++i) { + buf[i] = MakeComplex<internal::is_same<InputScalar, RealScalar>::value>()(m_impl.coeff(i)); + } + + for (size_t i = 0; i < m_fft.size(); ++i) { + Index dim = m_fft[i]; + eigen_assert(dim >= 0 && dim < NumDims); + Index line_len = m_dimensions[dim]; + eigen_assert(line_len >= 1); + ComplexScalar* line_buf = (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * line_len); + const bool is_power_of_two = isPowerOfTwo(line_len); + const Index good_composite = is_power_of_two ? 0 : findGoodComposite(line_len); + const Index log_len = is_power_of_two ? getLog2(line_len) : getLog2(good_composite); + + ComplexScalar* a = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite); + ComplexScalar* b = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite); + ComplexScalar* pos_j_base_powered = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * (line_len + 1)); + if (!is_power_of_two) { + // Compute twiddle factors + // t_n = exp(sqrt(-1) * pi * n^2 / line_len) + // for n = 0, 1,..., line_len-1. + // For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2 + + // The recurrence is correct in exact arithmetic, but causes + // numerical issues for large transforms, especially in + // single-precision floating point. + // + // pos_j_base_powered[0] = ComplexScalar(1, 0); + // if (line_len > 1) { + // const ComplexScalar pos_j_base = ComplexScalar( + // numext::cos(M_PI / line_len), numext::sin(M_PI / line_len)); + // pos_j_base_powered[1] = pos_j_base; + // if (line_len > 2) { + // const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base; + // for (int i = 2; i < line_len + 1; ++i) { + // pos_j_base_powered[i] = pos_j_base_powered[i - 1] * + // pos_j_base_powered[i - 1] / + // pos_j_base_powered[i - 2] * + // pos_j_base_sq; + // } + // } + // } + // TODO(rmlarsen): Find a way to use Eigen's vectorized sin + // and cosine functions here. + for (int j = 0; j < line_len + 1; ++j) { + double arg = ((EIGEN_PI * j) * j) / line_len; + std::complex<double> tmp(numext::cos(arg), numext::sin(arg)); + pos_j_base_powered[j] = static_cast<ComplexScalar>(tmp); + } + } + + for (Index partial_index = 0; partial_index < m_size / line_len; ++partial_index) { + const Index base_offset = getBaseOffsetFromIndex(partial_index, dim); + + // get data into line_buf + const Index stride = m_strides[dim]; + if (stride == 1) { + m_device.memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar)); + } else { + Index offset = base_offset; + for (int j = 0; j < line_len; ++j, offset += stride) { + line_buf[j] = buf[offset]; + } + } + + // process the line + if (is_power_of_two) { + processDataLineCooleyTukey(line_buf, line_len, log_len); + } + else { + processDataLineBluestein(line_buf, line_len, good_composite, log_len, a, b, pos_j_base_powered); + } + + // write back + if (FFTDir == FFT_FORWARD && stride == 1) { + m_device.memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar)); + } else { + Index offset = base_offset; + const ComplexScalar div_factor = ComplexScalar(1.0 / line_len, 0); + for (int j = 0; j < line_len; ++j, offset += stride) { + buf[offset] = (FFTDir == FFT_FORWARD) ? line_buf[j] : line_buf[j] * div_factor; + } + } + } + m_device.deallocate(line_buf); + if (!is_power_of_two) { + m_device.deallocate(a); + m_device.deallocate(b); + m_device.deallocate(pos_j_base_powered); + } + } + + if(!write_to_out) { + for (Index i = 0; i < m_size; ++i) { + data[i] = PartOf<FFTResultType>()(buf[i]); + } + m_device.deallocate(buf); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static bool isPowerOfTwo(Index x) { + eigen_assert(x > 0); + return !(x & (x - 1)); + } + + // The composite number for padding, used in Bluestein's FFT algorithm + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index findGoodComposite(Index n) { + Index i = 2; + while (i < 2 * n - 1) i *= 2; + return i; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index getLog2(Index m) { + Index log2m = 0; + while (m >>= 1) log2m++; + return log2m; + } + + // Call Cooley Tukey algorithm directly, data length must be power of 2 + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineCooleyTukey(ComplexScalar* line_buf, Index line_len, Index log_len) { + eigen_assert(isPowerOfTwo(line_len)); + scramble_FFT(line_buf, line_len); + compute_1D_Butterfly<FFTDir>(line_buf, line_len, log_len); + } + + // Call Bluestein's FFT algorithm, m is a good composite number greater than (2 * n - 1), used as the padding length + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineBluestein(ComplexScalar* line_buf, Index line_len, Index good_composite, Index log_len, ComplexScalar* a, ComplexScalar* b, const ComplexScalar* pos_j_base_powered) { + Index n = line_len; + Index m = good_composite; + ComplexScalar* data = line_buf; + + for (Index i = 0; i < n; ++i) { + if(FFTDir == FFT_FORWARD) { + a[i] = data[i] * numext::conj(pos_j_base_powered[i]); + } + else { + a[i] = data[i] * pos_j_base_powered[i]; + } + } + for (Index i = n; i < m; ++i) { + a[i] = ComplexScalar(0, 0); + } + + for (Index i = 0; i < n; ++i) { + if(FFTDir == FFT_FORWARD) { + b[i] = pos_j_base_powered[i]; + } + else { + b[i] = numext::conj(pos_j_base_powered[i]); + } + } + for (Index i = n; i < m - n; ++i) { + b[i] = ComplexScalar(0, 0); + } + for (Index i = m - n; i < m; ++i) { + if(FFTDir == FFT_FORWARD) { + b[i] = pos_j_base_powered[m-i]; + } + else { + b[i] = numext::conj(pos_j_base_powered[m-i]); + } + } + + scramble_FFT(a, m); + compute_1D_Butterfly<FFT_FORWARD>(a, m, log_len); + + scramble_FFT(b, m); + compute_1D_Butterfly<FFT_FORWARD>(b, m, log_len); + + for (Index i = 0; i < m; ++i) { + a[i] *= b[i]; + } + + scramble_FFT(a, m); + compute_1D_Butterfly<FFT_REVERSE>(a, m, log_len); + + //Do the scaling after ifft + for (Index i = 0; i < m; ++i) { + a[i] /= m; + } + + for (Index i = 0; i < n; ++i) { + if(FFTDir == FFT_FORWARD) { + data[i] = a[i] * numext::conj(pos_j_base_powered[i]); + } + else { + data[i] = a[i] * pos_j_base_powered[i]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void scramble_FFT(ComplexScalar* data, Index n) { + eigen_assert(isPowerOfTwo(n)); + Index j = 1; + for (Index i = 1; i < n; ++i){ + if (j > i) { + std::swap(data[j-1], data[i-1]); + } + Index m = n >> 1; + while (m >= 2 && j > m) { + j -= m; + m >>= 1; + } + j += m; + } + } + + template <int Dir> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_2(ComplexScalar* data) { + ComplexScalar tmp = data[1]; + data[1] = data[0] - data[1]; + data[0] += tmp; + } + + template <int Dir> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_4(ComplexScalar* data) { + ComplexScalar tmp[4]; + tmp[0] = data[0] + data[1]; + tmp[1] = data[0] - data[1]; + tmp[2] = data[2] + data[3]; + if (Dir == FFT_FORWARD) { + tmp[3] = ComplexScalar(0.0, -1.0) * (data[2] - data[3]); + } else { + tmp[3] = ComplexScalar(0.0, 1.0) * (data[2] - data[3]); + } + data[0] = tmp[0] + tmp[2]; + data[1] = tmp[1] + tmp[3]; + data[2] = tmp[0] - tmp[2]; + data[3] = tmp[1] - tmp[3]; + } + + template <int Dir> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_8(ComplexScalar* data) { + ComplexScalar tmp_1[8]; + ComplexScalar tmp_2[8]; + + tmp_1[0] = data[0] + data[1]; + tmp_1[1] = data[0] - data[1]; + tmp_1[2] = data[2] + data[3]; + if (Dir == FFT_FORWARD) { + tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, -1); + } else { + tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, 1); + } + tmp_1[4] = data[4] + data[5]; + tmp_1[5] = data[4] - data[5]; + tmp_1[6] = data[6] + data[7]; + if (Dir == FFT_FORWARD) { + tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, -1); + } else { + tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, 1); + } + tmp_2[0] = tmp_1[0] + tmp_1[2]; + tmp_2[1] = tmp_1[1] + tmp_1[3]; + tmp_2[2] = tmp_1[0] - tmp_1[2]; + tmp_2[3] = tmp_1[1] - tmp_1[3]; + tmp_2[4] = tmp_1[4] + tmp_1[6]; +// SQRT2DIV2 = sqrt(2)/2 +#define SQRT2DIV2 0.7071067811865476 + if (Dir == FFT_FORWARD) { + tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, -SQRT2DIV2); + tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, -1); + tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, -SQRT2DIV2); + } else { + tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, SQRT2DIV2); + tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, 1); + tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, SQRT2DIV2); + } + data[0] = tmp_2[0] + tmp_2[4]; + data[1] = tmp_2[1] + tmp_2[5]; + data[2] = tmp_2[2] + tmp_2[6]; + data[3] = tmp_2[3] + tmp_2[7]; + data[4] = tmp_2[0] - tmp_2[4]; + data[5] = tmp_2[1] - tmp_2[5]; + data[6] = tmp_2[2] - tmp_2[6]; + data[7] = tmp_2[3] - tmp_2[7]; + } + + template <int Dir> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_1D_merge( + ComplexScalar* data, Index n, Index n_power_of_2) { + // Original code: + // RealScalar wtemp = std::sin(M_PI/n); + // RealScalar wpi = -std::sin(2 * M_PI/n); + const RealScalar wtemp = m_sin_PI_div_n_LUT[n_power_of_2]; + const RealScalar wpi = (Dir == FFT_FORWARD) + ? m_minus_sin_2_PI_div_n_LUT[n_power_of_2] + : -m_minus_sin_2_PI_div_n_LUT[n_power_of_2]; + + const ComplexScalar wp(wtemp, wpi); + const ComplexScalar wp_one = wp + ComplexScalar(1, 0); + const ComplexScalar wp_one_2 = wp_one * wp_one; + const ComplexScalar wp_one_3 = wp_one_2 * wp_one; + const ComplexScalar wp_one_4 = wp_one_3 * wp_one; + const Index n2 = n / 2; + ComplexScalar w(1.0, 0.0); + for (Index i = 0; i < n2; i += 4) { + ComplexScalar temp0(data[i + n2] * w); + ComplexScalar temp1(data[i + 1 + n2] * w * wp_one); + ComplexScalar temp2(data[i + 2 + n2] * w * wp_one_2); + ComplexScalar temp3(data[i + 3 + n2] * w * wp_one_3); + w = w * wp_one_4; + + data[i + n2] = data[i] - temp0; + data[i] += temp0; + + data[i + 1 + n2] = data[i + 1] - temp1; + data[i + 1] += temp1; + + data[i + 2 + n2] = data[i + 2] - temp2; + data[i + 2] += temp2; + + data[i + 3 + n2] = data[i + 3] - temp3; + data[i + 3] += temp3; + } + } + + template <int Dir> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_1D_Butterfly( + ComplexScalar* data, Index n, Index n_power_of_2) { + eigen_assert(isPowerOfTwo(n)); + if (n > 8) { + compute_1D_Butterfly<Dir>(data, n / 2, n_power_of_2 - 1); + compute_1D_Butterfly<Dir>(data + n / 2, n / 2, n_power_of_2 - 1); + butterfly_1D_merge<Dir>(data, n, n_power_of_2); + } else if (n == 8) { + butterfly_8<Dir>(data); + } else if (n == 4) { + butterfly_4<Dir>(data); + } else if (n == 2) { + butterfly_2<Dir>(data); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getBaseOffsetFromIndex(Index index, Index omitted_dim) const { + Index result = 0; + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > omitted_dim; --i) { + const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim]; + const Index idx = index / partial_m_stride; + index -= idx * partial_m_stride; + result += idx * m_strides[i]; + } + result += index; + } + else { + for (Index i = 0; i < omitted_dim; ++i) { + const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim]; + const Index idx = index / partial_m_stride; + index -= idx * partial_m_stride; + result += idx * m_strides[i]; + } + result += index; + } + // Value of index_coords[omitted_dim] is not determined to this step + return result; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getIndexFromOffset(Index base, Index omitted_dim, Index offset) const { + Index result = base + offset * m_strides[omitted_dim] ; + return result; + } + + protected: + Index m_size; + const FFT EIGEN_DEVICE_REF m_fft; + Dimensions m_dimensions; + array<Index, NumDims> m_strides; + TensorEvaluator<ArgType, Device> m_impl; + EvaluatorPointerType m_data; + const Device EIGEN_DEVICE_REF m_device; + + // This will support a maximum FFT size of 2^32 for each dimension + // m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2; + const RealScalar m_sin_PI_div_n_LUT[32] = { + RealScalar(0.0), + RealScalar(-2), + RealScalar(-0.999999999999999), + RealScalar(-0.292893218813453), + RealScalar(-0.0761204674887130), + RealScalar(-0.0192147195967696), + RealScalar(-0.00481527332780311), + RealScalar(-0.00120454379482761), + RealScalar(-3.01181303795779e-04), + RealScalar(-7.52981608554592e-05), + RealScalar(-1.88247173988574e-05), + RealScalar(-4.70619042382852e-06), + RealScalar(-1.17654829809007e-06), + RealScalar(-2.94137117780840e-07), + RealScalar(-7.35342821488550e-08), + RealScalar(-1.83835707061916e-08), + RealScalar(-4.59589268710903e-09), + RealScalar(-1.14897317243732e-09), + RealScalar(-2.87243293150586e-10), + RealScalar( -7.18108232902250e-11), + RealScalar(-1.79527058227174e-11), + RealScalar(-4.48817645568941e-12), + RealScalar(-1.12204411392298e-12), + RealScalar(-2.80511028480785e-13), + RealScalar(-7.01277571201985e-14), + RealScalar(-1.75319392800498e-14), + RealScalar(-4.38298482001247e-15), + RealScalar(-1.09574620500312e-15), + RealScalar(-2.73936551250781e-16), + RealScalar(-6.84841378126949e-17), + RealScalar(-1.71210344531737e-17), + RealScalar(-4.28025861329343e-18) + }; + + // m_minus_sin_2_PI_div_n_LUT[i] = -std::sin(2 * M_PI / std::pow(2,i)); + const RealScalar m_minus_sin_2_PI_div_n_LUT[32] = { + RealScalar(0.0), + RealScalar(0.0), + RealScalar(-1.00000000000000e+00), + RealScalar(-7.07106781186547e-01), + RealScalar(-3.82683432365090e-01), + RealScalar(-1.95090322016128e-01), + RealScalar(-9.80171403295606e-02), + RealScalar(-4.90676743274180e-02), + RealScalar(-2.45412285229123e-02), + RealScalar(-1.22715382857199e-02), + RealScalar(-6.13588464915448e-03), + RealScalar(-3.06795676296598e-03), + RealScalar(-1.53398018628477e-03), + RealScalar(-7.66990318742704e-04), + RealScalar(-3.83495187571396e-04), + RealScalar(-1.91747597310703e-04), + RealScalar(-9.58737990959773e-05), + RealScalar(-4.79368996030669e-05), + RealScalar(-2.39684498084182e-05), + RealScalar(-1.19842249050697e-05), + RealScalar(-5.99211245264243e-06), + RealScalar(-2.99605622633466e-06), + RealScalar(-1.49802811316901e-06), + RealScalar(-7.49014056584716e-07), + RealScalar(-3.74507028292384e-07), + RealScalar(-1.87253514146195e-07), + RealScalar(-9.36267570730981e-08), + RealScalar(-4.68133785365491e-08), + RealScalar(-2.34066892682746e-08), + RealScalar(-1.17033446341373e-08), + RealScalar(-5.85167231706864e-09), + RealScalar(-2.92583615853432e-09) + }; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FFT_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorFixedSize.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorFixedSize.h new file mode 100644 index 0000000..ca39bb8 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorFixedSize.h @@ -0,0 +1,379 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H +#define EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H + +namespace Eigen { + +/** \class TensorFixedSize + * \ingroup CXX11_Tensor_Module + * + * \brief The fixed sized version of the tensor class. + * + * The fixed sized equivalent of + * Eigen::Tensor<float, 3> t(3, 5, 7); + * is + * Eigen::TensorFixedSize<float, Sizes<3,5,7>> t; + */ + +template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType> +class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > +{ + public: + typedef TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> Self; + typedef TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > Base; + typedef typename Eigen::internal::nested<Self>::type Nested; + typedef typename internal::traits<Self>::StorageKind StorageKind; + typedef typename internal::traits<Self>::Index Index; + typedef Scalar_ Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename Base::CoeffReturnType CoeffReturnType; + + static const int Options = Options_; + + enum { + IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0), + PacketAccess = (internal::packet_traits<Scalar>::size > 1), + BlockAccess = false, + PreferBlockAccess = false, + Layout = Options_ & RowMajor ? RowMajor : ColMajor, + CoordAccess = true, + RawAccess = true + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + typedef Dimensions_ Dimensions; + static const std::size_t NumIndices = Dimensions::count; + + protected: + TensorStorage<Scalar, Dimensions, Options> m_storage; + + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } + + // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + // work, because that uses base().coeffRef() - and we don't yet + // implement a similar class hierarchy + inline Self& base() { return *this; } + inline const Self& base() const { return *this; } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, IndexTypes... otherIndices) const + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeff(array<Index, NumIndices>{{firstIndex, otherIndices...}}); + } +#endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const + { + eigen_internal_assert(checkIndexRange(indices)); + return m_storage.data()[linearizedIndex(indices)]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const + { + eigen_internal_assert(index >= 0 && index < size()); + return m_storage.data()[index]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& coeff() const + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return m_storage.data()[0]; + } + + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices) + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeffRef(array<Index, NumIndices>{{firstIndex, otherIndices...}}); + } +#endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) + { + eigen_internal_assert(checkIndexRange(indices)); + return m_storage.data()[linearizedIndex(indices)]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) + { + eigen_internal_assert(index >= 0 && index < size()); + return m_storage.data()[index]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return m_storage.data()[0]; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) const + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return this->operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}}); + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const + { + if (Options&RowMajor) { + const Index index = i1 + i0 * m_storage.dimensions()[1]; + return m_storage.data()[index]; + } else { + const Index index = i0 + i1 * m_storage.dimensions()[0]; + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const + { + if (Options&RowMajor) { + const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2); + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const + { + if (Options&RowMajor) { + const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3)); + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const + { + if (Options&RowMajor) { + const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0))); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4))); + return m_storage.data()[index]; + } + } +#endif + + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const + { + eigen_assert(checkIndexRange(indices)); + return coeff(indices); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const + { + eigen_internal_assert(index >= 0 && index < size()); + return coeff(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator()() const + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeff(); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const + { + // The bracket operator is only for vectors, use the parenthesis operator instead. + EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeff(index); + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) + { + // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + return operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}}); + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) + { + if (Options&RowMajor) { + const Index index = i1 + i0 * m_storage.dimensions()[1]; + return m_storage.data()[index]; + } else { + const Index index = i0 + i1 * m_storage.dimensions()[0]; + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) + { + if (Options&RowMajor) { + const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2); + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) + { + if (Options&RowMajor) { + const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3)); + return m_storage.data()[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) + { + if (Options&RowMajor) { + const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0))); + return m_storage.data()[index]; + } else { + const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4))); + return m_storage.data()[index]; + } + } +#endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) + { + eigen_assert(checkIndexRange(indices)); + return coeffRef(indices); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index index) + { + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); + return coeffRef(); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator[](Index index) + { + // The bracket operator is only for vectors, use the parenthesis operator instead + EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE) + return coeffRef(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorFixedSize() + : m_storage() + { + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorFixedSize(const Self& other) + : m_storage(other.m_storage) + { + } + +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(Self&& other) + : m_storage(other.m_storage) + { + } +#endif + + template<typename OtherDerived> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, ReadOnlyAccessors>& other) + { + typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign; + Assign assign(*this, other.derived()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + } + template<typename OtherDerived> + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, WriteAccessors>& other) + { + typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign; + Assign assign(*this, other.derived()); + internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); + } + + // FIXME: check that the dimensions of other match the dimensions of *this. + // Unfortunately this isn't possible yet when the rhs is an expression. + EIGEN_TENSOR_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(TensorFixedSize) + + + protected: + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE bool checkIndexRange(const array<Index, NumIndices>& /*indices*/) const + { + using internal::array_apply_and_reduce; + using internal::array_zip_and_reduce; + using internal::greater_equal_zero_op; + using internal::logical_and_op; + using internal::lesser_op; + + return true; + // check whether the indices are all >= 0 + /* array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) && + // check whether the indices fit in the dimensions + array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());*/ + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const + { + if (Options&RowMajor) { + return m_storage.dimensions().IndexOfRowMajor(indices); + } else { + return m_storage.dimensions().IndexOfColMajor(indices); + } + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorForcedEval.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorForcedEval.h new file mode 100644 index 0000000..e800ded --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorForcedEval.h @@ -0,0 +1,237 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H +#define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H + +namespace Eigen { + +/** \class TensorForcedEval + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reshaping class. + * + * + */ +namespace internal { +template<typename XprType> +struct traits<TensorForcedEvalOp<XprType> > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename traits<XprType>::StorageKind StorageKind; + typedef typename traits<XprType>::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; + + enum { + Flags = 0 + }; +}; + +template<typename XprType> +struct eval<TensorForcedEvalOp<XprType>, Eigen::Dense> +{ + typedef const TensorForcedEvalOp<XprType>& type; +}; + +template<typename XprType> +struct nested<TensorForcedEvalOp<XprType>, 1, typename eval<TensorForcedEvalOp<XprType> >::type> +{ + typedef TensorForcedEvalOp<XprType> type; +}; + +} // end namespace internal + + + +template<typename XprType> +class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested; + typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr) + : m_xpr(expr) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; +}; + +namespace internal { +template <typename Device, typename CoeffReturnType> +struct non_integral_type_placement_new{ + template <typename StorageType> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(Index numValues, StorageType m_buffer) { + // Initialize non-trivially constructible types. + if (!internal::is_arithmetic<CoeffReturnType>::value) { + for (Index i = 0; i < numValues; ++i) new (m_buffer + i) CoeffReturnType(); + } +} +}; + +// SYCL does not support non-integral types +// having new (m_buffer + i) CoeffReturnType() causes the following compiler error for SYCL Devices +// no matching function for call to 'operator new' +template <typename CoeffReturnType> +struct non_integral_type_placement_new<Eigen::SyclDevice, CoeffReturnType> { + template <typename StorageType> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(Index, StorageType) { +} +}; +} // end namespace internal + +template<typename ArgType_, typename Device> +struct TensorEvaluator<const TensorForcedEvalOp<ArgType_>, Device> +{ + typedef const typename internal::remove_all<ArgType_>::type ArgType; + typedef TensorForcedEvalOp<ArgType> XprType; + typedef typename ArgType::Scalar Scalar; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + typedef typename XprType::Index Index; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = true, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = internal::is_arithmetic<CoeffReturnType>::value, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = true + }; + + static const int NumDims = internal::traits<ArgType>::NumDimensions; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_op(op.expression()), + m_device(device), m_buffer(NULL) + { } + + EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + const Index numValues = internal::array_prod(m_impl.dimensions()); + m_buffer = m_device.get((CoeffReturnType*)m_device.allocate_temp(numValues * sizeof(CoeffReturnType))); + + internal::non_integral_type_placement_new<Device, CoeffReturnType>()(numValues, m_buffer); + + typedef TensorEvalToOp< const typename internal::remove_const<ArgType>::type > EvalTo; + EvalTo evalToTmp(m_device.get(m_buffer), m_op); + + internal::TensorExecutor< + const EvalTo, typename internal::remove_const<Device>::type, + /*Vectorizable=*/internal::IsVectorizable<Device, const ArgType>::value, + /*Tiling=*/internal::IsTileable<Device, const ArgType>::value>:: + run(evalToTmp, m_device); + + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + const Index numValues = internal::array_prod(m_impl.dimensions()); + m_buffer = m_device.get((CoeffReturnType*)m_device.allocate_temp( + numValues * sizeof(CoeffReturnType))); + typedef TensorEvalToOp<const typename internal::remove_const<ArgType>::type> + EvalTo; + EvalTo evalToTmp(m_device.get(m_buffer), m_op); + + auto on_done = std::bind([](EvalSubExprsCallback done_) { done_(true); }, + std::move(done)); + internal::TensorAsyncExecutor< + const EvalTo, typename internal::remove_const<Device>::type, + decltype(on_done), + /*Vectorizable=*/internal::IsVectorizable<Device, const ArgType>::value, + /*Tiling=*/internal::IsTileable<Device, const ArgType>::value>:: + runAsync(evalToTmp, m_device, std::move(on_done)); + } +#endif + + EIGEN_STRONG_INLINE void cleanup() { + m_device.deallocate_temp(m_buffer); + m_buffer = NULL; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_buffer[index]; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return internal::TensorBlockResourceRequirements::any(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + assert(m_buffer != NULL); + return TensorBlock::materialize(m_buffer, m_impl.dimensions(), desc, scratch); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + EvaluatorPointerType data() const { return m_buffer; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_buffer.bind(cgh); + m_impl.bind(cgh); + } +#endif + private: + TensorEvaluator<ArgType, Device> m_impl; + const ArgType m_op; + const Device EIGEN_DEVICE_REF m_device; + EvaluatorPointerType m_buffer; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorForwardDeclarations.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorForwardDeclarations.h new file mode 100644 index 0000000..246ebe4 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorForwardDeclarations.h @@ -0,0 +1,191 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H +#define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H + +namespace Eigen { + +// MakePointer class is used as a container of the address space of the pointer +// on the host and on the device. From the host side it generates the T* pointer +// and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to +// T* m_data on the host. It is always called on the device. +// Specialisation of MakePointer class for creating the sycl buffer with +// map_allocator. +template<typename T> struct MakePointer { + typedef T* Type; + typedef const T* ConstType; +}; + +template <typename T> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T* constCast(const T* data) { + return const_cast<T*>(data); +} + +// The StorageMemory class is a container of the device specific pointer +// used for refering to a Pointer on TensorEvaluator class. While the TensorExpression +// is a device-agnostic type and need MakePointer class for type conversion, +// the TensorEvaluator class can be specialized for a device, hence it is possible +// to construct different types of temproray storage memory in TensorEvaluator +// for different devices by specializing the following StorageMemory class. +template<typename T, typename device> struct StorageMemory: MakePointer <T> {}; + +namespace internal{ +template<typename A, typename B> struct Pointer_type_promotion { + static const bool val=false; +}; +template<typename A> struct Pointer_type_promotion<A, A> { + static const bool val = true; +}; +template<typename A, typename B> struct TypeConversion { + typedef A* type; +}; +} + + +template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap; +template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor; +template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize; +template<typename PlainObjectType> class TensorRef; +template<typename Derived, int AccessLevel> class TensorBase; + +template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp; +template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp; +template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp; +template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp; +template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp; +template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp; +template<typename XprType> class TensorIndexTupleOp; +template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp; +template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp; +template<typename Dimensions, typename LeftXprType, typename RightXprType, typename OutputKernelType> class TensorContractionOp; +template<typename TargetType, typename XprType> class TensorConversionOp; +template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp; +template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp; +template<typename PatchDim, typename XprType> class TensorPatchOp; +template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp; +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp; +template<typename Broadcast, typename XprType> class TensorBroadcastingOp; +template<DenseIndex DimId, typename XprType> class TensorChippingOp; +template<typename NewDimensions, typename XprType> class TensorReshapingOp; +template<typename XprType> class TensorLayoutSwapOp; +template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp; +template<typename ReverseDimensions, typename XprType> class TensorReverseOp; +template<typename PaddingDimensions, typename XprType> class TensorPaddingOp; +template<typename Shuffle, typename XprType> class TensorShufflingOp; +template<typename Strides, typename XprType> class TensorStridingOp; +template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp; +template<typename Strides, typename XprType> class TensorInflationOp; +template<typename Generator, typename XprType> class TensorGeneratorOp; +template<typename LeftXprType, typename RightXprType> class TensorAssignOp; +template<typename Op, typename XprType> class TensorScanOp; +template<typename Dims, typename XprType> class TensorTraceOp; + +template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp; +template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp; + +template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp; +template<typename XprType> class TensorForcedEvalOp; + +template<typename ExpressionType, typename DeviceType> class TensorDevice; +template<typename ExpressionType, typename DeviceType, typename DoneCallback> class TensorAsyncDevice; +template<typename Derived, typename Device> struct TensorEvaluator; + +struct NoOpOutputKernel; + +struct DefaultDevice; +struct ThreadPoolDevice; +struct GpuDevice; +struct SyclDevice; + +#ifdef EIGEN_USE_SYCL + +template <typename T> struct MakeSYCLPointer { + typedef Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T> Type; +}; + +template <typename T> +EIGEN_STRONG_INLINE const Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T>& +constCast(const Eigen::TensorSycl::internal::RangeAccess<cl::sycl::access::mode::read_write, T>& data) { + return data; +} + +template <typename T> +struct StorageMemory<T, SyclDevice> : MakeSYCLPointer<T> {}; +template <typename T> +struct StorageMemory<T, const SyclDevice> : StorageMemory<T, SyclDevice> {}; + +namespace TensorSycl { +namespace internal{ +template <typename Evaluator, typename Op> class GenericNondeterministicReducer; +} +} +#endif + + +enum FFTResultType { + RealPart = 0, + ImagPart = 1, + BothParts = 2 +}; + +enum FFTDirection { + FFT_FORWARD = 0, + FFT_REVERSE = 1 +}; + + +namespace internal { + +template <typename Device, typename Expression> +struct IsVectorizable { + static const bool value = TensorEvaluator<Expression, Device>::PacketAccess; +}; + +template <typename Expression> +struct IsVectorizable<GpuDevice, Expression> { + static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess && + TensorEvaluator<Expression, GpuDevice>::IsAligned; +}; + +// Tiled evaluation strategy. +enum TiledEvaluation { + Off = 0, // tiled evaluation is not supported + On = 1, // still work in progress (see TensorBlock.h) +}; + +template <typename Device, typename Expression> +struct IsTileable { + // Check that block evaluation is supported and it's a preferred option (at + // least one sub-expression has much faster block evaluation, e.g. + // broadcasting). + static const bool BlockAccess = + TensorEvaluator<Expression, Device>::BlockAccess && + TensorEvaluator<Expression, Device>::PreferBlockAccess; + + static const TiledEvaluation value = + BlockAccess ? TiledEvaluation::On : TiledEvaluation::Off; +}; + +template <typename Expression, typename Device, + bool Vectorizable = IsVectorizable<Device, Expression>::value, + TiledEvaluation Tiling = IsTileable<Device, Expression>::value> +class TensorExecutor; + +template <typename Expression, typename Device, typename DoneCallback, + bool Vectorizable = IsVectorizable<Device, Expression>::value, + TiledEvaluation Tiling = IsTileable<Device, Expression>::value> +class TensorAsyncExecutor; + + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorFunctors.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorFunctors.h new file mode 100644 index 0000000..d963032 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorFunctors.h @@ -0,0 +1,488 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H +#define EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H + +namespace Eigen { +namespace internal { + + +/** \internal + * \brief Template functor to compute the modulo between an array and a scalar. + */ +template <typename Scalar> +struct scalar_mod_op { + EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a % m_divisor; } + const Scalar m_divisor; +}; +template <typename Scalar> +struct functor_traits<scalar_mod_op<Scalar> > +{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; }; + + +/** \internal + * \brief Template functor to compute the modulo between 2 arrays. + */ +template <typename Scalar> +struct scalar_mod2_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; } +}; +template <typename Scalar> +struct functor_traits<scalar_mod2_op<Scalar> > +{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; }; + +template <typename Scalar> +struct scalar_fmod_op { + EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op) + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar + operator()(const Scalar& a, const Scalar& b) const { + return numext::fmod(a, b); + } +}; +template <typename Scalar> +struct functor_traits<scalar_fmod_op<Scalar> > { + enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell. + PacketAccess = false }; +}; + +template<typename Reducer, typename Device> +struct reducer_traits { + enum { + Cost = 1, + PacketAccess = false, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + +// Standard reduction functors +template <typename T> struct SumReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { + internal::scalar_sum_op<T> sum_op; + *accum = sum_op(*accum, t); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { + (*accum) = padd<Packet>(*accum, p); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + internal::scalar_cast_op<int, T> conv; + return conv(0); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { + return pset1<Packet>(initialize()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + return accum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { + return vaccum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { + internal::scalar_sum_op<T> sum_op; + return sum_op(saccum, predux(vaccum)); + } +}; + +template <typename T, typename Device> +struct reducer_traits<SumReducer<T>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = PacketType<T, Device>::HasAdd, + IsStateful = false, + IsExactlyAssociative = NumTraits<T>::IsInteger + }; +}; + +template <typename T> struct MeanReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + MeanReducer() : scalarCount_(0), packetCount_(0) { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) { + internal::scalar_sum_op<T> sum_op; + *accum = sum_op(*accum, t); + scalarCount_++; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) { + (*accum) = padd<Packet>(*accum, p); + packetCount_++; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + internal::scalar_cast_op<int, T> conv; + return conv(0); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { + return pset1<Packet>(initialize()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + internal::scalar_quotient_op<T> quotient_op; + return quotient_op(accum, T(scalarCount_)); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { + return pdiv(vaccum, pset1<Packet>(T(packetCount_))); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { + internal::scalar_sum_op<T> sum_op; + internal::scalar_quotient_op<T> quotient_op; + return quotient_op( + sum_op(saccum, predux(vaccum)), + T(scalarCount_ + packetCount_ * unpacket_traits<Packet>::size)); + } + + protected: + DenseIndex scalarCount_; + DenseIndex packetCount_; +}; + +template <typename T, typename Device> +struct reducer_traits<MeanReducer<T>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = PacketType<T, Device>::HasAdd && + PacketType<T, Device>::HasDiv && !NumTraits<T>::IsInteger, + IsStateful = true, + IsExactlyAssociative = NumTraits<T>::IsInteger + }; +}; + + +template <typename T, bool IsMax = true, bool IsInteger = true> +struct MinMaxBottomValue { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { + return Eigen::NumTraits<T>::lowest(); + } +}; +template <typename T> +struct MinMaxBottomValue<T, true, false> { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { + return -Eigen::NumTraits<T>::infinity(); + } +}; +template <typename T> +struct MinMaxBottomValue<T, false, true> { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { + return Eigen::NumTraits<T>::highest(); + } +}; +template <typename T> +struct MinMaxBottomValue<T, false, false> { + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() { + return Eigen::NumTraits<T>::infinity(); + } +}; + + +template <typename T, int NaNPropagation=PropagateFast> struct MaxReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { + scalar_max_op<T, T, NaNPropagation> op; + *accum = op(t, *accum); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { + scalar_max_op<T, T, NaNPropagation> op; + (*accum) = op.packetOp(*accum, p); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + return MinMaxBottomValue<T, /*IsMax=*/true, Eigen::NumTraits<T>::IsInteger>::bottom_value(); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { + return pset1<Packet>(initialize()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + return accum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { + return vaccum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { + scalar_max_op<T, T, NaNPropagation> op; + return op(saccum, op.predux(vaccum)); + } +}; + +template <typename T, typename Device, int NaNPropagation> + struct reducer_traits<MaxReducer<T, NaNPropagation>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = PacketType<T, Device>::HasMax, + IsStateful = false, + IsExactlyAssociative = (NaNPropagation!=PropagateFast) + }; +}; + +template <typename T, int NaNPropagation=PropagateFast> struct MinReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { + scalar_min_op<T, T, NaNPropagation> op; + *accum = op(t, *accum); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { + scalar_min_op<T, T, NaNPropagation> op; + (*accum) = op.packetOp(*accum, p); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + return MinMaxBottomValue<T, /*IsMax=*/false, Eigen::NumTraits<T>::IsInteger>::bottom_value(); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { + return pset1<Packet>(initialize()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + return accum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { + return vaccum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { + scalar_min_op<T, T, NaNPropagation> op; + return op(saccum, op.predux(vaccum)); + } +}; + +template <typename T, typename Device, int NaNPropagation> + struct reducer_traits<MinReducer<T, NaNPropagation>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = PacketType<T, Device>::HasMin, + IsStateful = false, + IsExactlyAssociative = (NaNPropagation!=PropagateFast) + }; +}; + +template <typename T> struct ProdReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { + internal::scalar_product_op<T> prod_op; + (*accum) = prod_op(*accum, t); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const { + (*accum) = pmul<Packet>(*accum, p); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + internal::scalar_cast_op<int, T> conv; + return conv(1); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const { + return pset1<Packet>(initialize()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const { + return accum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const { + return vaccum; + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const { + internal::scalar_product_op<T> prod_op; + return prod_op(saccum, predux_mul(vaccum)); + } +}; + +template <typename T, typename Device> +struct reducer_traits<ProdReducer<T>, Device> { + enum { + Cost = NumTraits<T>::MulCost, + PacketAccess = PacketType<T, Device>::HasMul, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + + +struct AndReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const { + *accum = *accum && t; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const { + return true; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const { + return accum; + } +}; + +template <typename Device> +struct reducer_traits<AndReducer, Device> { + enum { + Cost = 1, + PacketAccess = false, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + + +struct OrReducer { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const { + *accum = *accum || t; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const { + return false; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const { + return accum; + } +}; + +template <typename Device> +struct reducer_traits<OrReducer, Device> { + enum { + Cost = 1, + PacketAccess = false, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + +// Argmin/Argmax reducers. Returns the first occurrence if multiple locations +// contain the same min/max value. +template <typename T> struct ArgMaxTupleReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const { + if (t.second < accum->second) { + return; + } else if (t.second > accum->second || accum->first > t.first ) { + *accum = t; + } + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + return T(0, NumTraits<typename T::second_type>::lowest()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const { + return accum; + } +}; + +template <typename T, typename Device> +struct reducer_traits<ArgMaxTupleReducer<T>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = false, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + + +template <typename T> struct ArgMinTupleReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const { + if (t.second > accum->second) { + return; + } else if (t.second < accum->second || accum->first > t.first) { + *accum = t; + } + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const { + return T(0, NumTraits<typename T::second_type>::highest()); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const { + return accum; + } +}; + +template <typename T, typename Device> +struct reducer_traits<ArgMinTupleReducer<T>, Device> { + enum { + Cost = NumTraits<T>::AddCost, + PacketAccess = false, + IsStateful = false, + IsExactlyAssociative = true + }; +}; + + +template <typename T, typename Index, size_t NumDims> +class GaussianGenerator { + public: + static const bool PacketAccess = false; + + EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means, + const array<T, NumDims>& std_devs) + : m_means(means) + { + EIGEN_UNROLL_LOOP + for (size_t i = 0; i < NumDims; ++i) { + m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2; + } + } + + EIGEN_DEVICE_FUNC T operator()(const array<Index, NumDims>& coordinates) const { + T tmp = T(0); + EIGEN_UNROLL_LOOP + for (size_t i = 0; i < NumDims; ++i) { + T offset = coordinates[i] - m_means[i]; + tmp += offset * offset / m_two_sigmas[i]; + } + return numext::exp(-tmp); + } + + private: + array<T, NumDims> m_means; + array<T, NumDims> m_two_sigmas; +}; + +template <typename T, typename Index, size_t NumDims> +struct functor_traits<GaussianGenerator<T, Index, NumDims> > { + enum { + Cost = NumDims * (2 * NumTraits<T>::AddCost + NumTraits<T>::MulCost + + functor_traits<scalar_quotient_op<T, T> >::Cost) + + functor_traits<scalar_exp_op<T> >::Cost, + PacketAccess = GaussianGenerator<T, Index, NumDims>::PacketAccess + }; +}; + +template <typename Scalar> +struct scalar_clamp_op { + EIGEN_DEVICE_FUNC inline scalar_clamp_op(const Scalar& _min, const Scalar& _max) : m_min(_min), m_max(_max) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar + operator()(const Scalar& x) const { + return numext::mini(numext::maxi(x, m_min), m_max); + } + template <typename Packet> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet + packetOp(const Packet& x) const { + return internal::pmin(internal::pmax(x, pset1<Packet>(m_min)), pset1<Packet>(m_max)); + } + const Scalar m_min; + const Scalar m_max; +}; +template<typename Scalar> +struct functor_traits<scalar_clamp_op<Scalar> > +{ enum { Cost = 2 * NumTraits<Scalar>::AddCost, PacketAccess = (packet_traits<Scalar>::HasMin && packet_traits<Scalar>::HasMax)}; }; + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorGenerator.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorGenerator.h new file mode 100644 index 0000000..174bf06 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorGenerator.h @@ -0,0 +1,302 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H +#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H + +namespace Eigen { + +/** \class TensorGeneratorOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor generator class. + * + * + */ +namespace internal { +template<typename Generator, typename XprType> +struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Generator, typename XprType> +struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense> +{ + typedef const TensorGeneratorOp<Generator, XprType>& type; +}; + +template<typename Generator, typename XprType> +struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type> +{ + typedef TensorGeneratorOp<Generator, XprType> type; +}; + +} // end namespace internal + + + +template<typename Generator, typename XprType> +class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested; + typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator) + : m_xpr(expr), m_generator(generator) {} + + EIGEN_DEVICE_FUNC + const Generator& generator() const { return m_generator; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const Generator m_generator; +}; + + +// Eval as rvalue +template<typename Generator, typename ArgType, typename Device> +struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device> +{ + typedef TensorGeneratorOp<Generator, ArgType> XprType; + typedef typename XprType::Index Index; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions; + static const int NumDims = internal::array_size<Dimensions>::value; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = true, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + typedef internal::TensorIntDivisor<Index> IndexDivisor; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_device(device), m_generator(op.generator()) + { + TensorEvaluator<ArgType, Device> argImpl(op.expression(), device); + m_dimensions = argImpl.dimensions(); + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_strides[0] = 1; + EIGEN_UNROLL_LOOP + for (int i = 1; i < NumDims; ++i) { + m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1]; + if (m_strides[i] != 0) m_fast_strides[i] = IndexDivisor(m_strides[i]); + } + } else { + m_strides[NumDims - 1] = 1; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 2; i >= 0; --i) { + m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1]; + if (m_strides[i] != 0) m_fast_strides[i] = IndexDivisor(m_strides[i]); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + array<Index, NumDims> coords; + extract_coordinates(index, coords); + return m_generator(coords); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + const int packetSize = PacketType<CoeffReturnType, Device>::size; + EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+packetSize-1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize]; + for (int i = 0; i < packetSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + const size_t target_size = m_device.firstLevelCacheSize(); + // TODO(ezhulenev): Generator should have a cost. + return internal::TensorBlockResourceRequirements::skewed<Scalar>( + target_size); + } + + struct BlockIteratorState { + Index stride; + Index span; + Index size; + Index count; + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + static const bool is_col_major = + static_cast<int>(Layout) == static_cast<int>(ColMajor); + + // Compute spatial coordinates for the first block element. + array<Index, NumDims> coords; + extract_coordinates(desc.offset(), coords); + array<Index, NumDims> initial_coords = coords; + + // Offset in the output block buffer. + Index offset = 0; + + // Initialize output block iterator state. Dimension in this array are + // always in inner_most -> outer_most order (col major layout). + array<BlockIteratorState, NumDims> it; + for (int i = 0; i < NumDims; ++i) { + const int dim = is_col_major ? i : NumDims - 1 - i; + it[i].size = desc.dimension(dim); + it[i].stride = i == 0 ? 1 : (it[i - 1].size * it[i - 1].stride); + it[i].span = it[i].stride * (it[i].size - 1); + it[i].count = 0; + } + eigen_assert(it[0].stride == 1); + + // Prepare storage for the materialized generator result. + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage(desc, scratch); + + CoeffReturnType* block_buffer = block_storage.data(); + + static const int packet_size = PacketType<CoeffReturnType, Device>::size; + + static const int inner_dim = is_col_major ? 0 : NumDims - 1; + const Index inner_dim_size = it[0].size; + const Index inner_dim_vectorized = inner_dim_size - packet_size; + + while (it[NumDims - 1].count < it[NumDims - 1].size) { + Index i = 0; + // Generate data for the vectorized part of the inner-most dimension. + for (; i <= inner_dim_vectorized; i += packet_size) { + for (Index j = 0; j < packet_size; ++j) { + array<Index, NumDims> j_coords = coords; // Break loop dependence. + j_coords[inner_dim] += j; + *(block_buffer + offset + i + j) = m_generator(j_coords); + } + coords[inner_dim] += packet_size; + } + // Finalize non-vectorized part of the inner-most dimension. + for (; i < inner_dim_size; ++i) { + *(block_buffer + offset + i) = m_generator(coords); + coords[inner_dim]++; + } + coords[inner_dim] = initial_coords[inner_dim]; + + // For the 1d tensor we need to generate only one inner-most dimension. + if (NumDims == 1) break; + + // Update offset. + for (i = 1; i < NumDims; ++i) { + if (++it[i].count < it[i].size) { + offset += it[i].stride; + coords[is_col_major ? i : NumDims - 1 - i]++; + break; + } + if (i != NumDims - 1) it[i].count = 0; + coords[is_col_major ? i : NumDims - 1 - i] = + initial_coords[is_col_major ? i : NumDims - 1 - i]; + offset -= it[i].span; + } + } + + return block_storage.AsTensorMaterializedBlock(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool) const { + // TODO(rmlarsen): This is just a placeholder. Define interface to make + // generators return their cost. + return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() + + TensorOpCost::MulCost<Scalar>()); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler&) const {} +#endif + + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void extract_coordinates(Index index, array<Index, NumDims>& coords) const { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_fast_strides[i]; + index -= idx * m_strides[i]; + coords[i] = idx; + } + coords[0] = index; + } else { + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_fast_strides[i]; + index -= idx * m_strides[i]; + coords[i] = idx; + } + coords[NumDims-1] = index; + } + } + + const Device EIGEN_DEVICE_REF m_device; + Dimensions m_dimensions; + array<Index, NumDims> m_strides; + array<IndexDivisor, NumDims> m_fast_strides; + Generator m_generator; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorGlobalFunctions.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorGlobalFunctions.h new file mode 100644 index 0000000..665b861 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorGlobalFunctions.h @@ -0,0 +1,33 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H +#define EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H + +namespace Eigen { + +/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given tensors. + * + * This function computes the regularized incomplete beta function (integral). + * + */ +template <typename ADerived, typename BDerived, typename XDerived> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const + TensorCwiseTernaryOp<internal::scalar_betainc_op<typename XDerived::Scalar>, + const ADerived, const BDerived, const XDerived> + betainc(const ADerived& a, const BDerived& b, const XDerived& x) { + return TensorCwiseTernaryOp< + internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived, + const BDerived, const XDerived>( + a, b, x, internal::scalar_betainc_op<typename XDerived::Scalar>()); +} + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaDefines.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaDefines.h new file mode 100644 index 0000000..cb53ce2 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaDefines.h @@ -0,0 +1,99 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2018 Deven Desai <deven.desai.amd@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H) +#define EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H + +// Note that we are using EIGEN_USE_HIP here instead of EIGEN_HIPCC...this is by design +// There is code in the Tensorflow codebase that will define EIGEN_USE_GPU, but +// for some reason gets sent to the gcc/host compiler instead of the gpu/nvcc/hipcc compiler +// When compiling such files, gcc will end up trying to pick up the CUDA headers by +// default (see the code within "unsupported/Eigen/CXX11/Tensor" that is guarded by EIGEN_USE_GPU) +// This will obviously not work when trying to compile tensorflow on a system with no CUDA +// To work around this issue for HIP systems (and leave the default behaviour intact), the +// HIP tensorflow build defines EIGEN_USE_HIP when compiling all source files, and +// "unsupported/Eigen/CXX11/Tensor" has been updated to use HIP header when EIGEN_USE_HIP is +// defined. In continuation of that requirement, the guard here needs to be EIGEN_USE_HIP as well + +#if defined(EIGEN_USE_HIP) + +#define gpuStream_t hipStream_t +#define gpuDeviceProp_t hipDeviceProp_t +#define gpuError_t hipError_t +#define gpuSuccess hipSuccess +#define gpuErrorNotReady hipErrorNotReady +#define gpuGetDeviceCount hipGetDeviceCount +#define gpuGetLastError hipGetLastError +#define gpuPeekAtLastError hipPeekAtLastError +#define gpuGetErrorName hipGetErrorName +#define gpuGetErrorString hipGetErrorString +#define gpuGetDeviceProperties hipGetDeviceProperties +#define gpuStreamDefault hipStreamDefault +#define gpuGetDevice hipGetDevice +#define gpuSetDevice hipSetDevice +#define gpuMalloc hipMalloc +#define gpuFree hipFree +#define gpuMemsetAsync hipMemsetAsync +#define gpuMemcpyAsync hipMemcpyAsync +#define gpuMemcpyDeviceToDevice hipMemcpyDeviceToDevice +#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost +#define gpuMemcpyHostToDevice hipMemcpyHostToDevice +#define gpuStreamQuery hipStreamQuery +#define gpuSharedMemConfig hipSharedMemConfig +#define gpuDeviceSetSharedMemConfig hipDeviceSetSharedMemConfig +#define gpuStreamSynchronize hipStreamSynchronize +#define gpuDeviceSynchronize hipDeviceSynchronize +#define gpuMemcpy hipMemcpy + +#else + +#define gpuStream_t cudaStream_t +#define gpuDeviceProp_t cudaDeviceProp +#define gpuError_t cudaError_t +#define gpuSuccess cudaSuccess +#define gpuErrorNotReady cudaErrorNotReady +#define gpuGetDeviceCount cudaGetDeviceCount +#define gpuGetLastError cudaGetLastError +#define gpuPeekAtLastError cudaPeekAtLastError +#define gpuGetErrorName cudaGetErrorName +#define gpuGetErrorString cudaGetErrorString +#define gpuGetDeviceProperties cudaGetDeviceProperties +#define gpuStreamDefault cudaStreamDefault +#define gpuGetDevice cudaGetDevice +#define gpuSetDevice cudaSetDevice +#define gpuMalloc cudaMalloc +#define gpuFree cudaFree +#define gpuMemsetAsync cudaMemsetAsync +#define gpuMemcpyAsync cudaMemcpyAsync +#define gpuMemcpyDeviceToDevice cudaMemcpyDeviceToDevice +#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost +#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice +#define gpuStreamQuery cudaStreamQuery +#define gpuSharedMemConfig cudaSharedMemConfig +#define gpuDeviceSetSharedMemConfig cudaDeviceSetSharedMemConfig +#define gpuStreamSynchronize cudaStreamSynchronize +#define gpuDeviceSynchronize cudaDeviceSynchronize +#define gpuMemcpy cudaMemcpy + +#endif + +// gpu_assert can be overridden +#ifndef gpu_assert + +#if defined(EIGEN_HIP_DEVICE_COMPILE) +// HIPCC do not support the use of assert on the GPU side. +#define gpu_assert(COND) +#else +#define gpu_assert(COND) assert(COND) +#endif + +#endif // gpu_assert + +#endif // EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h new file mode 100644 index 0000000..1d142f2 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h @@ -0,0 +1,44 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2018 Deven Desai <deven.desai.amd@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#if defined(EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H) + +#ifndef EIGEN_PERMANENTLY_ENABLE_GPU_HIP_CUDA_DEFINES + +#undef gpuStream_t +#undef gpuDeviceProp_t +#undef gpuError_t +#undef gpuSuccess +#undef gpuErrorNotReady +#undef gpuGetDeviceCount +#undef gpuGetErrorString +#undef gpuGetDeviceProperties +#undef gpuStreamDefault +#undef gpuGetDevice +#undef gpuSetDevice +#undef gpuMalloc +#undef gpuFree +#undef gpuMemsetAsync +#undef gpuMemcpyAsync +#undef gpuMemcpyDeviceToDevice +#undef gpuMemcpyDeviceToHost +#undef gpuMemcpyHostToDevice +#undef gpuStreamQuery +#undef gpuSharedMemConfig +#undef gpuDeviceSetSharedMemConfig +#undef gpuStreamSynchronize +#undef gpuDeviceSynchronize +#undef gpuMemcpy + +#endif // EIGEN_PERMANENTLY_ENABLE_GPU_HIP_CUDA_DEFINES + +#undef EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H + +#endif // EIGEN_CXX11_TENSOR_GPU_HIP_CUDA_DEFINES_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorIO.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorIO.h new file mode 100644 index 0000000..a901c5d --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorIO.h @@ -0,0 +1,79 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_IO_H +#define EIGEN_CXX11_TENSOR_TENSOR_IO_H + +namespace Eigen { + +namespace internal { + +// Print the tensor as a 2d matrix +template <typename Tensor, int Rank> +struct TensorPrinter { + static void run (std::ostream& os, const Tensor& tensor) { + typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar; + typedef typename Tensor::Index Index; + const Index total_size = internal::array_prod(tensor.dimensions()); + if (total_size > 0) { + const Index first_dim = Eigen::internal::array_get<0>(tensor.dimensions()); + static const int layout = Tensor::Layout; + Map<const Array<Scalar, Dynamic, Dynamic, layout> > matrix(const_cast<Scalar*>(tensor.data()), first_dim, total_size/first_dim); + os << matrix; + } + } +}; + + +// Print the tensor as a vector +template <typename Tensor> +struct TensorPrinter<Tensor, 1> { + static void run (std::ostream& os, const Tensor& tensor) { + typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar; + typedef typename Tensor::Index Index; + const Index total_size = internal::array_prod(tensor.dimensions()); + if (total_size > 0) { + Map<const Array<Scalar, Dynamic, 1> > array(const_cast<Scalar*>(tensor.data()), total_size); + os << array; + } + } +}; + + +// Print the tensor as a scalar +template <typename Tensor> +struct TensorPrinter<Tensor, 0> { + static void run (std::ostream& os, const Tensor& tensor) { + os << tensor.coeff(0); + } +}; +} + +template <typename T> +std::ostream& operator << (std::ostream& os, const TensorBase<T, ReadOnlyAccessors>& expr) { + typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator; + typedef typename Evaluator::Dimensions Dimensions; + + // Evaluate the expression if needed + TensorForcedEvalOp<const T> eval = expr.eval(); + Evaluator tensor(eval, DefaultDevice()); + tensor.evalSubExprsIfNeeded(NULL); + + // Print the result + static const int rank = internal::array_size<Dimensions>::value; + internal::TensorPrinter<Evaluator, rank>::run(os, tensor); + + // Cleanup. + tensor.cleanup(); + return os; +} + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_IO_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorImagePatch.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorImagePatch.h new file mode 100644 index 0000000..dd51850 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorImagePatch.h @@ -0,0 +1,603 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H +#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H + +namespace Eigen { + +/** \class TensorImagePatch + * \ingroup CXX11_Tensor_Module + * + * \brief Patch extraction specialized for image processing. + * This assumes that the input has a least 3 dimensions ordered as follow: + * 1st dimension: channels (of size d) + * 2nd dimension: rows (of size r) + * 3rd dimension: columns (of size c) + * There can be additional dimensions such as time (for video) or batch (for + * bulk processing after the first 3. + * Calling the image patch code with patch_rows and patch_cols is equivalent + * to calling the regular patch extraction code with parameters d, patch_rows, + * patch_cols, and 1 for all the additional dimensions. + */ +namespace internal { + +template<DenseIndex Rows, DenseIndex Cols, typename XprType> +struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType> +{ + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions + 1; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<DenseIndex Rows, DenseIndex Cols, typename XprType> +struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense> +{ + typedef const TensorImagePatchOp<Rows, Cols, XprType>& type; +}; + +template<DenseIndex Rows, DenseIndex Cols, typename XprType> +struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type> +{ + typedef TensorImagePatchOp<Rows, Cols, XprType> type; +}; + +template <typename Self, bool Vectorizable> +struct ImagePatchCopyOp { + typedef typename Self::Index Index; + typedef typename Self::Scalar Scalar; + typedef typename Self::Impl Impl; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( + const Self& self, const Index num_coeff_to_copy, const Index dst_index, + Scalar* dst_data, const Index src_index) { + const Impl& impl = self.impl(); + for (Index i = 0; i < num_coeff_to_copy; ++i) { + dst_data[dst_index + i] = impl.coeff(src_index + i); + } + } +}; + +template <typename Self> +struct ImagePatchCopyOp<Self, true> { + typedef typename Self::Index Index; + typedef typename Self::Scalar Scalar; + typedef typename Self::Impl Impl; + typedef typename packet_traits<Scalar>::type Packet; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( + const Self& self, const Index num_coeff_to_copy, const Index dst_index, + Scalar* dst_data, const Index src_index) { + const Impl& impl = self.impl(); + const Index packet_size = internal::unpacket_traits<Packet>::size; + const Index vectorized_size = + (num_coeff_to_copy / packet_size) * packet_size; + for (Index i = 0; i < vectorized_size; i += packet_size) { + Packet p = impl.template packet<Unaligned>(src_index + i); + internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, p); + } + for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) { + dst_data[dst_index + i] = impl.coeff(src_index + i); + } + } +}; + +template <typename Self> +struct ImagePatchPaddingOp { + typedef typename Self::Index Index; + typedef typename Self::Scalar Scalar; + typedef typename packet_traits<Scalar>::type Packet; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( + const Index num_coeff_to_pad, const Scalar padding_value, + const Index dst_index, Scalar* dst_data) { + const Index packet_size = internal::unpacket_traits<Packet>::size; + const Packet padded_packet = internal::pset1<Packet>(padding_value); + const Index vectorized_size = + (num_coeff_to_pad / packet_size) * packet_size; + for (Index i = 0; i < vectorized_size; i += packet_size) { + internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, + padded_packet); + } + for (Index i = vectorized_size; i < num_coeff_to_pad; ++i) { + dst_data[dst_index + i] = padding_value; + } + } +}; + +} // end namespace internal + +template<DenseIndex Rows, DenseIndex Cols, typename XprType> +class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested; + typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, + DenseIndex row_strides, DenseIndex col_strides, + DenseIndex in_row_strides, DenseIndex in_col_strides, + DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, + PaddingType padding_type, Scalar padding_value) + : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), + m_row_strides(row_strides), m_col_strides(col_strides), + m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), + m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), + m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0), + m_padding_type(padding_type), m_padding_value(padding_value) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, + DenseIndex row_strides, DenseIndex col_strides, + DenseIndex in_row_strides, DenseIndex in_col_strides, + DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, + DenseIndex padding_top, DenseIndex padding_bottom, + DenseIndex padding_left, DenseIndex padding_right, + Scalar padding_value) + : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), + m_row_strides(row_strides), m_col_strides(col_strides), + m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), + m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), + m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom), + m_padding_left(padding_left), m_padding_right(padding_right), + m_padding_type(PADDING_VALID), m_padding_value(padding_value) {} + + + EIGEN_DEVICE_FUNC + DenseIndex patch_rows() const { return m_patch_rows; } + EIGEN_DEVICE_FUNC + DenseIndex patch_cols() const { return m_patch_cols; } + EIGEN_DEVICE_FUNC + DenseIndex row_strides() const { return m_row_strides; } + EIGEN_DEVICE_FUNC + DenseIndex col_strides() const { return m_col_strides; } + EIGEN_DEVICE_FUNC + DenseIndex in_row_strides() const { return m_in_row_strides; } + EIGEN_DEVICE_FUNC + DenseIndex in_col_strides() const { return m_in_col_strides; } + EIGEN_DEVICE_FUNC + DenseIndex row_inflate_strides() const { return m_row_inflate_strides; } + EIGEN_DEVICE_FUNC + DenseIndex col_inflate_strides() const { return m_col_inflate_strides; } + EIGEN_DEVICE_FUNC + bool padding_explicit() const { return m_padding_explicit; } + EIGEN_DEVICE_FUNC + DenseIndex padding_top() const { return m_padding_top; } + EIGEN_DEVICE_FUNC + DenseIndex padding_bottom() const { return m_padding_bottom; } + EIGEN_DEVICE_FUNC + DenseIndex padding_left() const { return m_padding_left; } + EIGEN_DEVICE_FUNC + DenseIndex padding_right() const { return m_padding_right; } + EIGEN_DEVICE_FUNC + PaddingType padding_type() const { return m_padding_type; } + EIGEN_DEVICE_FUNC + Scalar padding_value() const { return m_padding_value; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const DenseIndex m_patch_rows; + const DenseIndex m_patch_cols; + const DenseIndex m_row_strides; + const DenseIndex m_col_strides; + const DenseIndex m_in_row_strides; + const DenseIndex m_in_col_strides; + const DenseIndex m_row_inflate_strides; + const DenseIndex m_col_inflate_strides; + const bool m_padding_explicit; + const DenseIndex m_padding_top; + const DenseIndex m_padding_bottom; + const DenseIndex m_padding_left; + const DenseIndex m_padding_right; + const PaddingType m_padding_type; + const Scalar m_padding_value; +}; + +// Eval as rvalue +template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device> +struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device> +{ + typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumDims = NumInputDims + 1; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, + Device> Self; + typedef TensorEvaluator<ArgType, Device> Impl; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device) + : m_device(device), m_impl(op.expression(), device) + { + EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE); + + m_paddingValue = op.padding_value(); + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + + // Caches a few variables. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputDepth = input_dims[0]; + m_inputRows = input_dims[1]; + m_inputCols = input_dims[2]; + } else { + m_inputDepth = input_dims[NumInputDims-1]; + m_inputRows = input_dims[NumInputDims-2]; + m_inputCols = input_dims[NumInputDims-3]; + } + + m_row_strides = op.row_strides(); + m_col_strides = op.col_strides(); + + // Input strides and effective input/patch size + m_in_row_strides = op.in_row_strides(); + m_in_col_strides = op.in_col_strides(); + m_row_inflate_strides = op.row_inflate_strides(); + m_col_inflate_strides = op.col_inflate_strides(); + // The "effective" input rows and input cols are the input rows and cols + // after inflating them with zeros. + // For examples, a 2x3 matrix with row_inflate_strides and + // col_inflate_strides of 2 comes from: + // A B C + // D E F + // + // to a matrix is 3 x 5: + // + // A . B . C + // . . . . . + // D . E . F + + m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1; + m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1; + m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1); + m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1); + + if (op.padding_explicit()) { + m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); + m_rowPaddingTop = op.padding_top(); + m_colPaddingLeft = op.padding_left(); + } else { + // Computing padding from the type + switch (op.padding_type()) { + case PADDING_VALID: + m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); + // Calculate the padding + m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2); + m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2); + break; + case PADDING_SAME: + m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides)); + // Calculate the padding + m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2; + m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2; + // The padding size calculation for PADDING_SAME has been updated to + // be consistent with how TensorFlow extracts its paddings. + m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop); + m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft); + break; + default: + eigen_assert(false && "unexpected padding"); + m_outputCols=0; // silence the uninitialised warning; + m_outputRows=0; //// silence the uninitialised warning; + } + } + eigen_assert(m_outputRows > 0); + eigen_assert(m_outputCols > 0); + + // Dimensions for result of extraction. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + // ColMajor + // 0: depth + // 1: patch_rows + // 2: patch_cols + // 3: number of patches + // 4 and beyond: anything else (such as batch). + m_dimensions[0] = input_dims[0]; + m_dimensions[1] = op.patch_rows(); + m_dimensions[2] = op.patch_cols(); + m_dimensions[3] = m_outputRows * m_outputCols; + for (int i = 4; i < NumDims; ++i) { + m_dimensions[i] = input_dims[i-1]; + } + } else { + // RowMajor + // NumDims-1: depth + // NumDims-2: patch_rows + // NumDims-3: patch_cols + // NumDims-4: number of patches + // NumDims-5 and beyond: anything else (such as batch). + m_dimensions[NumDims-1] = input_dims[NumInputDims-1]; + m_dimensions[NumDims-2] = op.patch_rows(); + m_dimensions[NumDims-3] = op.patch_cols(); + m_dimensions[NumDims-4] = m_outputRows * m_outputCols; + for (int i = NumDims-5; i >= 0; --i) { + m_dimensions[i] = input_dims[i]; + } + } + + // Strides for moving the patch in various dimensions. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_colStride = m_dimensions[1]; + m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0]; + m_otherStride = m_patchStride * m_dimensions[3]; + } else { + m_colStride = m_dimensions[NumDims-2]; + m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1]; + m_otherStride = m_patchStride * m_dimensions[NumDims-4]; + } + + // Strides for navigating through the input tensor. + m_rowInputStride = m_inputDepth; + m_colInputStride = m_inputDepth * m_inputRows; + m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols; + + // Fast representations of different variables. + m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride); + m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride); + m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride); + m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides); + m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides); + m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff); + + // Number of patches in the width dimension. + m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]); + } else { + m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Patch index corresponding to the passed in index. + const Index patchIndex = index / m_fastPatchStride; + // Find the offset of the element wrt the location of the first element. + const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth; + + // Other ways to index this element. + const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride; + const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; + + // Calculate col index in the input original tensor. + const Index colIndex = patch2DIndex / m_fastOutputRows; + const Index colOffset = patchOffset / m_fastColStride; + const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft; + const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0); + if (inputCol < 0 || inputCol >= m_input_cols_eff || + ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { + return Scalar(m_paddingValue); + } + + // Calculate row index in the original input tensor. + const Index rowIndex = patch2DIndex - colIndex * m_outputRows; + const Index rowOffset = patchOffset - colOffset * m_colStride; + const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop; + const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0); + if (inputRow < 0 || inputRow >= m_input_rows_eff || + ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { + return Scalar(m_paddingValue); + } + + const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; + const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; + + const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride; + return m_impl.coeff(inputIndex); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) { + return packetWithPossibleZero(index); + } + + const Index indices[2] = {index, index + PacketSize - 1}; + const Index patchIndex = indices[0] / m_fastPatchStride; + if (patchIndex != indices[1] / m_fastPatchStride) { + return packetWithPossibleZero(index); + } + const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride; + eigen_assert(otherIndex == indices[1] / m_fastOtherStride); + + // Find the offset of the element wrt the location of the first element. + const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth, + (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth}; + + const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; + eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); + + const Index colIndex = patch2DIndex / m_fastOutputRows; + const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; + + // Calculate col indices in the original input tensor. + const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] - + m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; + if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { + return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); + } + + if (inputCols[0] == inputCols[1]) { + const Index rowIndex = patch2DIndex - colIndex * m_outputRows; + const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride}; + eigen_assert(rowOffsets[0] <= rowOffsets[1]); + // Calculate col indices in the original input tensor. + const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] - + m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; + + if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { + return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); + } + + if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) { + // no padding + const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; + const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; + const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride; + return m_impl.template packet<Unaligned>(inputIndex); + } + } + + return packetWithPossibleZero(index); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + // We conservatively estimate the cost for the code path where the computed + // index is inside the original image and + // TensorEvaluator<ArgType, Device>::CoordAccess is false. + const double compute_cost = 3 * TensorOpCost::DivCost<Index>() + + 6 * TensorOpCost::MulCost<Index>() + + 8 * TensorOpCost::MulCost<Index>(); + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const + { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + Dimensions m_dimensions; + + Index m_otherStride; + Index m_patchStride; + Index m_colStride; + Index m_row_strides; + Index m_col_strides; + + Index m_in_row_strides; + Index m_in_col_strides; + Index m_row_inflate_strides; + Index m_col_inflate_strides; + + Index m_input_rows_eff; + Index m_input_cols_eff; + Index m_patch_rows_eff; + Index m_patch_cols_eff; + + internal::TensorIntDivisor<Index> m_fastOtherStride; + internal::TensorIntDivisor<Index> m_fastPatchStride; + internal::TensorIntDivisor<Index> m_fastColStride; + internal::TensorIntDivisor<Index> m_fastInflateRowStride; + internal::TensorIntDivisor<Index> m_fastInflateColStride; + internal::TensorIntDivisor<Index> m_fastInputColsEff; + + Index m_rowInputStride; + Index m_colInputStride; + Index m_patchInputStride; + + Index m_inputDepth; + Index m_inputRows; + Index m_inputCols; + + Index m_outputRows; + Index m_outputCols; + + Index m_rowPaddingTop; + Index m_colPaddingLeft; + + internal::TensorIntDivisor<Index> m_fastOutputRows; + internal::TensorIntDivisor<Index> m_fastOutputDepth; + + Scalar m_paddingValue; + + const Device EIGEN_DEVICE_REF m_device; + TensorEvaluator<ArgType, Device> m_impl; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorIndexList.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorIndexList.h new file mode 100644 index 0000000..2d8c7b9 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorIndexList.h @@ -0,0 +1,738 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H +#define EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H + + +#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES + +#define EIGEN_HAS_INDEX_LIST + +namespace Eigen { + +/** \internal + * + * \class TensorIndexList + * \ingroup CXX11_Tensor_Module + * + * \brief Set of classes used to encode a set of Tensor dimensions/indices. + * + * The indices in the list can be known at compile time or at runtime. A mix + * of static and dynamic indices can also be provided if needed. The tensor + * code will attempt to take advantage of the indices that are known at + * compile time to optimize the code it generates. + * + * This functionality requires a c++11 compliant compiler. If your compiler + * is older you need to use arrays of indices instead. + * + * Several examples are provided in the cxx11_tensor_index_list.cpp file. + * + * \sa Tensor + */ + +template <Index n> +struct type2index { + static const Index value = n; + EIGEN_DEVICE_FUNC constexpr operator Index() const { return n; } + EIGEN_DEVICE_FUNC void set(Index val) { + eigen_assert(val == n); + } +}; + +// This can be used with IndexPairList to get compile-time constant pairs, +// such as IndexPairList<type2indexpair<1,2>, type2indexpair<3,4>>(). +template <Index f, Index s> +struct type2indexpair { + static const Index first = f; + static const Index second = s; + + constexpr EIGEN_DEVICE_FUNC operator IndexPair<Index>() const { + return IndexPair<Index>(f, s); + } + + EIGEN_DEVICE_FUNC void set(const IndexPair<Index>& val) { + eigen_assert(val.first == f); + eigen_assert(val.second == s); + } +}; + + +template<Index n> struct NumTraits<type2index<n> > +{ + typedef Index Real; + enum { + IsComplex = 0, + RequireInitialization = false, + ReadCost = 1, + AddCost = 1, + MulCost = 1 + }; + + EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR EIGEN_STRONG_INLINE Real epsilon() { return 0; } + EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR EIGEN_STRONG_INLINE Real dummy_precision() { return 0; } + EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR EIGEN_STRONG_INLINE Real highest() { return n; } + EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR EIGEN_STRONG_INLINE Real lowest() { return n; } +}; + +namespace internal { +template <typename T> +EIGEN_DEVICE_FUNC void update_value(T& val, Index new_val) { + val = internal::convert_index<T>(new_val); +} +template <Index n> +EIGEN_DEVICE_FUNC void update_value(type2index<n>& val, Index new_val) { + val.set(new_val); +} + +template <typename T> +EIGEN_DEVICE_FUNC void update_value(T& val, IndexPair<Index> new_val) { + val = new_val; +} +template <Index f, Index s> +EIGEN_DEVICE_FUNC void update_value(type2indexpair<f, s>& val, IndexPair<Index> new_val) { + val.set(new_val); +} + + +template <typename T> +struct is_compile_time_constant { + static constexpr bool value = false; +}; + +template <Index idx> +struct is_compile_time_constant<type2index<idx> > { + static constexpr bool value = true; +}; +template <Index idx> +struct is_compile_time_constant<const type2index<idx> > { + static constexpr bool value = true; +}; +template <Index idx> +struct is_compile_time_constant<type2index<idx>& > { + static constexpr bool value = true; +}; +template <Index idx> +struct is_compile_time_constant<const type2index<idx>& > { + static constexpr bool value = true; +}; + +template <Index f, Index s> +struct is_compile_time_constant<type2indexpair<f, s> > { + static constexpr bool value = true; +}; +template <Index f, Index s> +struct is_compile_time_constant<const type2indexpair<f, s> > { + static constexpr bool value = true; +}; +template <Index f, Index s> +struct is_compile_time_constant<type2indexpair<f, s>& > { + static constexpr bool value = true; +}; +template <Index f, Index s> +struct is_compile_time_constant<const type2indexpair<f, s>& > { + static constexpr bool value = true; +}; + + +template<typename... T> +struct IndexTuple; + +template<typename T, typename... O> +struct IndexTuple<T, O...> { + EIGEN_DEVICE_FUNC constexpr IndexTuple() : head(), others() { } + EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v, const O... o) : head(v), others(o...) { } + + constexpr static int count = 1 + sizeof...(O); + T head; + IndexTuple<O...> others; + typedef T Head; + typedef IndexTuple<O...> Other; +}; + +template<typename T> + struct IndexTuple<T> { + EIGEN_DEVICE_FUNC constexpr IndexTuple() : head() { } + EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v) : head(v) { } + + constexpr static int count = 1; + T head; + typedef T Head; +}; + + +template<int N, typename... T> +struct IndexTupleExtractor; + +template<int N, typename T, typename... O> +struct IndexTupleExtractor<N, T, O...> { + + typedef typename IndexTupleExtractor<N-1, O...>::ValType ValType; + + EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) { + return IndexTupleExtractor<N-1, O...>::get_val(val.others); + } + + EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) { + return IndexTupleExtractor<N-1, O...>::get_val(val.others); + } + template <typename V> + EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) { + IndexTupleExtractor<N-1, O...>::set_val(val.others, new_val); + } + +}; + +template<typename T, typename... O> + struct IndexTupleExtractor<0, T, O...> { + + typedef T ValType; + + EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) { + return val.head; + } + EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) { + return val.head; + } + template <typename V> + EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) { + val.head = new_val; + } +}; + + + +template <int N, typename T, typename... O> +EIGEN_DEVICE_FUNC constexpr typename IndexTupleExtractor<N, T, O...>::ValType& array_get(IndexTuple<T, O...>& tuple) { + return IndexTupleExtractor<N, T, O...>::get_val(tuple); +} +template <int N, typename T, typename... O> +EIGEN_DEVICE_FUNC constexpr const typename IndexTupleExtractor<N, T, O...>::ValType& array_get(const IndexTuple<T, O...>& tuple) { + return IndexTupleExtractor<N, T, O...>::get_val(tuple); +} +template <typename T, typename... O> + struct array_size<IndexTuple<T, O...> > { + static const size_t value = IndexTuple<T, O...>::count; +}; +template <typename T, typename... O> + struct array_size<const IndexTuple<T, O...> > { + static const size_t value = IndexTuple<T, O...>::count; +}; + + + + +template <Index Idx, typename ValueT> +struct tuple_coeff { + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr ValueT get(const Index i, const IndexTuple<T...>& t) { + // return array_get<Idx>(t) * (i == Idx) + tuple_coeff<Idx-1>::get(i, t) * (i != Idx); + return (i == Idx ? array_get<Idx>(t) : tuple_coeff<Idx-1, ValueT>::get(i, t)); + } + template <typename... T> + EIGEN_DEVICE_FUNC static void set(const Index i, IndexTuple<T...>& t, const ValueT& value) { + if (i == Idx) { + update_value(array_get<Idx>(t), value); + } else { + tuple_coeff<Idx-1, ValueT>::set(i, t, value); + } + } + + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const Index i, const IndexTuple<T...>& t) { + return ((i == Idx) & is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value) || + tuple_coeff<Idx-1, ValueT>::value_known_statically(i, t); + } + + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>& t) { + return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && + tuple_coeff<Idx-1, ValueT>::values_up_to_known_statically(t); + } + + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>& t) { + return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && + is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value && + array_get<Idx>(t) > array_get<Idx-1>(t) && + tuple_coeff<Idx-1, ValueT>::values_up_to_statically_known_to_increase(t); + } +}; + +template <typename ValueT> +struct tuple_coeff<0, ValueT> { + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr ValueT get(const Index /*i*/, const IndexTuple<T...>& t) { + // eigen_assert (i == 0); // gcc fails to compile assertions in constexpr + return array_get<0>(t)/* * (i == 0)*/; + } + template <typename... T> + EIGEN_DEVICE_FUNC static void set(const Index i, IndexTuple<T...>& t, const ValueT value) { + eigen_assert (i == 0); + update_value(array_get<0>(t), value); + } + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const Index i, const IndexTuple<T...>&) { + return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value && (i == 0); + } + + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>&) { + return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value; + } + + template <typename... T> + EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>&) { + return true; + } +}; +} // namespace internal + + + +template<typename FirstType, typename... OtherTypes> +struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> { + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr Index operator[] (const Index i) const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::get(i, *this); + } + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr Index get(const Index i) const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::get(i, *this); + } + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const Index i, const Index value) { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::set(i, *this, value); + } + + EIGEN_DEVICE_FUNC constexpr IndexList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { } + EIGEN_DEVICE_FUNC constexpr IndexList(FirstType& first, OtherTypes... other) : internal::IndexTuple<FirstType, OtherTypes...>(first, other...) { } + EIGEN_DEVICE_FUNC constexpr IndexList() : internal::IndexTuple<FirstType, OtherTypes...>() { } + + EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const Index i) const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::value_known_statically(i, *this); + } + EIGEN_DEVICE_FUNC constexpr bool all_values_known_statically() const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::values_up_to_known_statically(*this); + } + + EIGEN_DEVICE_FUNC constexpr bool values_statically_known_to_increase() const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::values_up_to_statically_known_to_increase(*this); + } +}; + +template <typename FirstType, typename... OtherTypes> +std::ostream& operator<<(std::ostream& os, + const IndexList<FirstType, OtherTypes...>& dims) { + os << "["; + for (size_t i = 0; i < 1 + sizeof...(OtherTypes); ++i) { + if (i > 0) os << ", "; + os << dims[i]; + } + os << "]"; + return os; +} + +template<typename FirstType, typename... OtherTypes> +constexpr IndexList<FirstType, OtherTypes...> make_index_list(FirstType val1, OtherTypes... other_vals) { + return IndexList<FirstType, OtherTypes...>(val1, other_vals...); +} + + +template<typename FirstType, typename... OtherTypes> +struct IndexPairList : internal::IndexTuple<FirstType, OtherTypes...> { + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr IndexPair<Index> operator[] (const Index i) const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, IndexPair<Index>>::get(i, *this); + } + EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const Index i, const IndexPair<Index> value) { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...>>::value-1, IndexPair<Index> >::set(i, *this, value); + } + + EIGEN_DEVICE_FUNC constexpr IndexPairList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { } + EIGEN_DEVICE_FUNC constexpr IndexPairList() : internal::IndexTuple<FirstType, OtherTypes...>() { } + + EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const Index i) const { + return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, Index>::value_known_statically(i, *this); + } +}; + +namespace internal { + +template<typename FirstType, typename... OtherTypes> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index array_prod(const IndexList<FirstType, OtherTypes...>& sizes) { + Index result = 1; + EIGEN_UNROLL_LOOP + for (size_t i = 0; i < array_size<IndexList<FirstType, OtherTypes...> >::value; ++i) { + result *= sizes[i]; + } + return result; +} + +template<typename FirstType, typename... OtherTypes> struct array_size<IndexList<FirstType, OtherTypes...> > { + static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value; +}; +template<typename FirstType, typename... OtherTypes> struct array_size<const IndexList<FirstType, OtherTypes...> > { + static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value; +}; + +template<typename FirstType, typename... OtherTypes> struct array_size<IndexPairList<FirstType, OtherTypes...> > { + static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value; +}; +template<typename FirstType, typename... OtherTypes> struct array_size<const IndexPairList<FirstType, OtherTypes...> > { + static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value; +}; + +template<Index N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr Index array_get(IndexList<FirstType, OtherTypes...>& a) { + return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a); +} +template<Index N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr Index array_get(const IndexList<FirstType, OtherTypes...>& a) { + return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a); +} + +template <typename T> +struct index_known_statically_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_known_statically_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_known_statically_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i); + } +}; + + +template <typename T> +struct all_indices_known_statically_impl { + static constexpr bool run() { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct all_indices_known_statically_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return IndexList<FirstType, OtherTypes...>().all_values_known_statically(); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct all_indices_known_statically_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return IndexList<FirstType, OtherTypes...>().all_values_known_statically(); + } +}; + + +template <typename T> +struct indices_statically_known_to_increase_impl { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> + struct indices_statically_known_to_increase_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase(); + } +}; + +template <typename FirstType, typename... OtherTypes> + struct indices_statically_known_to_increase_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run() { + return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase(); + } +}; + + +template <typename Tx> +struct index_statically_eq_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_eq_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) == value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_eq_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) == value); + } +}; + + +template <typename T> +struct index_statically_ne_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_ne_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) != value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_ne_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) != value); + } +}; + + +template <typename T> +struct index_statically_gt_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_gt_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) > value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_gt_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) > value); + } +}; + + + +template <typename T> +struct index_statically_lt_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_lt_impl<IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) < value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_statically_lt_impl<const IndexList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexList<FirstType, OtherTypes...>().get(i) < value); + } +}; + + + +template <typename Tx> +struct index_pair_first_statically_eq_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_pair_first_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_pair_first_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value); + } +}; + + + +template <typename Tx> +struct index_pair_second_statically_eq_impl { + EIGEN_DEVICE_FUNC static constexpr bool run(Index, Index) { + return false; + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_pair_second_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value); + } +}; + +template <typename FirstType, typename... OtherTypes> +struct index_pair_second_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > { + EIGEN_DEVICE_FUNC static constexpr bool run(const Index i, const Index value) { + return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) & + (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value); + } +}; + + +} // end namespace internal +} // end namespace Eigen + +#else + +namespace Eigen { +namespace internal { + +template <typename T> +struct index_known_statically_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const Index) { + return false; + } +}; + +template <typename T> +struct all_indices_known_statically_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { + return false; + } +}; + +template <typename T> +struct indices_statically_known_to_increase_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() { + return false; + } +}; + +template <typename T> +struct index_statically_eq_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + +template <typename T> +struct index_statically_ne_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + +template <typename T> +struct index_statically_gt_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + +template <typename T> +struct index_statically_lt_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + +template <typename Tx> +struct index_pair_first_statically_eq_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + +template <typename Tx> +struct index_pair_second_statically_eq_impl { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(Index, Index) { + return false; + } +}; + + + +} // end namespace internal +} // end namespace Eigen + +#endif + + +namespace Eigen { +namespace internal { +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_known_statically(Index i) { + return index_known_statically_impl<T>::run(i); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool all_indices_known_statically() { + return all_indices_known_statically_impl<T>::run(); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool indices_statically_known_to_increase() { + return indices_statically_known_to_increase_impl<T>::run(); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_eq(Index i, Index value) { + return index_statically_eq_impl<T>::run(i, value); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_ne(Index i, Index value) { + return index_statically_ne_impl<T>::run(i, value); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_gt(Index i, Index value) { + return index_statically_gt_impl<T>::run(i, value); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_lt(Index i, Index value) { + return index_statically_lt_impl<T>::run(i, value); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_first_statically_eq(Index i, Index value) { + return index_pair_first_statically_eq_impl<T>::run(i, value); +} + +template <typename T> +static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_second_statically_eq(Index i, Index value) { + return index_pair_second_statically_eq_impl<T>::run(i, value); +} + +} // end namespace internal +} // end namespace Eigen + + +#endif // EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorInflation.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorInflation.h new file mode 100644 index 0000000..c5cb61a --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorInflation.h @@ -0,0 +1,247 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Ke Yang <yangke@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H +#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H + +namespace Eigen { + +/** \class TensorInflation + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor inflation class. + * + * + */ +namespace internal { +template<typename Strides, typename XprType> +struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Strides, typename XprType> +struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense> +{ + typedef const TensorInflationOp<Strides, XprType>& type; +}; + +template<typename Strides, typename XprType> +struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type> +{ + typedef TensorInflationOp<Strides, XprType> type; +}; + +} // end namespace internal + +template<typename Strides, typename XprType> +class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested; + typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides) + : m_xpr(expr), m_strides(strides) {} + + EIGEN_DEVICE_FUNC + const Strides& strides() const { return m_strides; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const Strides m_strides; +}; + +// Eval as rvalue +template<typename Strides, typename ArgType, typename Device> +struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device> +{ + typedef TensorInflationOp<Strides, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_strides(op.strides()) + { + m_dimensions = m_impl.dimensions(); + // Expand each dimension to the inflated dimension. + for (int i = 0; i < NumDims; ++i) { + m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1; + } + + // Remember the strides for fast division. + for (int i = 0; i < NumDims; ++i) { + m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]); + } + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_outputStrides[0] = 1; + m_inputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + } + } else { // RowMajor + m_outputStrides[NumDims-1] = 1; + m_inputStrides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + // Computes the input index given the output index. Returns true if the output + // index doesn't fall into a hole. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const + { + eigen_assert(index < dimensions().TotalSize()); + *inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + if (idx != idx / m_fastStrides[i] * m_strides[i]) { + return false; + } + *inputIndex += idx / m_strides[i] * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + if (index != index / m_fastStrides[0] * m_strides[0]) { + return false; + } + *inputIndex += index / m_strides[0]; + return true; + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + if (idx != idx / m_fastStrides[i] * m_strides[i]) { + return false; + } + *inputIndex += idx / m_strides[i] * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) { + return false; + } + *inputIndex += index / m_strides[NumDims - 1]; + } + return true; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + Index inputIndex = 0; + if (getInputIndex(index, &inputIndex)) { + return m_impl.coeff(inputIndex); + } else { + return Scalar(0); + } + } + + // TODO(yangke): optimize this function so that we can detect and produce + // all-zero packets + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() + + 3 * TensorOpCost::MulCost<Index>() + + 2 * TensorOpCost::AddCost<Index>()); + const double input_size = m_impl.dimensions().TotalSize(); + const double output_size = m_dimensions.TotalSize(); + if (output_size == 0) + return TensorOpCost(); + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0, + compute_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + Dimensions m_dimensions; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims> m_inputStrides; + TensorEvaluator<ArgType, Device> m_impl; + const Strides m_strides; + array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorInitializer.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorInitializer.h new file mode 100644 index 0000000..26a3818 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorInitializer.h @@ -0,0 +1,82 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H +#define EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H + +#if EIGEN_HAS_VARIADIC_TEMPLATES + +#include <initializer_list> + +namespace Eigen { + +/** \class TensorInitializer + * \ingroup CXX11_Tensor_Module + * + * \brief Helper template to initialize Tensors from std::initializer_lists. + */ +namespace internal { + +template <typename Derived, int N> +struct Initializer { + typedef std::initializer_list< + typename Initializer<Derived, N - 1>::InitList> InitList; + + static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, + Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices, + const InitList& vals) { + int i = 0; + for (const auto& v : vals) { + (*indices)[traits<Derived>::NumDimensions - N] = i++; + Initializer<Derived, N - 1>::run(tensor, indices, v); + } + } +}; + +template <typename Derived> +struct Initializer<Derived, 1> { + typedef std::initializer_list<typename traits<Derived>::Scalar> InitList; + + static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, + Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices, + const InitList& vals) { + int i = 0; + // There is likely a faster way to do that than iterating. + for (const auto& v : vals) { + (*indices)[traits<Derived>::NumDimensions - 1] = i++; + tensor.coeffRef(*indices) = v; + } + } +}; + +template <typename Derived> +struct Initializer<Derived, 0> { + typedef typename traits<Derived>::Scalar InitList; + + static void run(TensorEvaluator<Derived, DefaultDevice>& tensor, + Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>*, + const InitList& v) { + tensor.coeffRef(0) = v; + } +}; + + +template <typename Derived, int N> +void initialize_tensor(TensorEvaluator<Derived, DefaultDevice>& tensor, + const typename Initializer<Derived, traits<Derived>::NumDimensions>::InitList& vals) { + Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions> indices; + Initializer<Derived, traits<Derived>::NumDimensions>::run(tensor, &indices, vals); +} + +} // namespace internal +} // namespace Eigen + +#endif // EIGEN_HAS_VARIADIC_TEMPLATES + +#endif // EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorIntDiv.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorIntDiv.h new file mode 100644 index 0000000..6d5cce4 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorIntDiv.h @@ -0,0 +1,263 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H +#define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H + + +namespace Eigen { + +/** \internal + * + * \class TensorIntDiv + * \ingroup CXX11_Tensor_Module + * + * \brief Fast integer division by a constant. + * + * See the paper from Granlund and Montgomery for explanation. + * (at https://doi.org/10.1145/773473.178249) + * + * \sa Tensor + */ + +namespace internal { + +namespace { + + // Note: result is undefined if val == 0 + template <typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val) + { +#ifdef EIGEN_GPU_COMPILE_PHASE + return __clz(val); +#elif defined(SYCL_DEVICE_ONLY) + return cl::sycl::clz(val); +#elif EIGEN_COMP_MSVC + unsigned long index; + _BitScanReverse(&index, val); + return 31 - index; +#else + EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); + return __builtin_clz(static_cast<uint32_t>(val)); +#endif + } + + template <typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val) + { +#ifdef EIGEN_GPU_COMPILE_PHASE + return __clzll(val); +#elif defined(SYCL_DEVICE_ONLY) + return static_cast<int>(cl::sycl::clz(val)); +#elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64 + unsigned long index; + _BitScanReverse64(&index, val); + return 63 - index; +#elif EIGEN_COMP_MSVC + // MSVC's _BitScanReverse64 is not available for 32bits builds. + unsigned int lo = (unsigned int)(val&0xffffffff); + unsigned int hi = (unsigned int)((val>>32)&0xffffffff); + int n; + if(hi==0) + n = 32 + count_leading_zeros<unsigned int>(lo); + else + n = count_leading_zeros<unsigned int>(hi); + return n; +#else + EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE); + return __builtin_clzll(static_cast<uint64_t>(val)); +#endif + } + + template <typename T> + struct UnsignedTraits { + typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type; + }; + + template <typename T> + struct DividerTraits { + typedef typename UnsignedTraits<T>::type type; + static const int N = sizeof(T) * 8; + }; + + template <typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) { +#if defined(EIGEN_GPU_COMPILE_PHASE) + return __umulhi(a, b); +#elif defined(SYCL_DEVICE_ONLY) + return cl::sycl::mul_hi(a, static_cast<uint32_t>(b)); +#else + return (static_cast<uint64_t>(a) * b) >> 32; +#endif + } + + template <typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) { +#if defined(EIGEN_GPU_COMPILE_PHASE) + return __umul64hi(a, b); +#elif defined(SYCL_DEVICE_ONLY) + return cl::sycl::mul_hi(a, static_cast<uint64_t>(b)); +#elif EIGEN_HAS_BUILTIN_INT128 + __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b); + return static_cast<uint64_t>(v >> 64); +#else + return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper(); +#endif + } + + template <int N, typename T> + struct DividerHelper { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) { + EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE); + return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1); + } + }; + + template <typename T> + struct DividerHelper<64, T> { + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) { +#if EIGEN_HAS_BUILTIN_INT128 && !defined(EIGEN_GPU_COMPILE_PHASE) && !defined(SYCL_DEVICE_ONLY) + return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1); +#else + const uint64_t shift = 1ULL << log_div; + TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) + - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + + TensorUInt128<static_val<0>, static_val<1> >(1); + return static_cast<uint64_t>(result); +#endif + } + }; +} + + +template <typename T, bool div_gt_one = false> +struct TensorIntDivisor { + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { + multiplier = 0; + shift1 = 0; + shift2 = 0; + } + + // Must have 0 < divider < 2^31. This is relaxed to + // 0 < divider < 2^63 when using 64-bit indices on platforms that support + // the __uint128_t type. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) { + const int N = DividerTraits<T>::N; + eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2); + eigen_assert(divider > 0); + + // fast ln2 + const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider)); + int log_div = N - leading_zeros; + // if divider is a power of two then log_div is 1 more than it should be. + if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider)) + log_div--; + + multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider); + shift1 = log_div > 1 ? 1 : log_div; + shift2 = log_div > 1 ? log_div-1 : 0; + } + + // Must have 0 <= numerator. On platforms that don't support the __uint128_t + // type numerator should also be less than 2^32-1. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const { + eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2); + //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above + + UnsignedType t1 = muluh(multiplier, numerator); + UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1; + return (t1 + t) >> shift2; + } + + private: + typedef typename DividerTraits<T>::type UnsignedType; + UnsignedType multiplier; + int32_t shift1; + int32_t shift2; +}; + + +// Optimized version for signed 32 bit integers. +// Derived from Hacker's Delight. +// Only works for divisors strictly greater than one +template <> +class TensorIntDivisor<int32_t, true> { + public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { + magic = 0; + shift = 0; + } + // Must have 2 <= divider + EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) { + eigen_assert(divider >= 2); + calcMagic(divider); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const { +#ifdef EIGEN_GPU_COMPILE_PHASE + return (__umulhi(magic, n) >> shift); +#elif defined(SYCL_DEVICE_ONLY) + return (cl::sycl::mul_hi(magic, static_cast<uint32_t>(n)) >> shift); +#else + uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n); + return (static_cast<uint32_t>(v >> 32) >> shift); +#endif + } + +private: + // Compute the magic numbers. See Hacker's Delight section 10 for an in + // depth explanation. + EIGEN_DEVICE_FUNC void calcMagic(int32_t d) { + const unsigned two31 = 0x80000000; // 2**31. + unsigned ad = d; + unsigned t = two31 + (ad >> 31); + unsigned anc = t - 1 - t%ad; // Absolute value of nc. + int p = 31; // Init. p. + unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|. + unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). + unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|. + unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). + unsigned delta = 0; + do { + p = p + 1; + q1 = 2*q1; // Update q1 = 2**p/|nc|. + r1 = 2*r1; // Update r1 = rem(2**p, |nc|). + if (r1 >= anc) { // (Must be an unsigned + q1 = q1 + 1; // comparison here). + r1 = r1 - anc;} + q2 = 2*q2; // Update q2 = 2**p/|d|. + r2 = 2*r2; // Update r2 = rem(2**p, |d|). + if (r2 >= ad) { // (Must be an unsigned + q2 = q2 + 1; // comparison here). + r2 = r2 - ad;} + delta = ad - r2; + } while (q1 < delta || (q1 == delta && r1 == 0)); + + magic = (unsigned)(q2 + 1); + shift = p - 32; + } + + uint32_t magic; + int32_t shift; +}; + + +template <typename T, bool div_gt_one> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) { + return divisor.divide(numerator); +} + + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorLayoutSwap.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorLayoutSwap.h new file mode 100644 index 0000000..80106c1 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorLayoutSwap.h @@ -0,0 +1,216 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H +#define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H + +namespace Eigen { + +/** \class TensorLayoutSwap + * \ingroup CXX11_Tensor_Module + * + * \brief Swap the layout from col-major to row-major, or row-major + * to col-major, and invert the order of the dimensions. + * + * Beware: the dimensions are reversed by this operation. If you want to + * preserve the ordering of the dimensions, you need to combine this + * operation with a shuffle. + * + * \example: + * Tensor<float, 2, ColMajor> input(2, 4); + * Tensor<float, 2, RowMajor> output = input.swap_layout(); + * eigen_assert(output.dimension(0) == 4); + * eigen_assert(output.dimension(1) == 2); + * + * array<int, 2> shuffle(1, 0); + * output = input.swap_layout().shuffle(shuffle); + * eigen_assert(output.dimension(0) == 2); + * eigen_assert(output.dimension(1) == 4); + * + */ +namespace internal { +template<typename XprType> +struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = traits<XprType>::NumDimensions; + static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename XprType> +struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense> +{ + typedef const TensorLayoutSwapOp<XprType>& type; +}; + +template<typename XprType> +struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type> +{ + typedef TensorLayoutSwapOp<XprType> type; +}; + +} // end namespace internal + + + +template<typename XprType> +class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> +{ + public: + typedef TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> Base; + typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested; + typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr) + : m_xpr(expr) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorLayoutSwapOp) + protected: + typename XprType::Nested m_xpr; +}; + + +// Eval as rvalue +template<typename ArgType, typename Device> +struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> +{ + typedef TensorLayoutSwapOp<ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor, + CoordAccess = false, // to be implemented + RawAccess = TensorEvaluator<ArgType, Device>::RawAccess + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device) + { + for(int i = 0; i < NumDims; ++i) { + m_dimensions[i] = m_impl.dimensions()[NumDims-1-i]; + } + } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + return m_impl.evalSubExprsIfNeeded(data); + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_impl.coeff(index); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_impl.template packet<LoadMode>(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return m_impl.costPerCoeff(vectorized); + } + + EIGEN_DEVICE_FUNC typename Storage::Type data() const { + return constCast(m_impl.data()); + } + + const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + + protected: + TensorEvaluator<ArgType, Device> m_impl; + Dimensions m_dimensions; +}; + + +// Eval as lvalue +template<typename ArgType, typename Device> + struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device> + : public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> +{ + typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base; + typedef TensorLayoutSwapOp<ArgType> XprType; + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor, + CoordAccess = false // to be implemented + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + return this->m_impl.coeffRef(index); + } + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + this->m_impl.template writePacket<StoreMode>(index, x); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorMacros.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorMacros.h new file mode 100644 index 0000000..73ff3d2 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorMacros.h @@ -0,0 +1,98 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H +#define EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H + + +/** use this macro in sfinae selection in templated functions + * + * template<typename T, + * typename std::enable_if< isBanana<T>::value , int >::type = 0 + * > + * void foo(){} + * + * becomes => + * + * template<typename TopoType, + * SFINAE_ENABLE_IF( isBanana<T>::value ) + * > + * void foo(){} + */ + +// SFINAE requires variadic templates +#if !defined(EIGEN_GPUCC) +#if EIGEN_HAS_VARIADIC_TEMPLATES + // SFINAE doesn't work for gcc <= 4.7 + #ifdef EIGEN_COMP_GNUC + #if EIGEN_GNUC_AT_LEAST(4,8) + #define EIGEN_HAS_SFINAE + #endif + #else + #define EIGEN_HAS_SFINAE + #endif +#endif +#endif + +#define EIGEN_SFINAE_ENABLE_IF( __condition__ ) \ + typename internal::enable_if< ( __condition__ ) , int >::type = 0 + +// Define a macro to use a reference on the host but a value on the device +#if defined(SYCL_DEVICE_ONLY) + #define EIGEN_DEVICE_REF +#else + #define EIGEN_DEVICE_REF & +#endif + +// Define a macro for catching SYCL exceptions if exceptions are enabled +#define EIGEN_SYCL_TRY_CATCH(X) \ + do { \ + EIGEN_TRY {X;} \ + EIGEN_CATCH(const cl::sycl::exception& e) { \ + EIGEN_THROW_X(std::runtime_error("SYCL exception at " + \ + std::string(__FILE__) + ":" + \ + std::to_string(__LINE__) + "\n" + \ + e.what())); \ + } \ + } while (false) + +// Define a macro if local memory flags are unset or one of them is set +// Setting both flags is the same as unsetting them +#if (!defined(EIGEN_SYCL_LOCAL_MEM) && !defined(EIGEN_SYCL_NO_LOCAL_MEM)) || \ + (defined(EIGEN_SYCL_LOCAL_MEM) && defined(EIGEN_SYCL_NO_LOCAL_MEM)) + #define EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON 1 + #define EIGEN_SYCL_LOCAL_MEM_UNSET_OR_OFF 1 +#elif defined(EIGEN_SYCL_LOCAL_MEM) && !defined(EIGEN_SYCL_NO_LOCAL_MEM) + #define EIGEN_SYCL_LOCAL_MEM_UNSET_OR_ON 1 +#elif !defined(EIGEN_SYCL_LOCAL_MEM) && defined(EIGEN_SYCL_NO_LOCAL_MEM) + #define EIGEN_SYCL_LOCAL_MEM_UNSET_OR_OFF 1 +#endif + +#if EIGEN_COMP_CLANG // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653) + #define EIGEN_TENSOR_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + using Base::operator =; \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \ + template <typename OtherDerived> \ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const OtherDerived& other) { Base::operator=(other); return *this; } +#else + #define EIGEN_TENSOR_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) +#endif + +/** \internal + * \brief Macro to manually inherit assignment operators. + * This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined. + * This also inherits template<OtherDerived> operator=(const OtherDerived&) assignments. + * With C++11 or later this also default-implements the copy-constructor + */ +#define EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(Derived) \ + EIGEN_TENSOR_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ + EIGEN_DEFAULT_COPY_CONSTRUCTOR(Derived) + +#endif diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorMap.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorMap.h new file mode 100644 index 0000000..6834c97 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorMap.h @@ -0,0 +1,327 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H +#define EIGEN_CXX11_TENSOR_TENSOR_MAP_H + +namespace Eigen { + +// FIXME use proper doxygen documentation (e.g. \tparam MakePointer_) + +/** \class TensorMap + * \ingroup CXX11_Tensor_Module + * + * \brief A tensor expression mapping an existing array of data. + * + */ +/// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer. +/// It is added due to the fact that for our device compiler `T*` is not allowed. +/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`. +/// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` . +/// Therefore, by adding the default value, we managed to convert the type and it does not break any +/// existing code as its default value is `T*`. +template<typename PlainObjectType, int Options_, template <class> class MakePointer_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> > +{ + public: + typedef TensorMap<PlainObjectType, Options_, MakePointer_> Self; + typedef TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> > Base; + #ifdef EIGEN_USE_SYCL + typedef typename Eigen::internal::remove_reference<typename Eigen::internal::nested<Self>::type>::type Nested; + #else + typedef typename Eigen::internal::nested<Self>::type Nested; + #endif + typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; + typedef typename internal::traits<PlainObjectType>::Index Index; + typedef typename internal::traits<PlainObjectType>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename PlainObjectType::Base::CoeffReturnType CoeffReturnType; + + typedef typename MakePointer_<Scalar>::Type PointerType; + typedef typename MakePointer_<Scalar>::ConstType PointerConstType; + + // WARN: PointerType still can be a pointer to const (const Scalar*), for + // example in TensorMap<Tensor<const Scalar, ...>> expression. This type of + // expression should be illegal, but adding this restriction is not possible + // in practice (see https://bitbucket.org/eigen/eigen/pull-requests/488). + typedef typename internal::conditional< + bool(internal::is_lvalue<PlainObjectType>::value), + PointerType, // use simple pointer in lvalue expressions + PointerConstType // use const pointer in rvalue expressions + >::type StoragePointerType; + + // If TensorMap was constructed over rvalue expression (e.g. const Tensor), + // we should return a reference to const from operator() (and others), even + // if TensorMap itself is not const. + typedef typename internal::conditional< + bool(internal::is_lvalue<PlainObjectType>::value), + Scalar&, + const Scalar& + >::type StorageRefType; + + static const int Options = Options_; + + static const Index NumIndices = PlainObjectType::NumIndices; + typedef typename PlainObjectType::Dimensions Dimensions; + + enum { + IsAligned = ((int(Options_)&Aligned)==Aligned), + Layout = PlainObjectType::Layout, + CoordAccess = true, + RawAccess = true + }; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr) : m_data(dataPtr), m_dimensions() { + // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(firstDimension, otherDimensions...) { + // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(firstDimension) { + // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. + EIGEN_STATIC_ASSERT((1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index dim1, Index dim2) : m_data(dataPtr), m_dimensions(dim1, dim2) { + EIGEN_STATIC_ASSERT(2 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index dim1, Index dim2, Index dim3) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3) { + EIGEN_STATIC_ASSERT(3 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4) { + EIGEN_STATIC_ASSERT(4 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4, dim5) { + EIGEN_STATIC_ASSERT(5 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE) + } +#endif + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, const array<Index, NumIndices>& dimensions) + : m_data(dataPtr), m_dimensions(dimensions) + { } + + template <typename Dimensions> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(StoragePointerType dataPtr, const Dimensions& dimensions) + : m_data(dataPtr), m_dimensions(dimensions) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor) + : m_data(tensor.data()), m_dimensions(tensor.dimensions()) + { } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StoragePointerType data() { return m_data; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StoragePointerType data() const { return m_data; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(const array<Index, NumIndices>& indices) const + { + // eigen_assert(checkIndexRange(indices)); + if (PlainObjectType::Options&RowMajor) { + const Index index = m_dimensions.IndexOfRowMajor(indices); + return m_data[index]; + } else { + const Index index = m_dimensions.IndexOfColMajor(indices); + return m_data[index]; + } + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()() const + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) + return m_data[0]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index index) const + { + eigen_internal_assert(index >= 0 && index < size()); + return m_data[index]; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const + { + EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(internal::all((Eigen::NumTraits<Index>::highest() >= otherIndices)...)); + if (PlainObjectType::Options&RowMajor) { + const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + return m_data[index]; + } else { + const Index index = m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); + return m_data[index]; + } + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1) const + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i1 + i0 * m_dimensions[1]; + return m_data[index]; + } else { + const Index index = i0 + i1 * m_dimensions[0]; + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2) const + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2); + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2, Index i3) const + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3)); + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0))); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4))); + return m_data[index]; + } + } +#endif + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(const array<Index, NumIndices>& indices) + { + // eigen_assert(checkIndexRange(indices)); + if (PlainObjectType::Options&RowMajor) { + const Index index = m_dimensions.IndexOfRowMajor(indices); + return m_data[index]; + } else { + const Index index = m_dimensions.IndexOfColMajor(indices); + return m_data[index]; + } + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()() + { + EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE) + return m_data[0]; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index index) + { + eigen_internal_assert(index >= 0 && index < size()); + return m_data[index]; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) + { + static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); + eigen_assert(internal::all((Eigen::NumTraits<Index>::highest() >= otherIndices)...)); + const std::size_t NumDims = sizeof...(otherIndices) + 2; + if (PlainObjectType::Options&RowMajor) { + const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); + return m_data[index]; + } else { + const Index index = m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}}); + return m_data[index]; + } + } +#else + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1) + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i1 + i0 * m_dimensions[1]; + return m_data[index]; + } else { + const Index index = i0 + i1 * m_dimensions[0]; + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2) + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2); + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2, Index i3) + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3)); + return m_data[index]; + } + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE StorageRefType operator()(Index i0, Index i1, Index i2, Index i3, Index i4) + { + if (PlainObjectType::Options&RowMajor) { + const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0))); + return m_data[index]; + } else { + const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4))); + return m_data[index]; + } + } +#endif + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorMap) + + private: + StoragePointerType m_data; + Dimensions m_dimensions; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorMeta.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorMeta.h new file mode 100644 index 0000000..a6181d3 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorMeta.h @@ -0,0 +1,311 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_H +#define EIGEN_CXX11_TENSOR_TENSOR_META_H + +namespace Eigen { + +template<bool cond> struct Cond {}; + +template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +const T1& choose(Cond<true>, const T1& first, const T2&) { + return first; +} + +template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +const T2& choose(Cond<false>, const T1&, const T2& second) { + return second; +} + + +template <typename T, typename X, typename Y> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T divup(const X x, const Y y) { + return static_cast<T>((x + y - 1) / y); +} + +template <typename T> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +T divup(const T x, const T y) { + return static_cast<T>((x + y - 1) / y); +} + +template <size_t n> struct max_n_1 { + static const size_t size = n; +}; +template <> struct max_n_1<0> { + static const size_t size = 1; +}; + + +// Default packet types +template <typename Scalar, typename Device> +struct PacketType : internal::packet_traits<Scalar> { + typedef typename internal::packet_traits<Scalar>::type type; +}; + +// For CUDA packet types when using a GpuDevice +#if defined(EIGEN_USE_GPU) && defined(EIGEN_HAS_GPU_FP16) + +typedef ulonglong2 Packet4h2; +template<> +struct PacketType<half, GpuDevice> { + typedef Packet4h2 type; + static const int size = 8; + enum { + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasNegate = 1, + HasAbs = 1, + HasArg = 0, + HasAbs2 = 0, + HasMin = 1, + HasMax = 1, + HasConj = 0, + HasSetLinear = 0, + HasBlend = 0, + + HasDiv = 1, + HasSqrt = 1, + HasRsqrt = 1, + HasExp = 1, + HasExpm1 = 0, + HasLog = 1, + HasLog1p = 0, + HasLog10 = 0, + HasPow = 1, + }; +}; +#endif + +#if defined(EIGEN_USE_SYCL) + +namespace TensorSycl { +namespace internal { + +template <typename Index, Index A, Index B> struct PlusOp { + static constexpr Index Value = A + B; +}; + +template <typename Index, Index A, Index B> struct DivOp { + static constexpr Index Value = A / B; +}; + +template <typename Index, Index start, Index end, Index step, + template <class Indx, Indx...> class StepOp> +struct static_for { + template <typename UnaryOperator> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void loop(UnaryOperator op) { + op(start); + static_for<Index, StepOp<Index, start, step>::Value, end, step, + StepOp>::loop(op); + } +}; +template <typename Index, Index end, Index step, + template <class Indx, Indx...> class StepOp> +struct static_for<Index, end, end, step, StepOp> { + template <typename UnaryOperator> + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void loop(UnaryOperator) {} +}; + +template <typename OutScalar, typename Device, bool Vectorizable> +struct Vectorise { + static const int PacketSize = 1; + typedef OutScalar PacketReturnType; +}; + +template <typename OutScalar, typename Device> +struct Vectorise<OutScalar, Device, true> { + static const int PacketSize = Eigen::PacketType<OutScalar, Device>::size; + typedef typename Eigen::PacketType<OutScalar, Device>::type PacketReturnType; +}; + +static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index roundUp(Index x, Index y) { + return ((((x) + (y)-1) / (y)) * (y)); +} + +} // namespace internal +} // namespace TensorSycl + +template <> + struct PacketType<half, SyclDevice> { + typedef half type; + static const int size = 1; + enum { + HasAdd = 0, + HasSub = 0, + HasMul = 0, + HasNegate = 0, + HasAbs = 0, + HasArg = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasConj = 0, + HasSetLinear = 0, + HasBlend = 0 + }; +}; +template <typename Scalar> +struct PacketType<Scalar, SyclDevice> : internal::default_packet_traits { + typedef Scalar type; + typedef Scalar half; + enum { + Vectorizable = 0, + size = 1, + AlignedOnScalar = 0, + HasHalfPacket = 0 + }; + enum { + HasAdd = 0, + HasSub = 0, + HasMul = 0, + HasNegate = 0, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasConj = 0, + HasSetLinear = 0 + }; + +}; + +template <typename Scalar> +struct PacketType<Scalar, const SyclDevice> : PacketType<Scalar, SyclDevice>{}; + +#ifndef EIGEN_DONT_VECTORIZE_SYCL +#define PACKET_TYPE(CVQual, Type, val, lengths, DEV)\ +template<> struct PacketType<CVQual Type, DEV> : internal::sycl_packet_traits<val, lengths> \ +{\ + typedef typename internal::packet_traits<Type>::type type;\ + typedef typename internal::packet_traits<Type>::half half;\ +}; + + +PACKET_TYPE(const, float, 1, 4, SyclDevice) +PACKET_TYPE(, float, 1, 4, SyclDevice) +PACKET_TYPE(const, float, 1, 4, const SyclDevice) +PACKET_TYPE(, float, 1, 4, const SyclDevice) + +PACKET_TYPE(const, double, 0, 2, SyclDevice) +PACKET_TYPE(, double, 0, 2, SyclDevice) +PACKET_TYPE(const, double, 0, 2, const SyclDevice) +PACKET_TYPE(, double, 0, 2, const SyclDevice) +#undef PACKET_TYPE + +template<> struct PacketType<half, const SyclDevice>: PacketType<half, SyclDevice>{}; +template<> struct PacketType<const half, const SyclDevice>: PacketType<half, SyclDevice>{}; +#endif +#endif + +// Tuple mimics std::pair but works on e.g. nvcc. +template <typename U, typename V> struct Tuple { + public: + U first; + V second; + + typedef U first_type; + typedef V second_type; + + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Tuple() : first(), second() {} + + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Tuple(const U& f, const V& s) : first(f), second(s) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void swap(Tuple& rhs) { + using numext::swap; + swap(first, rhs.first); + swap(second, rhs.second); + } +}; + +template <typename U, typename V> +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) { + return (x.first == y.first && x.second == y.second); +} + +template <typename U, typename V> +EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) { + return !(x == y); +} + + +// Can't use std::pairs on cuda devices +template <typename Idx> struct IndexPair { + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair() : first(0), second(0) {} + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair(Idx f, Idx s) : first(f), second(s) {} + + EIGEN_DEVICE_FUNC void set(IndexPair<Idx> val) { + first = val.first; + second = val.second; + } + + Idx first; + Idx second; +}; + + +#ifdef EIGEN_HAS_SFINAE +namespace internal { + + template<typename IndexType, typename Index, Index... Is> + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + array<Index, sizeof...(Is)> customIndices2Array(IndexType& idx, numeric_list<Index, Is...>) { + return { idx[Is]... }; + } + template<typename IndexType, typename Index> + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + array<Index, 0> customIndices2Array(IndexType&, numeric_list<Index>) { + return array<Index, 0>(); + } + + /** Make an array (for index/dimensions) out of a custom index */ + template<typename Index, std::size_t NumIndices, typename IndexType> + EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + array<Index, NumIndices> customIndices2Array(IndexType& idx) { + return customIndices2Array(idx, typename gen_numeric_list<Index, NumIndices>::type{}); + } + + + template <typename B, typename D> + struct is_base_of + { + + typedef char (&yes)[1]; + typedef char (&no)[2]; + + template <typename BB, typename DD> + struct Host + { + operator BB*() const; + operator DD*(); + }; + + template<typename T> + static yes check(D*, T); + static no check(B*, int); + + static const bool value = sizeof(check(Host<B,D>(), int())) == sizeof(yes); + }; + +} +#endif + + + +} // namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorMorphing.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorMorphing.h new file mode 100644 index 0000000..b3f00f7 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorMorphing.h @@ -0,0 +1,1102 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H +#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H + +namespace Eigen { + +/** \class TensorReshaping + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reshaping class. + * + * + */ +namespace internal { +template<typename NewDimensions, typename XprType> +struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = array_size<NewDimensions>::value; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename NewDimensions, typename XprType> +struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense> +{ + typedef const TensorReshapingOp<NewDimensions, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename NewDimensions, typename XprType> +struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type> +{ + typedef TensorReshapingOp<NewDimensions, XprType> type; +}; + +} // end namespace internal + + + +template<typename NewDimensions, typename XprType> +class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> +{ + public: + typedef TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> Base; + typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims) + : m_xpr(expr), m_dims(dims) {} + + EIGEN_DEVICE_FUNC + const NewDimensions& dimensions() const { return m_dims; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReshapingOp) + + protected: + typename XprType::Nested m_xpr; + const NewDimensions m_dims; +}; + + +// Eval as rvalue +template<typename NewDimensions, typename ArgType, typename Device> +struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> +{ + typedef TensorReshapingOp<NewDimensions, ArgType> XprType; + typedef NewDimensions Dimensions; + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + typedef StorageMemory<typename internal::remove_const<CoeffReturnType>::type, Device> ConstCastStorage; + + static const int NumOutputDims = internal::array_size<Dimensions>::value; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + + enum ReshapingKind { + // We do not use layout information to determine reshaping kind. + // Depending on the layout `N` can be inner or outer dimension. + OneByN = 0, // expr.reshape(1, N) + NByOne = 1, // expr.reshape(N, 1) + Runtime = 2 // Reshape dimensions are dynamic (specified at runtime). + }; + + // clang-format off + static const ReshapingKind kind = +#if defined(EIGEN_HAS_INDEX_LIST) + (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN + : (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne + : Runtime; +#else + Runtime; +#endif + // clang-format on + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + // For trivial reshapes with raw access to underlying data we will provide + // zero overhead block access. + // TODO(ezhulenev): Consider adding block access without raw access? + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess && + NumInputDims > 0 && NumOutputDims > 0, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = TensorEvaluator<ArgType, Device>::RawAccess + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumOutputDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef + typename internal::TensorMaterializedBlock<ScalarNoConst, NumOutputDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_dimensions(op.dimensions()) + { + // The total size of the reshaped tensor must be equal to the total size + // of the input tensor. + eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions())); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType data, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(data, std::move(done)); + } +#endif + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + return m_impl.evalSubExprsIfNeeded(data); + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_impl.coeff(index); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + return m_impl.template packet<LoadMode>(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return m_impl.costPerCoeff(vectorized); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + return internal::TensorBlockResourceRequirements::any(); + } + + // required in block(OutputTensorBlock* output_block) const + // For C++03 compatibility this must be defined outside the method + struct BlockIteratorState { + Index stride; + Index span; + Index size; + Index count; + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + eigen_assert(m_impl.data() != NULL); + eigen_assert((kind == Runtime) || + (kind == OneByN && desc.dimensions()[0] == 1) || + (kind == NByOne && desc.dimensions()[1] == 1)); + + if (kind == OneByN || kind == NByOne) { + // We can guarantee at compile time that block is just a contiguous slice + // of the underlying expression memory buffer. + return TensorBlock(internal::TensorBlockKind::kView, + m_impl.data() + desc.offset(), desc.dimensions()); + } else { + // This will do additional runtime checks, and in the end it might be also + // a view, or it might be a block materialized in the temporary buffer. + return TensorBlock::materialize(m_impl.data(), m_dimensions, desc, + scratch); + } + } + + EIGEN_DEVICE_FUNC typename Storage::Type data() const { + return constCast(m_impl.data()); + } + + EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + + #ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } + #endif + protected: + TensorEvaluator<ArgType, Device> m_impl; + NewDimensions m_dimensions; +}; + + +// Eval as lvalue +template<typename NewDimensions, typename ArgType, typename Device> + struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device> + : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> + +{ + typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base; + typedef TensorReshapingOp<NewDimensions, ArgType> XprType; + typedef NewDimensions Dimensions; + + enum { + IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = TensorEvaluator<ArgType, Device>::RawAccess + }; + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<TensorEvaluator::NumOutputDims, Index> + TensorBlockDesc; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + return this->m_impl.coeffRef(index); + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + this->m_impl.template writePacket<StoreMode>(index, x); + } + + template <typename TensorBlock> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( + const TensorBlockDesc& desc, const TensorBlock& block) { + assert(this->m_impl.data() != NULL); + + typedef typename TensorBlock::XprType TensorBlockExpr; + typedef internal::TensorBlockAssignment< + Scalar, TensorEvaluator::NumOutputDims, TensorBlockExpr, Index> + TensorBlockAssign; + + TensorBlockAssign::Run( + TensorBlockAssign::target(desc.dimensions(), + internal::strides<Layout>(this->dimensions()), + this->m_impl.data(), desc.offset()), + block.expr()); + } +}; + + +/** \class TensorSlicing + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor slicing class. + * + * + */ +namespace internal { +template<typename StartIndices, typename Sizes, typename XprType> +struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = array_size<StartIndices>::value; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename StartIndices, typename Sizes, typename XprType> +struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense> +{ + typedef const TensorSlicingOp<StartIndices, Sizes, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename StartIndices, typename Sizes, typename XprType> +struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type> +{ + typedef TensorSlicingOp<StartIndices, Sizes, XprType> type; +}; + +} // end namespace internal + + + +template<typename StartIndices, typename Sizes, typename XprType> +class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> > +{ + public: + typedef TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> > Base; + typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes) + : m_xpr(expr), m_indices(indices), m_sizes(sizes) {} + + EIGEN_DEVICE_FUNC + const StartIndices& startIndices() const { return m_indices; } + EIGEN_DEVICE_FUNC + const Sizes& sizes() const { return m_sizes; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorSlicingOp) + + protected: + typename XprType::Nested m_xpr; + const StartIndices m_indices; + const Sizes m_sizes; +}; + + +// Fixme: figure out the exact threshold +namespace { +template <typename Index, typename Device, bool BlockAccess> struct MemcpyTriggerForSlicing { + EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { } + EIGEN_DEVICE_FUNC bool operator ()(Index total, Index contiguous) const { + const bool prefer_block_evaluation = BlockAccess && total > 32*1024; + return !prefer_block_evaluation && contiguous > threshold_; + } + + private: + Index threshold_; +}; + +// It is very expensive to start the memcpy kernel on GPU: we therefore only +// use it for large copies. +#ifdef EIGEN_USE_GPU +template <typename Index, bool BlockAccess> struct MemcpyTriggerForSlicing<Index, GpuDevice, BlockAccess> { + EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { } + EIGEN_DEVICE_FUNC bool operator ()(Index, Index contiguous) const { return contiguous > 4*1024*1024; } +}; +#endif + +// It is very expensive to start the memcpy kernel on GPU: we therefore only +// use it for large copies. +#ifdef EIGEN_USE_SYCL +template <typename Index, bool BlockAccess> struct MemcpyTriggerForSlicing<Index, Eigen::SyclDevice, BlockAccess> { + EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const SyclDevice&) { } + EIGEN_DEVICE_FUNC bool operator ()(Index, Index contiguous) const { return contiguous > 4*1024*1024; } +}; +#endif + +} + +// Eval as rvalue +template<typename StartIndices, typename Sizes, typename ArgType, typename Device> +struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> +{ + typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; + static const int NumDims = internal::array_size<Sizes>::value; + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef Sizes Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef StorageMemory<typename internal::remove_const<CoeffReturnType>::type, Device> ConstCastStorage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + // Alignment can't be guaranteed at compile time since it depends on the + // slice offsets and sizes. + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess && + // FIXME: Temporary workaround for bug in slicing of bool tensors. + !internal::is_same<typename internal::remove_const<Scalar>::type, bool>::value, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + // Tensor slicing does not change the block type. + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices()) + { + m_is_identity = true; + for (int i = 0; i < internal::array_size<Dimensions>::value; ++i) { + eigen_assert(m_impl.dimensions()[i] >= + op.sizes()[i] + op.startIndices()[i]); + if (m_impl.dimensions()[i] != op.sizes()[i] || + op.startIndices()[i] != 0) { + m_is_identity = false; + } + } + + // No strides for scalars. + if (NumDims == 0) return; + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + const Sizes& output_dims = op.sizes(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + } + + // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); + } + } else { + m_inputStrides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + } + + // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed. + m_outputStrides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + m_impl.evalSubExprsIfNeeded(NULL); + if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization + && data && m_impl.data()) { + Index contiguous_values = 1; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < NumDims; ++i) { + contiguous_values *= dimensions()[i]; + if (dimensions()[i] != m_impl.dimensions()[i]) { + break; + } + } + } else { + for (int i = NumDims-1; i >= 0; --i) { + contiguous_values *= dimensions()[i]; + if (dimensions()[i] != m_impl.dimensions()[i]) { + break; + } + } + } + // Use memcpy if it's going to be faster than using the regular evaluation. + const MemcpyTriggerForSlicing<Index, Device, BlockAccess> trigger(m_device); + if (trigger(internal::array_prod(dimensions()), contiguous_values)) { + EvaluatorPointerType src = (EvaluatorPointerType)m_impl.data(); + for (Index i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) { + Index offset = srcCoeff(i); + m_device.memcpy((void*)(m_device.get(data + i)), m_device.get(src+offset), contiguous_values * sizeof(Scalar)); + } + return false; + } + } + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType /*data*/, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + if (m_is_identity) { + return m_impl.coeff(index); + } else { + return m_impl.coeff(srcCoeff(index)); + } + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + const int packetSize = PacketType<CoeffReturnType, Device>::size; + EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+packetSize-1 < internal::array_prod(dimensions())); + + if (m_is_identity) { + return m_impl.template packet<LoadMode>(index); + } + + Index inputIndices[] = {0, 0}; + Index indices[] = {index, index + packetSize - 1}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx0 = indices[0] / m_fastOutputStrides[i]; + const Index idx1 = indices[1] / m_fastOutputStrides[i]; + inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; + inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; + indices[0] -= idx0 * m_outputStrides[i]; + indices[1] -= idx1 * m_outputStrides[i]; + } + inputIndices[0] += (indices[0] + m_offsets[0]); + inputIndices[1] += (indices[1] + m_offsets[0]); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx0 = indices[0] / m_fastOutputStrides[i]; + const Index idx1 = indices[1] / m_fastOutputStrides[i]; + inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; + inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; + indices[0] -= idx0 * m_outputStrides[i]; + indices[1] -= idx1 * m_outputStrides[i]; + } + inputIndices[0] += (indices[0] + m_offsets[NumDims-1]); + inputIndices[1] += (indices[1] + m_offsets[NumDims-1]); + } + if (inputIndices[1] - inputIndices[0] == packetSize - 1) { + PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); + return rslt; + } + else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize]; + values[0] = m_impl.coeff(inputIndices[0]); + values[packetSize-1] = m_impl.coeff(inputIndices[1]); + EIGEN_UNROLL_LOOP + for (int i = 1; i < packetSize-1; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + const size_t target_size = m_device.lastLevelCacheSize(); + return internal::TensorBlockResourceRequirements::merge( + internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), + m_impl.getResourceRequirements()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + TensorBlockDesc arg_desc = desc.WithOffset(srcCoeff(desc.offset())); + TensorBlock block = m_impl.block(arg_desc, scratch); + if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer(); + return block; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { + typename Storage::Type result = constCast(m_impl.data()); + if (result) { + Index offset = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < NumDims; ++i) { + if (m_dimensions[i] != m_impl.dimensions()[i]) { + offset += m_offsets[i] * m_inputStrides[i]; + for (int j = i+1; j < NumDims; ++j) { + if (m_dimensions[j] > 1) { + return NULL; + } + offset += m_offsets[j] * m_inputStrides[j]; + } + break; + } + } + } else { + for (int i = NumDims - 1; i >= 0; --i) { + if (m_dimensions[i] != m_impl.dimensions()[i]) { + offset += m_offsets[i] * m_inputStrides[i]; + for (int j = i-1; j >= 0; --j) { + if (m_dimensions[j] > 1) { + return NULL; + } + offset += m_offsets[j] * m_inputStrides[j]; + } + break; + } + } + } + return result + offset; + } + return NULL; + } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const + { + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + inputIndex += (index + m_offsets[0]); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + inputIndex += (index + m_offsets[NumDims-1]); + } + return inputIndex; + } + + array<Index, NumDims> m_outputStrides; + array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; + array<Index, NumDims> m_inputStrides; + TensorEvaluator<ArgType, Device> m_impl; + const Device EIGEN_DEVICE_REF m_device; + Dimensions m_dimensions; + bool m_is_identity; + const StartIndices m_offsets; +}; + + +// Eval as lvalue +template<typename StartIndices, typename Sizes, typename ArgType, typename Device> +struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> + : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> +{ + typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base; + typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType; + static const int NumDims = internal::array_size<Sizes>::value; + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef Sizes Dimensions; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = (NumDims == 1) & TensorEvaluator<ArgType, Device>::RawAccess + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + if (this->m_is_identity) { + return this->m_impl.coeffRef(index); + } else { + return this->m_impl.coeffRef(this->srcCoeff(index)); + } + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + if (this->m_is_identity) { + this->m_impl.template writePacket<StoreMode>(index, x); + return; + } + + const int packetSize = PacketType<CoeffReturnType, Device>::size; + Index inputIndices[] = {0, 0}; + Index indices[] = {index, index + packetSize - 1}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; + const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; + inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; + inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; + indices[0] -= idx0 * this->m_outputStrides[i]; + indices[1] -= idx1 * this->m_outputStrides[i]; + } + inputIndices[0] += (indices[0] + this->m_offsets[0]); + inputIndices[1] += (indices[1] + this->m_offsets[0]); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; + const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; + inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; + inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; + indices[0] -= idx0 * this->m_outputStrides[i]; + indices[1] -= idx1 * this->m_outputStrides[i]; + } + inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]); + inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]); + } + if (inputIndices[1] - inputIndices[0] == packetSize - 1) { + this->m_impl.template writePacket<StoreMode>(inputIndices[0], x); + } + else { + EIGEN_ALIGN_MAX CoeffReturnType values[packetSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + this->m_impl.coeffRef(inputIndices[0]) = values[0]; + this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1]; + EIGEN_UNROLL_LOOP + for (int i = 1; i < packetSize-1; ++i) { + this->coeffRef(index+i) = values[i]; + } + } + } + + template<typename TensorBlock> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( + const TensorBlockDesc& desc, const TensorBlock& block) { + TensorBlockDesc arg_desc = desc.WithOffset(this->srcCoeff(desc.offset())); + this->m_impl.writeBlock(arg_desc, block); + } +}; + +namespace internal { +template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> +struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = array_size<StartIndices>::value; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> +struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense> +{ + typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> +struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type> +{ + typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type; +}; + +} // end namespace internal + + +template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> +class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > +{ + public: + typedef TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > Base; + typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename internal::nested<TensorStridingSlicingOp>::type Nested; + typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind; + typedef typename internal::traits<TensorStridingSlicingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp( + const XprType& expr, const StartIndices& startIndices, + const StopIndices& stopIndices, const Strides& strides) + : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices), + m_strides(strides) {} + + EIGEN_DEVICE_FUNC + const StartIndices& startIndices() const { return m_startIndices; } + EIGEN_DEVICE_FUNC + const StartIndices& stopIndices() const { return m_stopIndices; } + EIGEN_DEVICE_FUNC + const StartIndices& strides() const { return m_strides; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingSlicingOp) + + protected: + typename XprType::Nested m_xpr; + const StartIndices m_startIndices; + const StopIndices m_stopIndices; + const Strides m_strides; +}; + +// Eval as rvalue +template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> +struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> +{ + typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; + static const int NumDims = internal::array_size<Strides>::value; + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + typedef Strides Dimensions; + + enum { + // Alignment can't be guaranteed at compile time since it depends on the + // slice offsets and sizes. + IsAligned = false, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), + m_device(device), + m_strides(op.strides()) + { + // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero + DSizes<Index, NumDims> startIndicesClamped, stopIndicesClamped; + for (ptrdiff_t i = 0; i < internal::array_size<Dimensions>::value; ++i) { + eigen_assert(m_strides[i] != 0 && "0 stride is invalid"); + if (m_strides[i] > 0) { + startIndicesClamped[i] = + clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]); + stopIndicesClamped[i] = + clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]); + } else { + /* implies m_strides[i] < 0 by assert */ + startIndicesClamped[i] = + clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1); + stopIndicesClamped[i] = + clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1); + } + m_startIndices[i] = startIndicesClamped[i]; + } + + typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; + const InputDimensions& input_dims = m_impl.dimensions(); + + // compute output tensor shape + m_is_identity = true; + for (int i = 0; i < NumDims; i++) { + Index interval = stopIndicesClamped[i] - startIndicesClamped[i]; + if (interval == 0 || ((interval < 0) != (m_strides[i] < 0))) { + m_dimensions[i] = 0; + } else { + m_dimensions[i] = + (interval / m_strides[i]) + (interval % m_strides[i] != 0 ? 1 : 0); + eigen_assert(m_dimensions[i] >= 0); + } + if (m_strides[i] != 1 || interval != m_impl.dimensions()[i]) { + m_is_identity = false; + } + } + + Strides output_dims = m_dimensions; + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputStrides[0] = m_strides[0]; + m_offsets[0] = startIndicesClamped[0]; + Index previousDimProduct = 1; + for (int i = 1; i < NumDims; ++i) { + previousDimProduct *= input_dims[i-1]; + m_inputStrides[i] = previousDimProduct * m_strides[i]; + m_offsets[i] = startIndicesClamped[i] * previousDimProduct; + } + + // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed. + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); + } + } else { + m_inputStrides[NumDims-1] = m_strides[NumDims-1]; + m_offsets[NumDims-1] = startIndicesClamped[NumDims-1]; + Index previousDimProduct = 1; + for (int i = NumDims - 2; i >= 0; --i) { + previousDimProduct *= input_dims[i+1]; + m_inputStrides[i] = previousDimProduct * m_strides[i]; + m_offsets[i] = startIndicesClamped[i] * previousDimProduct; + } + + m_outputStrides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i] > 0 ? m_outputStrides[i] : 1); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + if (m_is_identity) { + return m_impl.coeff(index); + } else { + return m_impl.coeff(srcCoeff(index)); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, m_is_identity ? 1 : NumDims); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const { + return NULL; + } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const + { + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i >= 0; --i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += idx * m_inputStrides[i] + m_offsets[i]; + index -= idx * m_outputStrides[i]; + } + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims; ++i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += idx * m_inputStrides[i] + m_offsets[i]; + index -= idx * m_outputStrides[i]; + } + } + return inputIndex; + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) { +#ifndef SYCL_DEVICE_ONLY + return numext::maxi(min, numext::mini(max,value)); +#else + return cl::sycl::clamp(value, min, max); +#endif + } + + array<Index, NumDims> m_outputStrides; + array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; + array<Index, NumDims> m_inputStrides; + bool m_is_identity; + TensorEvaluator<ArgType, Device> m_impl; + const Device EIGEN_DEVICE_REF m_device; + DSizes<Index, NumDims> m_startIndices; // clamped startIndices + DSizes<Index, NumDims> m_dimensions; + DSizes<Index, NumDims> m_offsets; // offset in a flattened shape + const Strides m_strides; +}; + +// Eval as lvalue +template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device> +struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> + : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> +{ + typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base; + typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType; + static const int NumDims = internal::array_size<Strides>::value; + + enum { + IsAligned = false, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef Strides Dimensions; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + if (this->m_is_identity) { + return this->m_impl.coeffRef(index); + } else { + return this->m_impl.coeffRef(this->srcCoeff(index)); + } + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorPadding.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorPadding.h new file mode 100644 index 0000000..ee44382 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorPadding.h @@ -0,0 +1,708 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H +#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H + +namespace Eigen { + +/** \class TensorPadding + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor padding class. + * At the moment only padding with a constant value is supported. + * + */ +namespace internal { +template<typename PaddingDimensions, typename XprType> +struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename PaddingDimensions, typename XprType> +struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense> +{ + typedef const TensorPaddingOp<PaddingDimensions, XprType>& type; +}; + +template<typename PaddingDimensions, typename XprType> +struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type> +{ + typedef TensorPaddingOp<PaddingDimensions, XprType> type; +}; + +} // end namespace internal + + + +template<typename PaddingDimensions, typename XprType> +class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value) + : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {} + + EIGEN_DEVICE_FUNC + const PaddingDimensions& padding() const { return m_padding_dims; } + EIGEN_DEVICE_FUNC + Scalar padding_value() const { return m_padding_value; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const PaddingDimensions m_padding_dims; + const Scalar m_padding_value; +}; + + +// Eval as rvalue +template<typename PaddingDimensions, typename ArgType, typename Device> +struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device> +{ + typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<PaddingDimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = true, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = true, + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device) + { + // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead + // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector + // of 1 element first and then pad. + EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + + // Compute dimensions + m_dimensions = m_impl.dimensions(); + for (int i = 0; i < NumDims; ++i) { + m_dimensions[i] += m_padding[i].first + m_padding[i].second; + } + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputStrides[0] = 1; + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + } + m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1]; + } else { + m_inputStrides[NumDims - 1] = 1; + m_outputStrides[NumDims] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1]; + } + m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + eigen_assert(index < dimensions().TotalSize()); + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + if (isPaddingAtIndexForDim(idx, i)) { + return m_paddingValue; + } + inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + if (isPaddingAtIndexForDim(index, 0)) { + return m_paddingValue; + } + inputIndex += (index - m_padding[0].first); + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStrides[i+1]; + if (isPaddingAtIndexForDim(idx, i)) { + return m_paddingValue; + } + inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; + index -= idx * m_outputStrides[i+1]; + } + if (isPaddingAtIndexForDim(index, NumDims-1)) { + return m_paddingValue; + } + inputIndex += (index - m_padding[NumDims-1].first); + } + return m_impl.coeff(inputIndex); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + return packetColMajor(index); + } + return packetRowMajor(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + TensorOpCost cost = m_impl.costPerCoeff(vectorized); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims; ++i) + updateCostPerDimension(cost, i, i == 0); + } else { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i >= 0; --i) + updateCostPerDimension(cost, i, i == NumDims - 1); + } + return cost; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + const size_t target_size = m_device.lastLevelCacheSize(); + return internal::TensorBlockResourceRequirements::merge( + internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), + m_impl.getResourceRequirements()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + // If one of the dimensions is zero, return empty block view. + if (desc.size() == 0) { + return TensorBlock(internal::TensorBlockKind::kView, NULL, + desc.dimensions()); + } + + static const bool IsColMajor = Layout == static_cast<int>(ColMajor); + const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1; + + Index offset = desc.offset(); + + // Compute offsets in the output tensor corresponding to the desc.offset(). + DSizes<Index, NumDims> output_offsets; + for (int i = NumDims - 1; i > 0; --i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + const int stride_dim = IsColMajor ? dim : dim + 1; + output_offsets[dim] = offset / m_outputStrides[stride_dim]; + offset -= output_offsets[dim] * m_outputStrides[stride_dim]; + } + output_offsets[inner_dim_idx] = offset; + + // Offsets in the input corresponding to output offsets. + DSizes<Index, NumDims> input_offsets = output_offsets; + for (int i = 0; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + input_offsets[dim] = input_offsets[dim] - m_padding[dim].first; + } + + // Compute offset in the input buffer (at this point it might be illegal and + // point outside of the input buffer, because we don't check for negative + // offsets, it will be autocorrected in the block iteration loop below). + Index input_offset = 0; + for (int i = 0; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + input_offset += input_offsets[dim] * m_inputStrides[dim]; + } + + // Destination buffer and scratch buffer both indexed from 0 and have the + // same dimensions as the requested block (for destination buffer this + // property is guaranteed by `desc.destination()`). + Index output_offset = 0; + const DSizes<Index, NumDims> output_strides = + internal::strides<Layout>(desc.dimensions()); + + // NOTE(ezhulenev): We initialize bock iteration state for `NumDims - 1` + // dimensions, skipping innermost dimension. In theory it should be possible + // to squeeze matching innermost dimensions, however in practice that did + // not show any improvements in benchmarks. Also in practice first outer + // dimension usually has padding, and will prevent squeezing. + + // Initialize output block iterator state. Dimension in this array are + // always in inner_most -> outer_most order (col major layout). + array<BlockIteratorState, NumDims - 1> it; + for (int i = 0; i < NumDims - 1; ++i) { + const int dim = IsColMajor ? i + 1 : NumDims - i - 2; + it[i].count = 0; + it[i].size = desc.dimension(dim); + + it[i].input_stride = m_inputStrides[dim]; + it[i].input_span = it[i].input_stride * (it[i].size - 1); + + it[i].output_stride = output_strides[dim]; + it[i].output_span = it[i].output_stride * (it[i].size - 1); + } + + const Index input_inner_dim_size = + static_cast<Index>(m_impl.dimensions()[inner_dim_idx]); + + // Total output size. + const Index output_size = desc.size(); + + // We will fill inner dimension of this size in the output. It might be + // larger than the inner dimension in the input, so we might have to pad + // before/after we copy values from the input inner dimension. + const Index output_inner_dim_size = desc.dimension(inner_dim_idx); + + // How many values to fill with padding BEFORE reading from the input inner + // dimension. + const Index output_inner_pad_before_size = + input_offsets[inner_dim_idx] < 0 + ? numext::mini(numext::abs(input_offsets[inner_dim_idx]), + output_inner_dim_size) + : 0; + + // How many values we can actually copy from the input inner dimension. + const Index output_inner_copy_size = numext::mini( + // Want to copy from input. + (output_inner_dim_size - output_inner_pad_before_size), + // Can copy from input. + numext::maxi(input_inner_dim_size - (input_offsets[inner_dim_idx] + + output_inner_pad_before_size), + Index(0))); + + eigen_assert(output_inner_copy_size >= 0); + + // How many values to fill with padding AFTER reading from the input inner + // dimension. + const Index output_inner_pad_after_size = + (output_inner_dim_size - output_inner_copy_size - + output_inner_pad_before_size); + + // Sanity check, sum of all sizes must be equal to the output size. + eigen_assert(output_inner_dim_size == + (output_inner_pad_before_size + output_inner_copy_size + + output_inner_pad_after_size)); + + // Keep track of current coordinates and padding in the output. + DSizes<Index, NumDims> output_coord = output_offsets; + DSizes<Index, NumDims> output_padded; + for (int i = 0; i < NumDims; ++i) { + const int dim = IsColMajor ? i : NumDims - i - 1; + output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); + } + + typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy; + + // Prepare storage for the materialized padding result. + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage(desc, scratch); + + // TODO(ezhulenev): Squeeze multiple non-padded inner dimensions into a + // single logical inner dimension. + + // When possible we squeeze writes for the innermost (only if non-padded) + // dimension with the first padded dimension. This allows to reduce the + // number of calls to LinCopy and better utilize vector instructions. + const bool squeeze_writes = + NumDims > 1 && + // inner dimension is not padded + (input_inner_dim_size == m_dimensions[inner_dim_idx]) && + // and equal to the block inner dimension + (input_inner_dim_size == output_inner_dim_size); + + const int squeeze_dim = IsColMajor ? inner_dim_idx + 1 : inner_dim_idx - 1; + + // Maximum coordinate on a squeeze dimension that we can write to. + const Index squeeze_max_coord = + squeeze_writes ? numext::mini( + // max non-padded element in the input + static_cast<Index>(m_dimensions[squeeze_dim] - + m_padding[squeeze_dim].second), + // max element in the output buffer + static_cast<Index>(output_offsets[squeeze_dim] + + desc.dimension(squeeze_dim))) + : static_cast<Index>(0); + + // Iterate copying data from `m_impl.data()` to the output buffer. + for (Index size = 0; size < output_size;) { + // Detect if we are in the padded region (exclude innermost dimension). + bool is_padded = false; + for (int j = 1; j < NumDims; ++j) { + const int dim = IsColMajor ? j : NumDims - j - 1; + is_padded = output_padded[dim]; + if (is_padded) break; + } + + if (is_padded) { + // Fill single innermost dimension with padding value. + size += output_inner_dim_size; + + LinCopy::template Run<LinCopy::Kind::FillLinear>( + typename LinCopy::Dst(output_offset, 1, block_storage.data()), + typename LinCopy::Src(0, 0, &m_paddingValue), + output_inner_dim_size); + + + } else if (squeeze_writes) { + // Squeeze multiple reads from innermost dimensions. + const Index squeeze_num = squeeze_max_coord - output_coord[squeeze_dim]; + size += output_inner_dim_size * squeeze_num; + + // Copy `squeeze_num` inner dimensions from input to output. + LinCopy::template Run<LinCopy::Kind::Linear>( + typename LinCopy::Dst(output_offset, 1, block_storage.data()), + typename LinCopy::Src(input_offset, 1, m_impl.data()), + output_inner_dim_size * squeeze_num); + + // Update iteration state for only `squeeze_num - 1` processed inner + // dimensions, because we have another iteration state update at the end + // of the loop that will update iteration state for the last inner + // processed dimension. + it[0].count += (squeeze_num - 1); + input_offset += it[0].input_stride * (squeeze_num - 1); + output_offset += it[0].output_stride * (squeeze_num - 1); + output_coord[squeeze_dim] += (squeeze_num - 1); + + } else { + // Single read from innermost dimension. + size += output_inner_dim_size; + + { // Fill with padding before copying from input inner dimension. + const Index out = output_offset; + + LinCopy::template Run<LinCopy::Kind::FillLinear>( + typename LinCopy::Dst(out, 1, block_storage.data()), + typename LinCopy::Src(0, 0, &m_paddingValue), + output_inner_pad_before_size); + } + + { // Copy data from input inner dimension. + const Index out = output_offset + output_inner_pad_before_size; + const Index in = input_offset + output_inner_pad_before_size; + + eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL); + + LinCopy::template Run<LinCopy::Kind::Linear>( + typename LinCopy::Dst(out, 1, block_storage.data()), + typename LinCopy::Src(in, 1, m_impl.data()), + output_inner_copy_size); + } + + { // Fill with padding after copying from input inner dimension. + const Index out = output_offset + output_inner_pad_before_size + + output_inner_copy_size; + + LinCopy::template Run<LinCopy::Kind::FillLinear>( + typename LinCopy::Dst(out, 1, block_storage.data()), + typename LinCopy::Src(0, 0, &m_paddingValue), + output_inner_pad_after_size); + } + } + + for (int j = 0; j < NumDims - 1; ++j) { + const int dim = IsColMajor ? j + 1 : NumDims - j - 2; + + if (++it[j].count < it[j].size) { + input_offset += it[j].input_stride; + output_offset += it[j].output_stride; + output_coord[dim] += 1; + output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); + break; + } + it[j].count = 0; + input_offset -= it[j].input_span; + output_offset -= it[j].output_span; + output_coord[dim] -= it[j].size - 1; + output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); + } + } + + return block_storage.AsTensorMaterializedBlock(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + private: + struct BlockIteratorState { + BlockIteratorState() + : count(0), + size(0), + input_stride(0), + input_span(0), + output_stride(0), + output_span(0) {} + + Index count; + Index size; + Index input_stride; + Index input_span; + Index output_stride; + Index output_span; + }; + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim( + Index index, int dim_index) const { +#if defined(EIGEN_HAS_INDEX_LIST) + return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) && + index < m_padding[dim_index].first) || + (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) && + index >= m_dimensions[dim_index] - m_padding[dim_index].second); +#else + return (index < m_padding[dim_index].first) || + (index >= m_dimensions[dim_index] - m_padding[dim_index].second); +#endif + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero( + int dim_index) const { +#if defined(EIGEN_HAS_INDEX_LIST) + return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0); +#else + EIGEN_UNUSED_VARIABLE(dim_index); + return false; +#endif + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero( + int dim_index) const { +#if defined(EIGEN_HAS_INDEX_LIST) + return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0); +#else + EIGEN_UNUSED_VARIABLE(dim_index); + return false; +#endif + } + + + void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const { + const double in = static_cast<double>(m_impl.dimensions()[i]); + const double out = in + m_padding[i].first + m_padding[i].second; + if (out == 0) + return; + const double reduction = in / out; + cost *= reduction; + if (first) { + cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + + reduction * (1 * TensorOpCost::AddCost<Index>())); + } else { + cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() + + 2 * TensorOpCost::MulCost<Index>() + + reduction * (2 * TensorOpCost::MulCost<Index>() + + 1 * TensorOpCost::DivCost<Index>())); + } + } + + protected: + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + const Index initialIndex = index; + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index firstIdx = index; + const Index lastIdx = index + PacketSize - 1; + const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i]; + const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i]; + const Index lastPaddedRight = m_outputStrides[i+1]; + + if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { + // all the coefficient are between the 2 padding zones. + const Index idx = index / m_outputStrides[i]; + inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + else { + // Every other case + return packetWithPossibleZero(initialIndex); + } + } + + const Index lastIdx = index + PacketSize - 1; + const Index firstIdx = index; + const Index lastPaddedLeft = m_padding[0].first; + const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second); + const Index lastPaddedRight = m_outputStrides[1]; + + if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { + // all the coefficient are between the 2 padding zones. + inputIndex += (index - m_padding[0].first); + return m_impl.template packet<Unaligned>(inputIndex); + } + // Every other case + return packetWithPossibleZero(initialIndex); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + const Index initialIndex = index; + Index inputIndex = 0; + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index firstIdx = index; + const Index lastIdx = index + PacketSize - 1; + const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1]; + const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1]; + const Index lastPaddedRight = m_outputStrides[i]; + + if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { + // all the coefficient are between the 2 padding zones. + const Index idx = index / m_outputStrides[i+1]; + inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; + index -= idx * m_outputStrides[i+1]; + } + else { + // Every other case + return packetWithPossibleZero(initialIndex); + } + } + + const Index lastIdx = index + PacketSize - 1; + const Index firstIdx = index; + const Index lastPaddedLeft = m_padding[NumDims-1].first; + const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second); + const Index lastPaddedRight = m_outputStrides[NumDims-1]; + + if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { + // all the coefficient are in the padding zone. + return internal::pset1<PacketReturnType>(m_paddingValue); + } + else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { + // all the coefficient are between the 2 padding zones. + inputIndex += (index - m_padding[NumDims-1].first); + return m_impl.template packet<Unaligned>(inputIndex); + } + // Every other case + return packetWithPossibleZero(initialIndex); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const + { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + Dimensions m_dimensions; + array<Index, NumDims+1> m_outputStrides; + array<Index, NumDims> m_inputStrides; + TensorEvaluator<ArgType, Device> m_impl; + PaddingDimensions m_padding; + + Scalar m_paddingValue; + + const Device EIGEN_DEVICE_REF m_device; +}; + + + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorPatch.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorPatch.h new file mode 100644 index 0000000..413d25d --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorPatch.h @@ -0,0 +1,291 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H +#define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H + +namespace Eigen { + +/** \class TensorPatch + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor patch class. + * + * + */ +namespace internal { +template<typename PatchDim, typename XprType> +struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions + 1; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename PatchDim, typename XprType> +struct eval<TensorPatchOp<PatchDim, XprType>, Eigen::Dense> +{ + typedef const TensorPatchOp<PatchDim, XprType>& type; +}; + +template<typename PatchDim, typename XprType> +struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<PatchDim, XprType> >::type> +{ + typedef TensorPatchOp<PatchDim, XprType> type; +}; + +} // end namespace internal + + + +template<typename PatchDim, typename XprType> +class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorPatchOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorPatchOp>::type Nested; + typedef typename Eigen::internal::traits<TensorPatchOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorPatchOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims) + : m_xpr(expr), m_patch_dims(patch_dims) {} + + EIGEN_DEVICE_FUNC + const PatchDim& patch_dims() const { return m_patch_dims; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const PatchDim m_patch_dims; +}; + + +// Eval as rvalue +template<typename PatchDim, typename ArgType, typename Device> +struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device> +{ + typedef TensorPatchOp<PatchDim, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value + 1; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device) + { + Index num_patches = 1; + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + const PatchDim& patch_dims = op.patch_dims(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < NumDims-1; ++i) { + m_dimensions[i] = patch_dims[i]; + num_patches *= (input_dims[i] - patch_dims[i] + 1); + } + m_dimensions[NumDims-1] = num_patches; + + m_inputStrides[0] = 1; + m_patchStrides[0] = 1; + for (int i = 1; i < NumDims-1; ++i) { + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1); + } + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + } + } else { + for (int i = 0; i < NumDims-1; ++i) { + m_dimensions[i+1] = patch_dims[i]; + num_patches *= (input_dims[i] - patch_dims[i] + 1); + } + m_dimensions[0] = num_patches; + + m_inputStrides[NumDims-2] = 1; + m_patchStrides[NumDims-2] = 1; + for (int i = NumDims-3; i >= 0; --i) { + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + m_patchStrides[i] = m_patchStrides[i+1] * (input_dims[i+1] - patch_dims[i+1] + 1); + } + m_outputStrides[NumDims-1] = 1; + for (int i = NumDims-2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0; + // Find the location of the first element of the patch. + Index patchIndex = index / m_outputStrides[output_stride_index]; + // Find the offset of the element wrt the location of the first element. + Index patchOffset = index - patchIndex * m_outputStrides[output_stride_index]; + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 2; i > 0; --i) { + const Index patchIdx = patchIndex / m_patchStrides[i]; + patchIndex -= patchIdx * m_patchStrides[i]; + const Index offsetIdx = patchOffset / m_outputStrides[i]; + patchOffset -= offsetIdx * m_outputStrides[i]; + inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; + } + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 2; ++i) { + const Index patchIdx = patchIndex / m_patchStrides[i]; + patchIndex -= patchIdx * m_patchStrides[i]; + const Index offsetIdx = patchOffset / m_outputStrides[i+1]; + patchOffset -= offsetIdx * m_outputStrides[i+1]; + inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; + } + } + inputIndex += (patchIndex + patchOffset); + return m_impl.coeff(inputIndex); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0; + Index indices[2] = {index, index + PacketSize - 1}; + Index patchIndices[2] = {indices[0] / m_outputStrides[output_stride_index], + indices[1] / m_outputStrides[output_stride_index]}; + Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[output_stride_index], + indices[1] - patchIndices[1] * m_outputStrides[output_stride_index]}; + + Index inputIndices[2] = {0, 0}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 2; i > 0; --i) { + const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], + patchIndices[1] / m_patchStrides[i]}; + patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; + patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; + + const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i], + patchOffsets[1] / m_outputStrides[i]}; + patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i]; + patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i]; + + inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; + inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; + } + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 2; ++i) { + const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], + patchIndices[1] / m_patchStrides[i]}; + patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; + patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; + + const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i+1], + patchOffsets[1] / m_outputStrides[i+1]}; + patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i+1]; + patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i+1]; + + inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; + inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; + } + } + inputIndices[0] += (patchIndices[0] + patchOffsets[0]); + inputIndices[1] += (patchIndices[1] + patchOffsets[1]); + + if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { + PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); + return rslt; + } + else { + EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize]; + values[0] = m_impl.coeff(inputIndices[0]); + values[PacketSize-1] = m_impl.coeff(inputIndices[1]); + EIGEN_UNROLL_LOOP + for (int i = 1; i < PacketSize-1; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + const double compute_cost = NumDims * (TensorOpCost::DivCost<Index>() + + TensorOpCost::MulCost<Index>() + + 2 * TensorOpCost::AddCost<Index>()); + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + Dimensions m_dimensions; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims-1> m_inputStrides; + array<Index, NumDims-1> m_patchStrides; + + TensorEvaluator<ArgType, Device> m_impl; + +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorRandom.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorRandom.h new file mode 100644 index 0000000..37c1d1c --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorRandom.h @@ -0,0 +1,322 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2018 Mehdi Goli <eigen@codeplay.com> Codeplay Software Ltd. +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H +#define EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H + +namespace Eigen { +namespace internal { + +namespace { + +EIGEN_DEVICE_FUNC uint64_t get_random_seed() { +#if defined(EIGEN_GPU_COMPILE_PHASE) + // We don't support 3d kernels since we currently only use 1 and + // 2d kernels. + gpu_assert(threadIdx.z == 0); + return blockIdx.x * blockDim.x + threadIdx.x + + gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y); +#else + // Rely on Eigen's random implementation. + return random<uint64_t>(); +#endif +} + +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state, uint64_t stream) { + // TODO: Unify with the implementation in the non blocking thread pool. + uint64_t current = *state; + // Update the internal state + *state = current * 6364136223846793005ULL + (stream << 1 | 1); + // Generate the random output (using the PCG-XSH-RS scheme) + return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61))); +} + +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE uint64_t PCG_XSH_RS_state(uint64_t seed) { + seed = seed ? seed : get_random_seed(); + return seed * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; +} + +} // namespace + + +template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +T RandomToTypeUniform(uint64_t* state, uint64_t stream) { + unsigned rnd = PCG_XSH_RS_generator(state, stream); + return static_cast<T>(rnd); +} + + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state, uint64_t stream) { + // Generate 10 random bits for the mantissa, merge with exponent. + unsigned rnd = PCG_XSH_RS_generator(state, stream); + const uint16_t half_bits = static_cast<uint16_t>(rnd & 0x3ffu) | (static_cast<uint16_t>(15) << 10); + Eigen::half result = Eigen::numext::bit_cast<Eigen::half>(half_bits); + // Return the final result + return result - Eigen::half(1.0f); +} + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +Eigen::bfloat16 RandomToTypeUniform<Eigen::bfloat16>(uint64_t* state, uint64_t stream) { + + // Generate 7 random bits for the mantissa, merge with exponent. + unsigned rnd = PCG_XSH_RS_generator(state, stream); + const uint16_t half_bits = static_cast<uint16_t>(rnd & 0x7fu) | (static_cast<uint16_t>(127) << 7); + Eigen::bfloat16 result = Eigen::numext::bit_cast<Eigen::bfloat16>(half_bits); + // Return the final result + return result - Eigen::bfloat16(1.0f); +} + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +float RandomToTypeUniform<float>(uint64_t* state, uint64_t stream) { + typedef union { + uint32_t raw; + float fp; + } internal; + internal result; + // Generate 23 random bits for the mantissa mantissa + const unsigned rnd = PCG_XSH_RS_generator(state, stream); + result.raw = rnd & 0x7fffffu; + // Set the exponent + result.raw |= (static_cast<uint32_t>(127) << 23); + // Return the final result + return result.fp - 1.0f; +} + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +double RandomToTypeUniform<double>(uint64_t* state, uint64_t stream) { + typedef union { + uint64_t raw; + double dp; + } internal; + internal result; + result.raw = 0; + // Generate 52 random bits for the mantissa + // First generate the upper 20 bits + unsigned rnd1 = PCG_XSH_RS_generator(state, stream) & 0xfffffu; + // The generate the lower 32 bits + unsigned rnd2 = PCG_XSH_RS_generator(state, stream); + result.raw = (static_cast<uint64_t>(rnd1) << 32) | rnd2; + // Set the exponent + result.raw |= (static_cast<uint64_t>(1023) << 52); + // Return the final result + return result.dp - 1.0; +} + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state, uint64_t stream) { + return std::complex<float>(RandomToTypeUniform<float>(state, stream), + RandomToTypeUniform<float>(state, stream)); +} +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state, uint64_t stream) { + return std::complex<double>(RandomToTypeUniform<double>(state, stream), + RandomToTypeUniform<double>(state, stream)); +} + +template <typename T> class UniformRandomGenerator { + public: + static const bool PacketAccess = true; + + // Uses the given "seed" if non-zero, otherwise uses a random seed. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator( + uint64_t seed = 0) { + m_state = PCG_XSH_RS_state(seed); + #ifdef EIGEN_USE_SYCL + // In SYCL it is not possible to build PCG_XSH_RS_state in one step. + // Therefor, we need two step to initializate the m_state. + // IN SYCL, the constructor of the functor is s called on the CPU + // and we get the clock seed here from the CPU. However, This seed is + //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function. + // and only available on the Operator() function (which is called on the GPU). + // Thus for CUDA (((CLOCK + global_thread_id)* 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread + // but for SYCL ((CLOCK * 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread and each thread adds + // the (global_thread_id* 6364136223846793005ULL) for itself only once, in order to complete the construction + // similar to CUDA Therefore, the thread Id injection is not available at this stage. + //However when the operator() is called the thread ID will be avilable. So inside the opeator, + // we add the thrreadID, BlockId,... (which is equivalent of i) + //to the seed and construct the unique m_state per thead similar to cuda. + m_exec_once =false; + #endif + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator( + const UniformRandomGenerator& other) { + m_state = other.m_state; + #ifdef EIGEN_USE_SYCL + m_exec_once =other.m_exec_once; + #endif + } + + template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T operator()(Index i) const { + #ifdef EIGEN_USE_SYCL + if(!m_exec_once) { + // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread + // The (i * 6364136223846793005ULL) is the remaining part of the PCG_XSH_RS_state on the GPU side + m_state += (i * 6364136223846793005ULL); + m_exec_once =true; + } + #endif + T result = RandomToTypeUniform<T>(&m_state, i); + return result; + } + + template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Packet packetOp(Index i) const { + const int packetSize = internal::unpacket_traits<Packet>::size; + EIGEN_ALIGN_MAX T values[packetSize]; + #ifdef EIGEN_USE_SYCL + if(!m_exec_once) { + // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread + m_state += (i * 6364136223846793005ULL); + m_exec_once =true; + } + #endif + EIGEN_UNROLL_LOOP + for (int j = 0; j < packetSize; ++j) { + values[j] = RandomToTypeUniform<T>(&m_state, i); + } + return internal::pload<Packet>(values); + } + + private: + mutable uint64_t m_state; + #ifdef EIGEN_USE_SYCL + mutable bool m_exec_once; + #endif +}; + +template <typename Scalar> +struct functor_traits<UniformRandomGenerator<Scalar> > { + enum { + // Rough estimate for floating point, multiplied by ceil(sizeof(T) / sizeof(float)). + Cost = 12 * NumTraits<Scalar>::AddCost * + ((sizeof(Scalar) + sizeof(float) - 1) / sizeof(float)), + PacketAccess = UniformRandomGenerator<Scalar>::PacketAccess + }; +}; + + + +template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +T RandomToTypeNormal(uint64_t* state, uint64_t stream) { + // Use the ratio of uniform method to generate numbers following a normal + // distribution. See for example Numerical Recipes chapter 7.3.9 for the + // details. + T u, v, q; + do { + u = RandomToTypeUniform<T>(state, stream); + v = T(1.7156) * (RandomToTypeUniform<T>(state, stream) - T(0.5)); + const T x = u - T(0.449871); + const T y = numext::abs(v) + T(0.386595); + q = x*x + y * (T(0.196)*y - T(0.25472)*x); + } while (q > T(0.27597) && + (q > T(0.27846) || v*v > T(-4) * numext::log(u) * u*u)); + + return v/u; +} + +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state, uint64_t stream) { + return std::complex<float>(RandomToTypeNormal<float>(state, stream), + RandomToTypeNormal<float>(state, stream)); +} +template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state, uint64_t stream) { + return std::complex<double>(RandomToTypeNormal<double>(state, stream), + RandomToTypeNormal<double>(state, stream)); +} + + +template <typename T> class NormalRandomGenerator { + public: + static const bool PacketAccess = true; + + // Uses the given "seed" if non-zero, otherwise uses a random seed. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) { + m_state = PCG_XSH_RS_state(seed); + #ifdef EIGEN_USE_SYCL + // In SYCL it is not possible to build PCG_XSH_RS_state in one step. + // Therefor, we need two steps to initializate the m_state. + // IN SYCL, the constructor of the functor is s called on the CPU + // and we get the clock seed here from the CPU. However, This seed is + //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function. + // and only available on the Operator() function (which is called on the GPU). + // Therefore, the thread Id injection is not available at this stage. However when the operator() + //is called the thread ID will be avilable. So inside the opeator, + // we add the thrreadID, BlockId,... (which is equivalent of i) + //to the seed and construct the unique m_state per thead similar to cuda. + m_exec_once =false; + #endif + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator( + const NormalRandomGenerator& other) { + m_state = other.m_state; +#ifdef EIGEN_USE_SYCL + m_exec_once=other.m_exec_once; +#endif + } + + template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T operator()(Index i) const { + #ifdef EIGEN_USE_SYCL + if(!m_exec_once) { + // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread + m_state += (i * 6364136223846793005ULL); + m_exec_once =true; + } + #endif + T result = RandomToTypeNormal<T>(&m_state, i); + return result; + } + + template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Packet packetOp(Index i) const { + const int packetSize = internal::unpacket_traits<Packet>::size; + EIGEN_ALIGN_MAX T values[packetSize]; + #ifdef EIGEN_USE_SYCL + if(!m_exec_once) { + // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread + m_state += (i * 6364136223846793005ULL); + m_exec_once =true; + } + #endif + EIGEN_UNROLL_LOOP + for (int j = 0; j < packetSize; ++j) { + values[j] = RandomToTypeNormal<T>(&m_state, i); + } + return internal::pload<Packet>(values); + } + + private: + mutable uint64_t m_state; + #ifdef EIGEN_USE_SYCL + mutable bool m_exec_once; + #endif +}; + + +template <typename Scalar> +struct functor_traits<NormalRandomGenerator<Scalar> > { + enum { + // On average, we need to generate about 3 random numbers + // 15 mul, 8 add, 1.5 logs + Cost = 3 * functor_traits<UniformRandomGenerator<Scalar> >::Cost + + 15 * NumTraits<Scalar>::AddCost + 8 * NumTraits<Scalar>::AddCost + + 3 * functor_traits<scalar_log_op<Scalar> >::Cost / 2, + PacketAccess = NormalRandomGenerator<Scalar>::PacketAccess + }; +}; + + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorReduction.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorReduction.h new file mode 100644 index 0000000..583f462 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorReduction.h @@ -0,0 +1,998 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H +#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H + +// clang is incompatible with the CUDA syntax wrt making a kernel a class friend, +// so we'll use a macro to make clang happy. +#ifndef KERNEL_FRIEND +#if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__)) +#define KERNEL_FRIEND friend __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 +#else +#define KERNEL_FRIEND friend +#endif +#endif + + +namespace Eigen { + + +/** \class TensorReduction + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reduction class. + * + */ + +namespace internal { + template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ > + struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> > + : traits<XprType> +{ + typedef traits<XprType> XprTraits; + typedef typename XprTraits::Scalar Scalar; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; + + template <class T> struct MakePointer { + // Intermediate typedef to workaround MSVC issue. + typedef MakePointer_<T> MakePointerT; + typedef typename MakePointerT::Type Type; + }; +}; + +template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_> +struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense> +{ + typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type; +}; + +template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_> +struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type> +{ + typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type; +}; + + +template <typename OutputDims> struct DimInitializer { + template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC + static void run(const InputDims& input_dims, + const array<bool, internal::array_size<InputDims>::value>& reduced, + OutputDims* output_dims, ReducedDims* reduced_dims) { + const int NumInputDims = internal::array_size<InputDims>::value; + int outputIndex = 0; + int reduceIndex = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (reduced[i]) { + (*reduced_dims)[reduceIndex] = input_dims[i]; + ++reduceIndex; + } else { + (*output_dims)[outputIndex] = input_dims[i]; + ++outputIndex; + } + } + } +}; + +template <> struct DimInitializer<Sizes<> > { + template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC + static void run(const InputDims& input_dims, const array<bool, Rank>&, + Sizes<>*, array<Index, Rank>* reduced_dims) { + const int NumInputDims = internal::array_size<InputDims>::value; + for (int i = 0; i < NumInputDims; ++i) { + (*reduced_dims)[i] = input_dims[i]; + } + } +}; + + +template <typename ReducedDims, int NumTensorDims, int Layout> +struct are_inner_most_dims { + static const bool value = false; +}; +template <typename ReducedDims, int NumTensorDims, int Layout> +struct preserve_inner_most_dims { + static const bool value = false; +}; + +#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES +template <typename ReducedDims, int NumTensorDims> +struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{ + static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); + static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0); + static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1); + static const bool value = tmp1 & tmp2 & tmp3; +}; +template <typename ReducedDims, int NumTensorDims> +struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{ + static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); + static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value); + static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1); + static const bool value = tmp1 & tmp2 & tmp3; + +}; +template <typename ReducedDims, int NumTensorDims> +struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{ + static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); + static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0); + static const bool value = tmp1 & tmp2; + +}; +template <typename ReducedDims, int NumTensorDims> +struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{ + static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>(); + static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1); + static const bool value = tmp1 & tmp2; +}; +#endif + + +template <int DimIndex, typename Self, typename Op> +struct GenericDimReducer { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { + EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) { + const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; + GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum); + } + } +}; +template <typename Self, typename Op> +struct GenericDimReducer<0, Self, Op> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { + for (int j = 0; j < self.m_reducedDims[0]; ++j) { + const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; + reducer.reduce(self.m_impl.coeff(input), accum); + } + } +}; +template <typename Self, typename Op> +struct GenericDimReducer<-1, Self, Op> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) { + reducer.reduce(self.m_impl.coeff(index), accum); + } +}; + +template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess), + bool UseTreeReduction = (!Self::ReducerTraits::IsStateful && + !Self::ReducerTraits::IsExactlyAssociative)> +struct InnerMostDimReducer { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { + typename Self::CoeffReturnType accum = reducer.initialize(); + for (typename Self::Index j = 0; j < numValuesToReduce; ++j) { + reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); + } + return reducer.finalize(accum); + } +}; + +template <typename Self, typename Op> +struct InnerMostDimReducer<Self, Op, true, false> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { + const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size; + const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize; + typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>(); + for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) { + reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum); + } + typename Self::CoeffReturnType accum = reducer.initialize(); + for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) { + reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); + } + return reducer.finalizeBoth(accum, paccum); + } +}; + +#if !defined(EIGEN_HIPCC) +static const int kLeafSize = 1024; + +template <typename Self, typename Op> +struct InnerMostDimReducer<Self, Op, false, true> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType + reduce(const Self& self, typename Self::Index firstIndex, + typename Self::Index numValuesToReduce, Op& reducer) { + typename Self::CoeffReturnType accum = reducer.initialize(); + if (numValuesToReduce > kLeafSize) { + const typename Self::Index half = numValuesToReduce / 2; + reducer.reduce(reduce(self, firstIndex, half, reducer), &accum); + reducer.reduce( + reduce(self, firstIndex + half, numValuesToReduce - half, reducer), + &accum); + } else { + for (typename Self::Index j = 0; j < numValuesToReduce; ++j) { + reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); + } + } + return reducer.finalize(accum); + } +}; + +template <typename Self, typename Op> +struct InnerMostDimReducer<Self, Op, true, true> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType + reduce(const Self& self, typename Self::Index firstIndex, + typename Self::Index numValuesToReduce, Op& reducer) { + const typename Self::Index packetSize = + internal::unpacket_traits<typename Self::PacketReturnType>::size; + typename Self::CoeffReturnType accum = reducer.initialize(); + if (numValuesToReduce > packetSize * kLeafSize) { + // Make sure the split point is aligned on a packet boundary. + const typename Self::Index split = + packetSize * + divup(firstIndex + divup(numValuesToReduce, typename Self::Index(2)), + packetSize); + const typename Self::Index num_left = + numext::mini(split - firstIndex, numValuesToReduce); + reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum); + if (num_left < numValuesToReduce) { + reducer.reduce( + reduce(self, split, numValuesToReduce - num_left, reducer), &accum); + } + return reducer.finalize(accum); + } else { + const typename Self::Index UnrollSize = + (numValuesToReduce / (2*packetSize)) * 2*packetSize; + const typename Self::Index VectorizedSize = + (numValuesToReduce / packetSize) * packetSize; + typename Self::PacketReturnType paccum = + reducer.template initializePacket<typename Self::PacketReturnType>(); + typename Self::PacketReturnType paccum2 = + reducer.template initializePacket<typename Self::PacketReturnType>(); + for (typename Self::Index j = 0; j < UnrollSize; j += packetSize * 2) { + reducer.reducePacket( + self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum); + reducer.reducePacket( + self.m_impl.template packet<Unaligned>(firstIndex + j + packetSize), + &paccum2); + } + for (typename Self::Index j = UnrollSize; j < VectorizedSize; j+= packetSize) { + reducer.reducePacket(self.m_impl.template packet<Unaligned>( + firstIndex + j), &paccum); + } + reducer.reducePacket(paccum2, &paccum); + for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; + ++j) { + reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); + } + return reducer.finalizeBoth(accum, paccum); + } + } +}; +#endif + +template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)> +struct InnerMostDimPreserver { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { + eigen_assert(false && "should never be called"); + } +}; + +template <int DimIndex, typename Self, typename Op> +struct InnerMostDimPreserver<DimIndex, Self, Op, true> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { + EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) { + const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; + InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum); + } + } +}; + +template <typename Self, typename Op> +struct InnerMostDimPreserver<0, Self, Op, true> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { + for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) { + const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; + reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum); + } + } +}; +template <typename Self, typename Op> +struct InnerMostDimPreserver<-1, Self, Op, true> { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { + eigen_assert(false && "should never be called"); + } +}; + +// Default full reducer +template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)> +struct FullReducer { + static const bool HasOptimizedImplementation = false; + + static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::EvaluatorPointerType output) { + const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions()); + *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer); + } +}; + + +#ifdef EIGEN_USE_THREADS +// Multithreaded full reducers +template <typename Self, typename Op, + bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)> +struct FullReducerShard { + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex, + typename Self::Index numValuesToReduce, Op& reducer, + typename Self::CoeffReturnType* output) { + *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce( + self, firstIndex, numValuesToReduce, reducer); + } +}; + +// Multithreaded full reducer +template <typename Self, typename Op, bool Vectorizable> +struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> { + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful; + static const Index PacketSize = + unpacket_traits<typename Self::PacketReturnType>::size; + + // launch one reducer per thread and accumulate the result. + static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, + typename Self::CoeffReturnType* output) { + typedef typename Self::Index Index; + const Index num_coeffs = array_prod(self.m_impl.dimensions()); + if (num_coeffs == 0) { + *output = reducer.finalize(reducer.initialize()); + return; + } + const TensorOpCost cost = + self.m_impl.costPerCoeff(Vectorizable) + + TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable, + PacketSize); + const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads( + num_coeffs, cost, device.numThreads()); + if (num_threads == 1) { + *output = + InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer); + return; + } + const Index blocksize = + std::floor<Index>(static_cast<float>(num_coeffs) / num_threads); + const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0; + eigen_assert(num_coeffs >= numblocks * blocksize); + + Barrier barrier(internal::convert_index<unsigned int>(numblocks)); + MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize()); + for (Index i = 0; i < numblocks; ++i) { + device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run, + self, i * blocksize, blocksize, reducer, + &shards[i]); + } + typename Self::CoeffReturnType finalShard; + if (numblocks * blocksize < num_coeffs) { + finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce( + self, numblocks * blocksize, num_coeffs - numblocks * blocksize, + reducer); + } else { + finalShard = reducer.initialize(); + } + barrier.Wait(); + + for (Index i = 0; i < numblocks; ++i) { + reducer.reduce(shards[i], &finalShard); + } + *output = reducer.finalize(finalShard); + } +}; + +#endif + + +// Default inner reducer +template <typename Self, typename Op, typename Device> +struct InnerReducer { + static const bool HasOptimizedImplementation = false; + + EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) { + eigen_assert(false && "Not implemented"); + return true; + } +}; + +// Default outer reducer +template <typename Self, typename Op, typename Device> +struct OuterReducer { + static const bool HasOptimizedImplementation = false; + + EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) { + eigen_assert(false && "Not implemented"); + return true; + } +}; + +#ifdef EIGEN_USE_SYCL +// Default Generic reducer +template <typename Self, typename Op, typename Device> +struct GenericReducer { + static const bool HasOptimizedImplementation = false; + + EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) { + eigen_assert(false && "Not implemented"); + return true; + } +}; +#endif + +#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC)) +template <int B, int N, typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*); + + +#if defined(EIGEN_HAS_GPU_FP16) +template <typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<half>::type*); +template <int B, int N, typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<half>::type*); +template <int NPT, typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(R, const S, I_, I_, half*); + +#endif + +template <int NPT, typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*); + +template <int NPT, typename S, typename R, typename I_> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*); +#endif + +/** + * For SYCL, the return type of the reduction is deduced from the initialize method of the given Op. + * This allows the reduction to have a different type for the accumulator than the input data type. + * If this is the case, the functor needs to have two reduce method: one for reducing an element of the input + * with the accumulator and the other for reducing two accumulators. + * Such a reducer can be useful for instance when the accumulator is a boolean or a bitset that checks for + * some properties of the input. + */ +template <typename Op, typename CoeffReturnType> +struct ReductionReturnType { +#if defined(EIGEN_USE_SYCL) + typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type; +#else + typedef typename remove_const<CoeffReturnType>::type type; +#endif +}; + +} // end namespace internal + + +template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_> +class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> { + public: + typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested; + typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims) + { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const XprType& expression() const { return m_expr; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dims& dims() const { return m_dims; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Op& reducer() const { return m_reducer; } + + protected: + typename XprType::Nested m_expr; + const Dims m_dims; + const Op m_reducer; +}; + +template<typename ArgType, typename Device> +struct TensorReductionEvaluatorBase; + +// Eval as rvalue +template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device> +struct TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> +{ + typedef internal::reducer_traits<Op, Device> ReducerTraits; + typedef Dims ReducedDims; + typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType; + typedef typename XprType::Index Index; + typedef ArgType ChildType; + typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions; + static const int NumInputDims = internal::array_size<InputDimensions>::value; + static const int NumReducedDims = internal::array_size<Dims>::value; + static const int NumOutputDims = NumInputDims - NumReducedDims; + typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions; + typedef typename XprType::Scalar Scalar; + typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self; + static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess; + typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const Index PacketSize = PacketType<CoeffReturnType, Device>::size; + + typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + // Subset of strides of the input tensor for the non-reduced dimensions. + // Indexed by output dimensions. + static const int NumPreservedStrides = max_n_1<NumOutputDims>::size; + + enum { + IsAligned = false, + PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess, + BlockAccess = false, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value; + static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value; + static const bool RunningFullReduction = (NumOutputDims==0); + + EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device) + { + EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)), + YOU_MADE_A_PROGRAMMING_MISTAKE); + + // Build the bitmap indicating if an input dimension is reduced or not. + for (int i = 0; i < NumInputDims; ++i) { + m_reduced[i] = false; + } + for (int i = 0; i < NumReducedDims; ++i) { + eigen_assert(op.dims()[i] >= 0); + eigen_assert(op.dims()[i] < NumInputDims); + m_reduced[op.dims()[i]] = true; + } + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims); + + // Precompute output strides. + if (NumOutputDims > 0) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_outputStrides[0] = 1; + for (int i = 1; i < NumOutputDims; ++i) { + m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]); + } + } else { + m_outputStrides[NumOutputDims - 1] = 1; + for (int i = NumOutputDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]); + } + } + } + + // Precompute input strides. + if (NumInputDims > 0) { + array<Index, NumInputDims> input_strides; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + input_strides[0] = 1; + for (int i = 1; i < NumInputDims; ++i) { + input_strides[i] = input_strides[i-1] * input_dims[i-1]; + } + } else { + input_strides.back() = 1; + for (int i = NumInputDims - 2; i >= 0; --i) { + input_strides[i] = input_strides[i + 1] * input_dims[i + 1]; + } + } + + int outputIndex = 0; + int reduceIndex = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (m_reduced[i]) { + m_reducedStrides[reduceIndex] = input_strides[i]; + ++reduceIndex; + } else { + m_preservedStrides[outputIndex] = input_strides[i]; + m_output_to_input_dim_map[outputIndex] = i; + ++outputIndex; + } + } + } + + // Special case for full reductions + if (NumOutputDims == 0) { + m_preservedStrides[0] = internal::array_prod(input_dims); + } + + m_numValuesToReduce = + NumOutputDims == 0 + ? internal::array_prod(input_dims) + : (static_cast<int>(Layout) == static_cast<int>(ColMajor)) + ? m_preservedStrides[0] + : m_preservedStrides[NumOutputDims - 1]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE + bool evalSubExprsIfNeededCommon(EvaluatorPointerType data) { + // Use the FullReducer if possible. + if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction && + internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation && + ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || + !RunningOnGPU))) { + bool need_assign = false; + if (!data) { + m_result = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType)))); + data = m_result; + need_assign = true; + } + Op reducer(m_reducer); + internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data); + return need_assign; + } + + // Attempt to use an optimized reduction. + else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) { + bool reducing_inner_dims = true; + for (int i = 0; i < NumReducedDims; ++i) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + reducing_inner_dims &= m_reduced[i]; + } else { + reducing_inner_dims &= m_reduced[NumInputDims - 1 - i]; + } + } + if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation && + (reducing_inner_dims || ReducingInnerMostDims)) { + const Index num_values_to_reduce = internal::array_prod(m_reducedDims); + const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); + if (!data) { + if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) { + data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve))); + m_result = data; + } + else { + return true; + } + } + Op reducer(m_reducer); + // For SYCL this if always return false + if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) { + if (m_result) { + m_device.deallocate_temp(m_result); + m_result = NULL; + } + return true; + } else { + return (m_result != NULL); + } + } + + bool preserving_inner_dims = true; + for (int i = 0; i < NumReducedDims; ++i) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + preserving_inner_dims &= m_reduced[NumInputDims - 1 - i]; + } else { + preserving_inner_dims &= m_reduced[i]; + } + } + if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation && + preserving_inner_dims) { + const Index num_values_to_reduce = internal::array_prod(m_reducedDims); + const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); + if (!data) { + if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) { + data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve))); + m_result = data; + } + else { + return true; + } + } + Op reducer(m_reducer); + // For SYCL this if always return false + if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) { + if (m_result) { + m_device.deallocate_temp(m_result); + m_result = NULL; + } + return true; + } else { + return (m_result != NULL); + } + } + #if defined(EIGEN_USE_SYCL) + // If there is no Optimised version for SYCL, the reduction expression + // must break into two subexpression and use the SYCL generic Reducer on the device. + if(RunningOnSycl) { + const Index num_values_to_reduce = internal::array_prod(m_reducedDims); + const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions); + if (!data) { + data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve))); + m_result = data; + } + Op reducer(m_reducer); + internal::GenericReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve); + return (m_result != NULL); + } + #endif + } + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE + void + evalSubExprsIfNeededAsync(EvaluatorPointerType data, + EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(NULL, [this, data, done](bool) { + done(evalSubExprsIfNeededCommon(data)); + }); + } +#endif + + EIGEN_STRONG_INLINE + bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + m_impl.evalSubExprsIfNeeded(NULL); + return evalSubExprsIfNeededCommon(data); + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + if (m_result) { + m_device.deallocate_temp(m_result); + m_result = NULL; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + if (( RunningFullReduction || RunningOnGPU) && m_result ) { + return *(m_result + index); + } + Op reducer(m_reducer); + if (ReducingInnerMostDims || RunningFullReduction) { + const Index num_values_to_reduce = + (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; + return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index), + num_values_to_reduce, reducer); + } else { + typename Self::CoeffReturnType accum = reducer.initialize(); + internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum); + return reducer.finalize(accum); + } + } + + // TODO(bsteiner): provide a more efficient implementation. + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions()))); + + if (RunningOnGPU && m_result) { + return internal::pload<PacketReturnType>(m_result + index); + } + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + if (ReducingInnerMostDims) { + const Index num_values_to_reduce = + (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; + const Index firstIndex = firstInput(index); + for (Index i = 0; i < PacketSize; ++i) { + Op reducer(m_reducer); + values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce, + num_values_to_reduce, reducer); + } + } else if (PreservingInnerMostDims) { + const Index firstIndex = firstInput(index); + const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1; + // TBD: extend this the the n innermost dimensions that we preserve. + if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) { + Op reducer(m_reducer); + typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>(); + internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum); + return reducer.finalizePacket(accum); + } else { + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index + i); + } + } + } else { + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index + i); + } + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + // Must be called after evalSubExprsIfNeeded(). + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + if (RunningFullReduction && m_result) { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize); + } else { + const Index num_values_to_reduce = internal::array_prod(m_reducedDims); + const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost; + return m_impl.costPerCoeff(vectorized) * num_values_to_reduce + + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; } + EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + EIGEN_DEVICE_FUNC const Device& device() const { return m_device; } +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + m_result.bind(cgh); + } +#endif + + private: + template <int, typename, typename> friend struct internal::GenericDimReducer; + template <typename, typename, bool, bool> friend struct internal::InnerMostDimReducer; + template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver; + template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer; +#ifdef EIGEN_USE_THREADS + template <typename S, typename O, bool V> friend struct internal::FullReducerShard; +#endif +#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC)) + template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*); +#if defined(EIGEN_HAS_GPU_FP16) + template <typename S, typename R, typename I_> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<Eigen::half>::type*); + template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<Eigen::half>::type*); + template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I_, I_, half*); +#endif + template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*); + + template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*); +#endif + +#if defined(EIGEN_USE_SYCL) + template < typename Evaluator_, typename Op__> friend class TensorSycl::internal::GenericNondeterministicReducer; + // SYCL need the Generic reducer for the case the recution algorithm is neither inner, outer, and full reducer + template <typename, typename, typename> friend struct internal::GenericReducer; +#endif + + + template <typename S, typename O, typename D> friend struct internal::InnerReducer; + + struct BlockIteratorState { + Index input_dim; + Index output_size; + Index output_count; + }; + + // Returns the Index in the input tensor of the first value that needs to be + // used to compute the reduction at output index "index". + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { + if (ReducingInnerMostDims) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + return index * m_preservedStrides[0]; + } else { + return index * m_preservedStrides[NumPreservedStrides - 1]; + } + } + // TBD: optimize the case where we preserve the innermost dimensions. + Index startInput = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumOutputDims - 1; i > 0; --i) { + // This is index_i in the output tensor. + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + if (PreservingInnerMostDims) { + eigen_assert(m_preservedStrides[0] == 1); + startInput += index; + } else { + startInput += index * m_preservedStrides[0]; + } + } else { + for (int i = 0; i < NumOutputDims - 1; ++i) { + // This is index_i in the output tensor. + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + if (PreservingInnerMostDims) { + eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1); + startInput += index; + } else { + startInput += index * m_preservedStrides[NumPreservedStrides - 1]; + } + } + return startInput; + } + + // Bitmap indicating if an input dimension is reduced or not. + array<bool, NumInputDims> m_reduced; + // Dimensions of the output of the operation. + Dimensions m_dimensions; + // Precomputed strides for the output tensor. + array<Index, NumOutputDims> m_outputStrides; + array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides; + array<Index, NumPreservedStrides> m_preservedStrides; + // Map from output to input dimension index. + array<Index, NumOutputDims> m_output_to_input_dim_map; + // How many values go into each reduction + Index m_numValuesToReduce; + + // Subset of strides of the input tensor for the reduced dimensions. + // Indexed by reduced dimensions. + array<Index, NumReducedDims> m_reducedStrides; + // Size of the input dimensions that are reduced. + // Indexed by reduced dimensions. + array<Index, NumReducedDims> m_reducedDims; + + // Evaluator for the input expression. + TensorEvaluator<ArgType, Device> m_impl; + + // Operation to apply for computing the reduction. + Op m_reducer; + + // For full reductions +#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC)) + static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value; + static const bool RunningOnSycl = false; +#elif defined(EIGEN_USE_SYCL) +static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value; +static const bool RunningOnGPU = false; +#else + static const bool RunningOnGPU = false; + static const bool RunningOnSycl = false; +#endif + EvaluatorPointerType m_result; + + const Device EIGEN_DEVICE_REF m_device; +}; + +template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device> +struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> +: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> { + typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base; + EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Device& device) : Base(op, device){} +}; + + +template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_> +struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> +: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> { + + typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base; + EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Eigen::SyclDevice& device) : Base(op, device){} + // The coeff function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel + //Therefore the coeff function should be overridden by for SYCL kernel + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::CoeffReturnType coeff(typename Base::Index index) const { + return *(this->data() + index); + } + // The packet function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel + //Therefore the packet function should be overridden by for SYCL kernel + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::PacketReturnType packet(typename Base::Index index) const { + return internal::pload<typename Base::PacketReturnType>(this->data() + index); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionCuda.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionCuda.h new file mode 100644 index 0000000..68780cd --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionCuda.h @@ -0,0 +1,6 @@ + +#if defined(__clang__) || defined(__GNUC__) +#warning "Deprecated header file, please either include the main Eigen/CXX11/Tensor header or the respective TensorReductionGpu.h file" +#endif + +#include "TensorReductionGpu.h" diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionGpu.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionGpu.h new file mode 100644 index 0000000..db4e8d8 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionGpu.h @@ -0,0 +1,966 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H +#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H + +namespace Eigen { +namespace internal { + + +#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) +// Full reducers for GPU, don't vectorize for now + +// Reducer function that enables multiple gpu thread to safely accumulate at the same +// output address. It basically reads the current value of the output variable, and +// attempts to update it with the new value. If in the meantime another gpu thread +// updated the content of the output address it will try again. +template <typename T, typename R> +__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) { +#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) + if (sizeof(T) == 4) + { + unsigned int oldval = *reinterpret_cast<unsigned int*>(output); + unsigned int newval = oldval; + reducer.reduce(accum, reinterpret_cast<T*>(&newval)); + if (newval == oldval) { + return; + } + unsigned int readback; + while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { + oldval = readback; + newval = oldval; + reducer.reduce(accum, reinterpret_cast<T*>(&newval)); + if (newval == oldval) { + return; + } + } + } + else if (sizeof(T) == 8) { + unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output); + unsigned long long newval = oldval; + reducer.reduce(accum, reinterpret_cast<T*>(&newval)); + if (newval == oldval) { + return; + } + unsigned long long readback; + while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) { + oldval = readback; + newval = oldval; + reducer.reduce(accum, reinterpret_cast<T*>(&newval)); + if (newval == oldval) { + return; + } + } + } + else { + gpu_assert(0 && "Wordsize not supported"); + } +#else // EIGEN_CUDA_ARCH >= 300 + gpu_assert(0 && "Shouldn't be called on unsupported device"); +#endif // EIGEN_CUDA_ARCH >= 300 +} + +// We extend atomicExch to support extra data types +template <typename Type> +__device__ inline Type atomicExchCustom(Type* address, Type val) { + return atomicExch(address, val); +} + +template <> +__device__ inline double atomicExchCustom(double* address, double val) { + unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address); + return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val))); +} + +#ifdef EIGEN_HAS_GPU_FP16 +template <typename R> +__device__ inline void atomicReduce(half2* output, half2 accum, R& reducer) { + unsigned int oldval = *reinterpret_cast<unsigned int*>(output); + unsigned int newval = oldval; + reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); + if (newval == oldval) { + return; + } + unsigned int readback; + while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { + oldval = readback; + newval = oldval; + reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); + if (newval == oldval) { + return; + } + } +} +// reduction should be associative since reduction is not atomic in wide vector but atomic in half2 operations +template <typename R> +__device__ inline void atomicReduce(Packet4h2* output, Packet4h2 accum, R& reducer) { + half2* houtput=reinterpret_cast<half2*>(output); + half2* haccum=reinterpret_cast<half2*>(&accum); + for(int i=0;i<4;++i){ + atomicReduce(houtput+i,*(haccum+i),reducer); + } +} +#endif // EIGEN_HAS_GPU_FP16 + +template <> +__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) { +#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) + atomicAdd(output, accum); +#else // EIGEN_CUDA_ARCH >= 300 + gpu_assert(0 && "Shouldn't be called on unsupported device"); +#endif // EIGEN_CUDA_ARCH >= 300 +} + + +template <typename CoeffType, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) { + const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; + const Index num_threads = blockDim.x * gridDim.x; + for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { + output[i] = val; + } +} + + +template <int BlockSize, int NumPerThread, typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs, + typename Self::CoeffReturnType* output, unsigned int* semaphore) { +#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) + // Initialize the output value + const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x; + if (gridDim.x == 1) { + if (first_index == 0) { + *output = reducer.initialize(); + } + } + else { + if (threadIdx.x == 0) { + unsigned int block = atomicCAS(semaphore, 0u, 1u); + if (block == 0) { + // We're the first block to run, initialize the output value + atomicExchCustom(output, reducer.initialize()); + __threadfence(); + atomicExch(semaphore, 2u); + } + else { + // Wait for the first block to initialize the output value. + // Use atomicCAS here to ensure that the reads aren't cached + unsigned int val; + do { + val = atomicCAS(semaphore, 2u, 2u); + } + while (val < 2u); + } + } + } + + __syncthreads(); + + eigen_assert(gridDim.x == 1 || *semaphore >= 2u); + + typename Self::CoeffReturnType accum = reducer.initialize(); + Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize); + for (Index i = 0; i < max_iter; i+=BlockSize) { + const Index index = first_index + i; + eigen_assert(index < num_coeffs); + typename Self::CoeffReturnType val = input.m_impl.coeff(index); + reducer.reduce(val, &accum); + } + +#pragma unroll + for (int offset = warpSize/2; offset > 0; offset /= 2) { + #if defined(EIGEN_HIPCC) + // use std::is_floating_point to determine the type of reduced_val + // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error + // and list the float and int versions of __shfl_down as the candidate functions. + if (std::is_floating_point<typename Self::CoeffReturnType>::value) { + reducer.reduce(__shfl_down(static_cast<float>(accum), offset, warpSize), &accum); + } else { + reducer.reduce(__shfl_down(static_cast<int>(accum), offset, warpSize), &accum); + } + #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 + reducer.reduce(__shfl_down(accum, offset, warpSize), &accum); + #else + reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum); + #endif + } + + if ((threadIdx.x & (warpSize - 1)) == 0) { + atomicReduce(output, accum, reducer); + } + + if (gridDim.x > 1 && threadIdx.x == 0) { + // Let the last block reset the semaphore + atomicInc(semaphore, gridDim.x + 1); +#if defined(EIGEN_HIPCC) + __threadfence_system(); +#endif + } +#else // EIGEN_CUDA_ARCH >= 300 + gpu_assert(0 && "Shouldn't be called on unsupported device"); +#endif // EIGEN_CUDA_ARCH >= 300 +} + + +#ifdef EIGEN_HAS_GPU_FP16 +template <typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, + packet_traits<Eigen::half>::type* scratch) { + eigen_assert(blockDim.x == 1); + eigen_assert(gridDim.x == 1); + typedef packet_traits<Eigen::half>::type packet_type; + Index packet_remainder = + num_coeffs % Index(unpacket_traits<packet_type>::size); + if (packet_remainder != 0) { + half2* h2scratch = reinterpret_cast<half2*>(scratch); + for (Index i = num_coeffs - packet_remainder; i + 2 <= num_coeffs; i += 2) { + *h2scratch = + __halves2half2(input.m_impl.coeff(i), input.m_impl.coeff(i + 1)); + h2scratch++; + } + if ((num_coeffs & 1) != 0) { + half lastCoeff = input.m_impl.coeff(num_coeffs - 1); + *h2scratch = __halves2half2(lastCoeff, reducer.initialize()); + } + } else { + *scratch = reducer.template initializePacket<packet_type>(); + } +} + +template <typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) { + const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; + const Index num_threads = blockDim.x * gridDim.x; + typedef typename packet_traits<Eigen::half>::type PacketType; + + const Index num_packets = + num_coeffs / Index(unpacket_traits<PacketType>::size); + PacketType* p_output = reinterpret_cast<PacketType*>(output); + for (Index i = thread_id; i < num_packets; i += num_threads) { + p_output[i] = reducer.template initializePacket<PacketType>(); + } + Index packet_remainder = + num_coeffs % Index(unpacket_traits<PacketType>::size); + if (thread_id < packet_remainder) { + output[num_coeffs - packet_remainder + thread_id] = reducer.initialize(); + } +} + +template <int BlockSize, int NumPerThread, typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, + half* output, packet_traits<Eigen::half>::type* scratch) { + typedef typename packet_traits<Eigen::half>::type PacketType; + const int packet_width = unpacket_traits<PacketType>::size; + eigen_assert(NumPerThread % packet_width == 0); + const Index first_index = + blockIdx.x * BlockSize * NumPerThread + packet_width * threadIdx.x; + + // Initialize the output value if it wasn't initialized by the ReductionInitKernel + + if (gridDim.x == 1) { + if (first_index == 0) { + int rem = num_coeffs % packet_width; + if (rem != 0) { + half2* p_scratch = reinterpret_cast<half2*>(scratch); + *scratch = reducer.template initializePacket<PacketType>(); + for (int i = 0; i < rem / 2; i++) { + *p_scratch = __halves2half2( + input.m_impl.coeff(num_coeffs - packet_width + 2 * i), + input.m_impl.coeff(num_coeffs - packet_width + 2 * i + 1)); + p_scratch++; + } + if ((num_coeffs & 1) != 0) { + half last = input.m_impl.coeff(num_coeffs - 1); + *p_scratch = __halves2half2(last, reducer.initialize()); + } + } else { + *scratch = reducer.template initializePacket<PacketType>(); + } + } + __syncthreads(); + } + + PacketType accum = reducer.template initializePacket<PacketType>(); + const Index max_iter = + numext::mini<Index>((num_coeffs - first_index) / packet_width, + NumPerThread * BlockSize / packet_width); + for (Index i = 0; i < max_iter; i += BlockSize) { + const Index index = first_index + packet_width * i; + eigen_assert(index + packet_width < num_coeffs); + PacketType val = input.m_impl.template packet<Unaligned>(index); + reducer.reducePacket(val, &accum); + } + +#pragma unroll + for (int offset = warpSize/2; offset > 0; offset /= 2) { + #if defined(EIGEN_HIPCC) + PacketType r1; + half2* hr = reinterpret_cast<half2*>(&r1); + half2* hacc = reinterpret_cast<half2*>(&accum); + for (int i = 0; i < packet_width / 2; i++) { + // FIXME : remove this workaround once we have native half/half2 support for __shfl_down + union { int i; half2 h; } wka_in, wka_out; + wka_in.h = hacc[i]; + wka_out.i = __shfl_down(wka_in.i, offset, warpSize); + hr[i] = wka_out.h; + } + reducer.reducePacket(r1, &accum); + #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 + PacketType r1; + half2* hr = reinterpret_cast<half2*>(&r1); + half2* hacc = reinterpret_cast<half2*>(&accum); + for (int i = 0; i < packet_width / 2; i++) { + hr[i] = __shfl_down(hacc[i], offset, warpSize); + } + reducer.reducePacket(r1, &accum); + #else + PacketType r1; + half2* hr = reinterpret_cast<half2*>(&r1); + half2* hacc = reinterpret_cast<half2*>(&accum); + for (int i = 0; i < packet_width / 2; i++) { + hr[i] = __shfl_down_sync(0xFFFFFFFF, hacc[i], (unsigned)offset, warpSize); + } + reducer.reducePacket(r1, &accum); + + #endif + } + + if ((threadIdx.x & (warpSize - 1)) == 0) { + atomicReduce(scratch, accum, reducer); + } + + __syncthreads(); + half2* rv1 = reinterpret_cast<half2*>(scratch); + if (packet_width > 2) { + reducer.reducePacket(rv1[2], rv1); + reducer.reducePacket(rv1[3], rv1 + 1); + reducer.reducePacket(rv1[1], rv1); + } + if (gridDim.x == 1) { + if (first_index == 0) { + half tmp = __low2half(*rv1); + reducer.reduce(__high2half(*rv1), &tmp); + *output = tmp; + } + } +} + +template <typename Op> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionCleanupKernelHalfFloat(Op reducer, half* output, packet_traits<Eigen::half>::type* scratch) { + eigen_assert(threadIdx.x == 1); + half2* pscratch = reinterpret_cast<half2*>(scratch); + half tmp = __float2half(0.f); + typedef packet_traits<Eigen::half>::type packet_type; + for (int i = 0; i < unpacket_traits<packet_type>::size; i += 2) { + reducer.reduce(__low2half(*pscratch), &tmp); + reducer.reduce(__high2half(*pscratch), &tmp); + pscratch++; + } + *output = tmp; +} + +#endif // EIGEN_HAS_GPU_FP16 + +template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> +struct FullReductionLauncher { + static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) { + gpu_assert(false && "Should only be called on doubles, floats and half floats"); + } +}; + +// Specialization for float and double +template <typename Self, typename Op, typename OutputType, bool PacketAccess> +struct FullReductionLauncher< + Self, Op, OutputType, PacketAccess, + typename internal::enable_if< + internal::is_same<float, OutputType>::value || + internal::is_same<double, OutputType>::value, + void>::type> { + static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) { + + typedef typename Self::Index Index; + const int block_size = 256; + const int num_per_thread = 128; + const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); + + unsigned int* semaphore = NULL; + if (num_blocks > 1) { + semaphore = device.semaphore(); + } + + LAUNCH_GPU_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>), + num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore); + } +}; + +#ifdef EIGEN_HAS_GPU_FP16 +template <typename Self, typename Op> +struct FullReductionLauncher<Self, Op, Eigen::half, false> { + static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) { + gpu_assert(false && "Should not be called since there is no packet accessor"); + } +}; + +template <typename Self, typename Op> +struct FullReductionLauncher<Self, Op, Eigen::half, true> { + static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) { + typedef typename Self::Index Index; + typedef typename packet_traits<Eigen::half>::type PacketType; + + const int block_size = 256; + const int num_per_thread = 128; + const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); + PacketType* scratch = static_cast<PacketType*>(device.scratchpad()); + // half2* scratch = static_cast<half2*>(device.scratchpad()); + + if (num_blocks > 1) { + // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there + // won't be a race conditions between multiple thread blocks. + LAUNCH_GPU_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>), + 1, 1, 0, device, reducer, self, num_coeffs, scratch); + } + + LAUNCH_GPU_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>), + num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch); + + if (num_blocks > 1) { + LAUNCH_GPU_KERNEL((ReductionCleanupKernelHalfFloat<Op>), + 1, 1, 0, device, reducer, output, scratch); + } + } +}; +#endif // EIGEN_HAS_GPU_FP16 + + +template <typename Self, typename Op, bool Vectorizable> +struct FullReducer<Self, Op, GpuDevice, Vectorizable> { + // Unfortunately nvidia doesn't support well exotic types such as complex, + // so reduce the scope of the optimized version of the code to the simple cases + // of doubles, floats and half floats +#ifdef EIGEN_HAS_GPU_FP16 + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && + (internal::is_same<typename Self::CoeffReturnType, float>::value || + internal::is_same<typename Self::CoeffReturnType, double>::value || + (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); +#else // EIGEN_HAS_GPU_FP16 + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && + (internal::is_same<typename Self::CoeffReturnType, float>::value || + internal::is_same<typename Self::CoeffReturnType, double>::value); +#endif // EIGEN_HAS_GPU_FP16 + + template <typename OutputType> + static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) { + gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); + const Index num_coeffs = array_prod(self.m_impl.dimensions()); + // Don't crash when we're called with an input tensor of size 0. + if (num_coeffs == 0) { + return; + } + + FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs); + } +}; + + +template <int NumPerThread, typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, + typename Self::CoeffReturnType* output) { +#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) + typedef typename Self::CoeffReturnType Type; + eigen_assert(blockDim.y == 1); + eigen_assert(blockDim.z == 1); + eigen_assert(gridDim.y == 1); + eigen_assert(gridDim.z == 1); + + const int unroll_times = 16; + eigen_assert(NumPerThread % unroll_times == 0); + + const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread); + const Index num_input_blocks = input_col_blocks * num_preserved_coeffs; + + const Index num_threads = blockDim.x * gridDim.x; + const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; + + // Initialize the output values if they weren't initialized by the ReductionInitKernel + if (gridDim.x == 1) { + for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { + output[i] = reducer.initialize(); + } + __syncthreads(); + } + + for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { + const Index row = i / input_col_blocks; + + if (row < num_preserved_coeffs) { + const Index col_block = i % input_col_blocks; + const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x; + + Type reduced_val = reducer.initialize(); + + for (Index j = 0; j < NumPerThread; j += unroll_times) { + const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1); + if (last_col >= num_coeffs_to_reduce) { + for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) { + const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col); + reducer.reduce(val, &reduced_val); + } + break; + } else { + // Faster version of the loop with no branches after unrolling. +#pragma unroll + for (int k = 0; k < unroll_times; ++k) { + const Index col = col_begin + blockDim.x * (j + k); + reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val); + } + } + } + +#pragma unroll + for (int offset = warpSize/2; offset > 0; offset /= 2) { + #if defined(EIGEN_HIPCC) + // use std::is_floating_point to determine the type of reduced_val + // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error + // and list the float and int versions of __shfl_down as the candidate functions. + if (std::is_floating_point<Type>::value) { + reducer.reduce(__shfl_down(static_cast<float>(reduced_val), offset), &reduced_val); + } else { + reducer.reduce(__shfl_down(static_cast<int>(reduced_val), offset), &reduced_val); + } + #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 + reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val); + #else + reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val); + #endif + } + + if ((threadIdx.x & (warpSize - 1)) == 0) { + atomicReduce(&(output[row]), reduced_val, reducer); + } + } + } +#else // EIGEN_CUDA_ARCH >= 300 + gpu_assert(0 && "Shouldn't be called on unsupported device"); +#endif // EIGEN_CUDA_ARCH >= 300 +} + +#ifdef EIGEN_HAS_GPU_FP16 + +template <int NumPerThread, typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, + half* output) { + eigen_assert(blockDim.y == 1); + eigen_assert(blockDim.z == 1); + eigen_assert(gridDim.y == 1); + eigen_assert(gridDim.z == 1); + + typedef typename packet_traits<Eigen::half>::type PacketType; + const int packet_width = unpacket_traits<PacketType>::size; + const int unroll_times = 16 / packet_width; + eigen_assert(NumPerThread % unroll_times == 0); + eigen_assert(unroll_times % 2 == 0); + + const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2); + const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2); + + const Index num_threads = blockDim.x * gridDim.x; + const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; + + // Initialize the output values if they weren't initialized by the ReductionInitKernel + if (gridDim.x == 1) { + Index i = packet_width * thread_id; + for (; i + packet_width <= num_preserved_coeffs; + i += packet_width * num_threads) { + PacketType* poutput = reinterpret_cast<PacketType*>(output + i); + *poutput = reducer.template initializePacket<PacketType>(); + } + if (i < num_preserved_coeffs) { + output[i] = reducer.initialize(); + } + __syncthreads(); + } + + for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { + const Index row = 2 * (i / input_col_blocks); // everybody takes 2 rows + + if (row + 1 < num_preserved_coeffs) { + const Index col_block = i % input_col_blocks; + const Index col_begin = + packet_width * (col_block * blockDim.x * NumPerThread + threadIdx.x); + + PacketType reduced_val1 = reducer.template initializePacket<PacketType>(); + PacketType reduced_val2 = reducer.template initializePacket<PacketType>(); + + for (Index j = 0; j < NumPerThread; j += unroll_times) { + const Index last_col = + col_begin + blockDim.x * (j + unroll_times - 1) * packet_width; + if (last_col >= num_coeffs_to_reduce) { + Index col = col_begin + blockDim.x * j; + for (; col + packet_width <= num_coeffs_to_reduce; + col += blockDim.x) { + const PacketType val1 = input.m_impl.template packet<Unaligned>( + row * num_coeffs_to_reduce + col); + reducer.reducePacket(val1, &reduced_val1); + const PacketType val2 = input.m_impl.template packet<Unaligned>( + (row + 1) * num_coeffs_to_reduce + col); + reducer.reducePacket(val2, &reduced_val2); + } + if (col < num_coeffs_to_reduce) { + PacketType r1 = reducer.template initializePacket<PacketType>(); + PacketType r2 = reducer.template initializePacket<PacketType>(); + half2* hr1 = reinterpret_cast<half2*>(&r1); + half2* hr2 = reinterpret_cast<half2*>(&r2); + while (col + 1 < num_coeffs_to_reduce) { + *hr1 = __halves2half2( + input.m_impl.coeff(row * num_coeffs_to_reduce + col), + input.m_impl.coeff(row * num_coeffs_to_reduce + col + 1)); + *hr2 = __halves2half2( + input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col), + input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col + + 1)); + hr1++; + hr2++; + col += 2; + } + if (col < num_coeffs_to_reduce) { + // Peel; + const half last1 = + input.m_impl.coeff(row * num_coeffs_to_reduce + col); + *hr1 = __halves2half2(last1, reducer.initialize()); + const half last2 = + input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col); + *hr2 = __halves2half2(last2, reducer.initialize()); + } + reducer.reducePacket(r1, &reduced_val1); + reducer.reducePacket(r2, &reduced_val2); + } + break; + } else { + // Faster version of the loop with no branches after unrolling. +#pragma unroll + for (int k = 0; k < unroll_times; ++k) { + const Index col = col_begin + blockDim.x * (j + k) * packet_width; + reducer.reducePacket(input.m_impl.template packet<Unaligned>( + row * num_coeffs_to_reduce + col), + &reduced_val1); + reducer.reducePacket(input.m_impl.template packet<Unaligned>( + (row + 1) * num_coeffs_to_reduce + col), + &reduced_val2); + } + } + } + +#pragma unroll + for (int offset = warpSize/2; offset > 0; offset /= 2) { + #if defined(EIGEN_HIPCC) + PacketType r1; + PacketType r2; + half2* hr1 = reinterpret_cast<half2*>(&r1); + half2* hr2 = reinterpret_cast<half2*>(&r2); + half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); + half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); + for (int i = 0; i < packet_width / 2; i++) { + // FIXME : remove this workaround once we have native half/half2 support for __shfl_down + union { int i; half2 h; } wka_in1, wka_out1; + wka_in1.h = rv1[i]; + wka_out1.i = __shfl_down(wka_in1.i, offset, warpSize); + hr1[i] = wka_out1.h; + + union { int i; half2 h; } wka_in2, wka_out2; + wka_in2.h = rv2[i]; + wka_out2.i = __shfl_down(wka_in2.i, offset, warpSize); + hr2[i] = wka_out2.h; + } + reducer.reducePacket(r1, &reduced_val1); + reducer.reducePacket(r2, &reduced_val2); + #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 + PacketType r1; + PacketType r2; + half2* hr1 = reinterpret_cast<half2*>(&r1); + half2* hr2 = reinterpret_cast<half2*>(&r2); + half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); + half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); + for (int i = 0; i < packet_width / 2; i++) { + hr1[i] = __shfl_down(rv1[i], offset, warpSize); + hr2[i] = __shfl_down(rv2[i], offset, warpSize); + } + reducer.reducePacket(r1, &reduced_val1); + reducer.reducePacket(r2, &reduced_val2); + #else + PacketType r1; + PacketType r2; + half2* hr1 = reinterpret_cast<half2*>(&r1); + half2* hr2 = reinterpret_cast<half2*>(&r2); + half2* rr1 = reinterpret_cast<half2*>(&reduced_val1); + half2* rr2 = reinterpret_cast<half2*>(&reduced_val2); + for (int i = 0; i < packet_width / 2; i++) { + hr1[i] = + __shfl_down_sync(0xFFFFFFFF, rr1[i], (unsigned)offset, warpSize); + hr2[i] = + __shfl_down_sync(0xFFFFFFFF, rr2[i], (unsigned)offset, warpSize); + } + reducer.reducePacket(r1, &reduced_val1); + reducer.reducePacket(r2, &reduced_val2); + + #endif + } + half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); + half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); + half2 val; + if (packet_width > 2) { + reducer.reducePacket(rv1[2], rv1); + reducer.reducePacket(rv1[3], rv1 + 1); + reducer.reducePacket(rv1[1], rv1); + reducer.reducePacket(rv2[2], rv2); + reducer.reducePacket(rv2[3], rv2 + 1); + reducer.reducePacket(rv2[1], rv2); + } + half val1 = __low2half(*rv1); + reducer.reduce(__high2half(*rv1), &val1); + half val2 = __low2half(*rv2); + reducer.reduce(__high2half(*rv2), &val2); + val = __halves2half2(val1, val2); + if ((threadIdx.x & (warpSize - 1)) == 0) { + half* loc = output + row; + atomicReduce((half2*)loc, val, reducer); + } + } + } +} + +#endif // EIGEN_HAS_GPU_FP16 + +template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> +struct InnerReductionLauncher { + static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) { + gpu_assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device"); + return true; + } +}; + +// Specialization for float and double +template <typename Self, typename Op, typename OutputType, bool PacketAccess> +struct InnerReductionLauncher< + Self, Op, OutputType, PacketAccess, + typename internal::enable_if< + internal::is_same<float, OutputType>::value || + internal::is_same<double, OutputType>::value, + void>::type> { + static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { + typedef typename Self::Index Index; + + const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; + const int block_size = 256; + const int num_per_thread = 128; + const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / block_size; + const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); + + if (num_blocks > 1) { + // We initialize the outputs outside the reduction kernel when we can't be sure that there + // won't be a race conditions between multiple thread blocks. + const int dyn_blocks = divup<int>(num_preserved_vals, 1024); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / 1024; + const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); + LAUNCH_GPU_KERNEL((ReductionInitKernel<OutputType, Index>), + num_blocks, 1024, 0, device, reducer.initialize(), + num_preserved_vals, output); + } + + LAUNCH_GPU_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>), + num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); + + return false; + } +}; + +#ifdef EIGEN_HAS_GPU_FP16 +template <typename Self, typename Op> +struct InnerReductionLauncher<Self, Op, Eigen::half, false> { + static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) { + gpu_assert(false && "Should not be called since there is no packet accessor"); + return true; + } +}; + +template <typename Self, typename Op> +struct InnerReductionLauncher<Self, Op, Eigen::half, true> { + static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { + typedef typename Self::Index Index; + + if (num_preserved_vals % 2 != 0) { + // Not supported yet, revert to the slower code path + return true; + } + + const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; + const int block_size = /*256*/128; + const int num_per_thread = /*128*/64; + const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / block_size; + const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); + + if (num_blocks > 1) { + // We initialize the outputs outside the reduction kernel when we can't be sure that there + // won't be a race conditions between multiple thread blocks. + LAUNCH_GPU_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>), + 1, 1, 0, device, reducer, self, num_preserved_vals, output); + } + + LAUNCH_GPU_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>), + num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); + + return false; + } +}; +#endif // EIGEN_HAS_GPU_FP16 + + +template <typename Self, typename Op> +struct InnerReducer<Self, Op, GpuDevice> { + // Unfortunately nvidia doesn't support well exotic types such as complex, + // so reduce the scope of the optimized version of the code to the simple case + // of floats and half floats. +#ifdef EIGEN_HAS_GPU_FP16 + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && + (internal::is_same<typename Self::CoeffReturnType, float>::value || + internal::is_same<typename Self::CoeffReturnType, double>::value || + (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); +#else // EIGEN_HAS_GPU_FP16 + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && + (internal::is_same<typename Self::CoeffReturnType, float>::value || + internal::is_same<typename Self::CoeffReturnType, double>::value); +#endif // EIGEN_HAS_GPU_FP16 + + template <typename OutputType> + static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { + gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); + const Index num_coeffs = array_prod(self.m_impl.dimensions()); + // Don't crash when we're called with an input tensor of size 0. + if (num_coeffs == 0) { + return true; + } + // It's faster to use the usual code. + if (num_coeffs_to_reduce <= 128) { + return true; + } + + return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals); + } +}; + +template <int NumPerThread, typename Self, + typename Reducer, typename Index> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, + typename Self::CoeffReturnType* output) { + const Index num_threads = blockDim.x * gridDim.x; + const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; + // Initialize the output values if they weren't initialized by the ReductionInitKernel + if (gridDim.x == 1) { + for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { + output[i] = reducer.initialize(); + } + __syncthreads(); + } + + // Do the reduction. + const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread); + for (Index i = thread_id; i < max_iter; i += num_threads) { + const Index input_col = i % num_preserved_coeffs; + const Index input_row = (i / num_preserved_coeffs) * NumPerThread; + typename Self::CoeffReturnType reduced_val = reducer.initialize(); + const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce); + for (Index j = input_row; j < max_row; j++) { + typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col); + reducer.reduce(val, &reduced_val); + } + atomicReduce(&(output[input_col]), reduced_val, reducer); + } +} + + +template <typename Self, typename Op> +struct OuterReducer<Self, Op, GpuDevice> { + // Unfortunately nvidia doesn't support well exotic types such as complex, + // so reduce the scope of the optimized version of the code to the simple case + // of floats. + static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && + (internal::is_same<typename Self::CoeffReturnType, float>::value || + internal::is_same<typename Self::CoeffReturnType, double>::value); + template <typename Device, typename OutputType> + static + #if !defined(EIGEN_HIPCC) + // FIXME : leaving this EIGEN_DEVICE_FUNC in, results in the following runtime error + // (in the cxx11_tensor_reduction_gpu test) + // + // terminate called after throwing an instance of 'std::runtime_error' + // what(): No device code available for function: _ZN5Eigen8internal20OuterReductionKernelIL... + // + // don't know why this happens (and why is it a runtime error instead of a compile time error) + // + // this will be fixed by HIP PR#457 + EIGEN_DEVICE_FUNC + #endif + bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { + gpu_assert(false && "Should only be called to reduce doubles or floats on a gpu device"); + return true; + } + + static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { + typedef typename Self::Index Index; + + // It's faster to use the usual code. + if (num_coeffs_to_reduce <= 32) { + return true; + } + + const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; + const int block_size = 256; + const int num_per_thread = 16; + const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / block_size; + const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); + + if (num_blocks > 1) { + // We initialize the outputs in the reduction kernel itself when we don't have to worry + // about race conditions between multiple thread blocks. + const int dyn_blocks = divup<int>(num_preserved_vals, 1024); + const int max_blocks = device.getNumGpuMultiProcessors() * + device.maxGpuThreadsPerMultiProcessor() / 1024; + const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); + LAUNCH_GPU_KERNEL((ReductionInitKernel<float, Index>), + num_blocks, 1024, 0, device, reducer.initialize(), + num_preserved_vals, output); + } + + LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>), + num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); + + return false; + } +}; + +#endif // defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) + + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionSycl.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionSycl.h new file mode 100644 index 0000000..474eba0 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorReductionSycl.h @@ -0,0 +1,582 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * TensorReductionSycl.h + * + * \brief: + * This is the specialization of the reduction operation. Two phase reduction approach + * is used since the GPU does not have Global Synchronization for global memory among + * different work-group/thread block. To solve the problem, we need to create two kernels + * to reduce the data, where the first kernel reduce the data locally and each local + * workgroup/thread-block save the input data into global memory. In the second phase (global reduction) + * one work-group uses one work-group/thread-block to reduces the intermediate data into one single element. + * Here is an NVIDIA presentation explaining the optimized two phase reduction algorithm on GPU: + * https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf + * + *****************************************************************/ + +#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP +#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP +namespace Eigen { +namespace TensorSycl { +namespace internal { + +template <typename Op, typename CoeffReturnType, typename Index, bool Vectorizable> +struct OpDefiner { + typedef typename Vectorise<CoeffReturnType, Eigen::SyclDevice, Vectorizable>::PacketReturnType PacketReturnType; + typedef Op type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE type get_op(Op &op) { return op; } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType finalise_op(const PacketReturnType &accumulator, + const Index &) { + return accumulator; + } +}; + +template <typename CoeffReturnType, typename Index> +struct OpDefiner<Eigen::internal::MeanReducer<CoeffReturnType>, CoeffReturnType, Index, false> { + typedef Eigen::internal::SumReducer<CoeffReturnType> type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE type get_op(Eigen::internal::MeanReducer<CoeffReturnType> &) { + return type(); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType finalise_op(const CoeffReturnType &accumulator, + const Index &scale) { + ::Eigen::internal::scalar_quotient_op<CoeffReturnType> quotient_op; + return quotient_op(accumulator, CoeffReturnType(scale)); + } +}; + +template <typename CoeffReturnType, typename Index> +struct OpDefiner<Eigen::internal::MeanReducer<CoeffReturnType>, CoeffReturnType, Index, true> { + typedef typename Vectorise<CoeffReturnType, Eigen::SyclDevice, true>::PacketReturnType PacketReturnType; + typedef Eigen::internal::SumReducer<CoeffReturnType> type; + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE type get_op(Eigen::internal::MeanReducer<CoeffReturnType> &) { + return type(); + } + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType finalise_op(const PacketReturnType &accumulator, + const Index &scale) { + return ::Eigen::internal::pdiv(accumulator, ::Eigen::internal::pset1<PacketReturnType>(CoeffReturnType(scale))); + } +}; + +template <typename CoeffReturnType, typename OpType, typename InputAccessor, typename OutputAccessor, typename Index, + Index local_range> +struct SecondStepFullReducer { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + LocalAccessor; + typedef OpDefiner<OpType, CoeffReturnType, Index, true> OpDef; + typedef typename OpDef::type Op; + LocalAccessor scratch; + InputAccessor aI; + OutputAccessor outAcc; + Op op; + SecondStepFullReducer(LocalAccessor scratch_, InputAccessor aI_, OutputAccessor outAcc_, OpType op_) + : scratch(scratch_), aI(aI_), outAcc(outAcc_), op(OpDef::get_op(op_)) {} + + void operator()(cl::sycl::nd_item<1> itemID) { + // Our empirical research shows that the best performance will be achieved + // when there is only one element per thread to reduce in the second step. + // in this step the second step reduction time is almost negligible. + // Hence, in the second step of reduction the input size is fixed to the + // local size, thus, there is only one element read per thread. The + // algorithm must be changed if the number of reduce per thread in the + // second step is greater than 1. Otherwise, the result will be wrong. + const Index localid = itemID.get_local_id(0); + auto aInPtr = aI.get_pointer() + localid; + auto aOutPtr = outAcc.get_pointer(); + CoeffReturnType *scratchptr = scratch.get_pointer(); + CoeffReturnType accumulator = *aInPtr; + + scratchptr[localid] = op.finalize(accumulator); + for (Index offset = itemID.get_local_range(0) / 2; offset > 0; offset /= 2) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (localid < offset) { + op.reduce(scratchptr[localid + offset], &accumulator); + scratchptr[localid] = op.finalize(accumulator); + } + } + if (localid == 0) *aOutPtr = op.finalize(accumulator); + } +}; + +// Full reduction first phase. In this version the vectorization is true and the reduction accept +// any generic reducerOp e.g( max, min, sum, mean, iamax, iamin, etc ). +template <typename Evaluator, typename OpType, typename Evaluator::Index local_range> +class FullReductionKernelFunctor { + public: + typedef typename Evaluator::CoeffReturnType CoeffReturnType; + typedef typename Evaluator::Index Index; + typedef OpDefiner<OpType, typename Evaluator::CoeffReturnType, Index, + (Evaluator::ReducerTraits::PacketAccess & Evaluator::InputPacketAccess)> + OpDef; + + typedef typename OpDef::type Op; + typedef typename Evaluator::EvaluatorPointerType EvaluatorPointerType; + typedef typename Evaluator::PacketReturnType PacketReturnType; + typedef + typename ::Eigen::internal::conditional<(Evaluator::ReducerTraits::PacketAccess & Evaluator::InputPacketAccess), + PacketReturnType, CoeffReturnType>::type OutType; + typedef cl::sycl::accessor<OutType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + LocalAccessor; + LocalAccessor scratch; + Evaluator evaluator; + EvaluatorPointerType final_output; + Index rng; + Op op; + + FullReductionKernelFunctor(LocalAccessor scratch_, Evaluator evaluator_, EvaluatorPointerType final_output_, + Index rng_, OpType op_) + : scratch(scratch_), evaluator(evaluator_), final_output(final_output_), rng(rng_), op(OpDef::get_op(op_)) {} + + void operator()(cl::sycl::nd_item<1> itemID) { compute_reduction(itemID); } + + template <bool Vect = (Evaluator::ReducerTraits::PacketAccess & Evaluator::InputPacketAccess)> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<Vect>::type compute_reduction( + const cl::sycl::nd_item<1> &itemID) { + auto output_ptr = final_output.get_pointer(); + Index VectorizedRange = (rng / Evaluator::PacketSize) * Evaluator::PacketSize; + Index globalid = itemID.get_global_id(0); + Index localid = itemID.get_local_id(0); + Index step = Evaluator::PacketSize * itemID.get_global_range(0); + Index start = Evaluator::PacketSize * globalid; + // vectorizable parts + PacketReturnType packetAccumulator = op.template initializePacket<PacketReturnType>(); + for (Index i = start; i < VectorizedRange; i += step) { + op.template reducePacket<PacketReturnType>(evaluator.impl().template packet<Unaligned>(i), &packetAccumulator); + } + globalid += VectorizedRange; + // non vectorizable parts + for (Index i = globalid; i < rng; i += itemID.get_global_range(0)) { + op.template reducePacket<PacketReturnType>( + ::Eigen::TensorSycl::internal::PacketWrapper<PacketReturnType, Evaluator::PacketSize>::convert_to_packet_type( + evaluator.impl().coeff(i), op.initialize()), + &packetAccumulator); + } + scratch[localid] = packetAccumulator = + OpDef::finalise_op(op.template finalizePacket<PacketReturnType>(packetAccumulator), rng); + // reduction parts // Local size is always power of 2 + EIGEN_UNROLL_LOOP + for (Index offset = local_range / 2; offset > 0; offset /= 2) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (localid < offset) { + op.template reducePacket<PacketReturnType>(scratch[localid + offset], &packetAccumulator); + scratch[localid] = op.template finalizePacket<PacketReturnType>(packetAccumulator); + } + } + if (localid == 0) { + output_ptr[itemID.get_group(0)] = + op.finalizeBoth(op.initialize(), op.template finalizePacket<PacketReturnType>(packetAccumulator)); + } + } + + template <bool Vect = (Evaluator::ReducerTraits::PacketAccess & Evaluator::InputPacketAccess)> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename ::Eigen::internal::enable_if<!Vect>::type compute_reduction( + const cl::sycl::nd_item<1> &itemID) { + auto output_ptr = final_output.get_pointer(); + Index globalid = itemID.get_global_id(0); + Index localid = itemID.get_local_id(0); + // vectorizable parts + CoeffReturnType accumulator = op.initialize(); + // non vectorizable parts + for (Index i = globalid; i < rng; i += itemID.get_global_range(0)) { + op.reduce(evaluator.impl().coeff(i), &accumulator); + } + scratch[localid] = accumulator = OpDef::finalise_op(op.finalize(accumulator), rng); + + // reduction parts. the local size is always power of 2 + EIGEN_UNROLL_LOOP + for (Index offset = local_range / 2; offset > 0; offset /= 2) { + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (localid < offset) { + op.reduce(scratch[localid + offset], &accumulator); + scratch[localid] = op.finalize(accumulator); + } + } + if (localid == 0) { + output_ptr[itemID.get_group(0)] = op.finalize(accumulator); + } + } +}; + +template <typename Evaluator, typename OpType> +class GenericNondeterministicReducer { + public: + typedef typename Evaluator::CoeffReturnType CoeffReturnType; + typedef typename Evaluator::EvaluatorPointerType EvaluatorPointerType; + typedef typename Evaluator::Index Index; + typedef OpDefiner<OpType, CoeffReturnType, Index, false> OpDef; + typedef typename OpDef::type Op; + template <typename Scratch> + GenericNondeterministicReducer(Scratch, Evaluator evaluator_, EvaluatorPointerType output_accessor_, OpType functor_, + Index range_, Index num_values_to_reduce_) + : evaluator(evaluator_), + output_accessor(output_accessor_), + functor(OpDef::get_op(functor_)), + range(range_), + num_values_to_reduce(num_values_to_reduce_) {} + + void operator()(cl::sycl::nd_item<1> itemID) { + auto output_accessor_ptr = output_accessor.get_pointer(); + /// const cast added as a naive solution to solve the qualifier drop error + Index globalid = static_cast<Index>(itemID.get_global_linear_id()); + if (globalid < range) { + CoeffReturnType accum = functor.initialize(); + Eigen::internal::GenericDimReducer<Evaluator::NumReducedDims - 1, Evaluator, Op>::reduce( + evaluator, evaluator.firstInput(globalid), functor, &accum); + output_accessor_ptr[globalid] = OpDef::finalise_op(functor.finalize(accum), num_values_to_reduce); + } + } + + private: + Evaluator evaluator; + EvaluatorPointerType output_accessor; + Op functor; + Index range; + Index num_values_to_reduce; +}; + +enum class reduction_dim { inner_most, outer_most }; +// default is preserver +template <typename Evaluator, typename OpType, typename PannelParameters, reduction_dim rt> +struct PartialReductionKernel { + typedef typename Evaluator::CoeffReturnType CoeffReturnType; + typedef typename Evaluator::EvaluatorPointerType EvaluatorPointerType; + typedef typename Evaluator::Index Index; + typedef OpDefiner<OpType, CoeffReturnType, Index, false> OpDef; + typedef typename OpDef::type Op; + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + ScratchAcc; + ScratchAcc scratch; + Evaluator evaluator; + EvaluatorPointerType output_accessor; + Op op; + const Index preserve_elements_num_groups; + const Index reduce_elements_num_groups; + const Index num_coeffs_to_preserve; + const Index num_coeffs_to_reduce; + + PartialReductionKernel(ScratchAcc scratch_, Evaluator evaluator_, EvaluatorPointerType output_accessor_, OpType op_, + const Index preserve_elements_num_groups_, const Index reduce_elements_num_groups_, + const Index num_coeffs_to_preserve_, const Index num_coeffs_to_reduce_) + : scratch(scratch_), + evaluator(evaluator_), + output_accessor(output_accessor_), + op(OpDef::get_op(op_)), + preserve_elements_num_groups(preserve_elements_num_groups_), + reduce_elements_num_groups(reduce_elements_num_groups_), + num_coeffs_to_preserve(num_coeffs_to_preserve_), + num_coeffs_to_reduce(num_coeffs_to_reduce_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void element_wise_reduce(Index globalRId, Index globalPId, + CoeffReturnType &accumulator) { + if (globalPId >= num_coeffs_to_preserve) { + return; + } + Index global_offset = rt == reduction_dim::outer_most ? globalPId + (globalRId * num_coeffs_to_preserve) + : globalRId + (globalPId * num_coeffs_to_reduce); + Index localOffset = globalRId; + + const Index per_thread_local_stride = PannelParameters::LocalThreadSizeR * reduce_elements_num_groups; + const Index per_thread_global_stride = + rt == reduction_dim::outer_most ? num_coeffs_to_preserve * per_thread_local_stride : per_thread_local_stride; + for (Index i = globalRId; i < num_coeffs_to_reduce; i += per_thread_local_stride) { + op.reduce(evaluator.impl().coeff(global_offset), &accumulator); + localOffset += per_thread_local_stride; + global_offset += per_thread_global_stride; + } + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + const Index linearLocalThreadId = itemID.get_local_id(0); + Index pLocalThreadId = rt == reduction_dim::outer_most ? linearLocalThreadId % PannelParameters::LocalThreadSizeP + : linearLocalThreadId / PannelParameters::LocalThreadSizeR; + Index rLocalThreadId = rt == reduction_dim::outer_most ? linearLocalThreadId / PannelParameters::LocalThreadSizeP + : linearLocalThreadId % PannelParameters::LocalThreadSizeR; + const Index pGroupId = rt == reduction_dim::outer_most ? itemID.get_group(0) % preserve_elements_num_groups + : itemID.get_group(0) / reduce_elements_num_groups; + const Index rGroupId = rt == reduction_dim::outer_most ? itemID.get_group(0) / preserve_elements_num_groups + : itemID.get_group(0) % reduce_elements_num_groups; + + Index globalPId = pGroupId * PannelParameters::LocalThreadSizeP + pLocalThreadId; + const Index globalRId = rGroupId * PannelParameters::LocalThreadSizeR + rLocalThreadId; + auto scratchPtr = scratch.get_pointer().get(); + auto outPtr = + output_accessor.get_pointer() + (reduce_elements_num_groups > 1 ? rGroupId * num_coeffs_to_preserve : 0); + CoeffReturnType accumulator = op.initialize(); + + element_wise_reduce(globalRId, globalPId, accumulator); + + accumulator = OpDef::finalise_op(op.finalize(accumulator), num_coeffs_to_reduce); + scratchPtr[pLocalThreadId + rLocalThreadId * (PannelParameters::LocalThreadSizeP + PannelParameters::BC)] = + accumulator; + if (rt == reduction_dim::inner_most) { + pLocalThreadId = linearLocalThreadId % PannelParameters::LocalThreadSizeP; + rLocalThreadId = linearLocalThreadId / PannelParameters::LocalThreadSizeP; + globalPId = pGroupId * PannelParameters::LocalThreadSizeP + pLocalThreadId; + } + + /* Apply the reduction operation between the current local + * id and the one on the other half of the vector. */ + auto out_scratch_ptr = + scratchPtr + (pLocalThreadId + (rLocalThreadId * (PannelParameters::LocalThreadSizeP + PannelParameters::BC))); + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (rt == reduction_dim::inner_most) { + accumulator = *out_scratch_ptr; + } + // The Local LocalThreadSizeR is always power of 2 + EIGEN_UNROLL_LOOP + for (Index offset = PannelParameters::LocalThreadSizeR >> 1; offset > 0; offset >>= 1) { + if (rLocalThreadId < offset) { + op.reduce(out_scratch_ptr[(PannelParameters::LocalThreadSizeP + PannelParameters::BC) * offset], &accumulator); + // The result has already been divided for mean reducer in the + // previous reduction so no need to divide furthermore + *out_scratch_ptr = op.finalize(accumulator); + } + /* All threads collectively read from global memory into local. + * The barrier ensures all threads' IO is resolved before + * execution continues (strictly speaking, all threads within + * a single work-group - there is no co-ordination between + * work-groups, only work-items). */ + itemID.barrier(cl::sycl::access::fence_space::local_space); + } + + if (rLocalThreadId == 0 && (globalPId < num_coeffs_to_preserve)) { + outPtr[globalPId] = op.finalize(accumulator); + } + } +}; + +template <typename OutScalar, typename Index, typename InputAccessor, typename OutputAccessor, typename OpType> +struct SecondStepPartialReduction { + typedef OpDefiner<OpType, OutScalar, Index, false> OpDef; + typedef typename OpDef::type Op; + typedef cl::sycl::accessor<OutScalar, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + ScratchAccessor; + InputAccessor input_accessor; + OutputAccessor output_accessor; + Op op; + const Index num_coeffs_to_preserve; + const Index num_coeffs_to_reduce; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE SecondStepPartialReduction(ScratchAccessor, InputAccessor input_accessor_, + OutputAccessor output_accessor_, OpType op_, + const Index num_coeffs_to_preserve_, + const Index num_coeffs_to_reduce_) + : input_accessor(input_accessor_), + output_accessor(output_accessor_), + op(OpDef::get_op(op_)), + num_coeffs_to_preserve(num_coeffs_to_preserve_), + num_coeffs_to_reduce(num_coeffs_to_reduce_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + const Index globalId = itemID.get_global_id(0); + + if (globalId >= num_coeffs_to_preserve) return; + + auto in_ptr = input_accessor.get_pointer() + globalId; + + OutScalar accumulator = op.initialize(); +// num_coeffs_to_reduce is not bigger that 256 + for (Index i = 0; i < num_coeffs_to_reduce; i++) { + op.reduce(*in_ptr, &accumulator); + in_ptr += num_coeffs_to_preserve; + } + output_accessor.get_pointer()[globalId] = op.finalize(accumulator); + } +}; // namespace internal + +template <typename Index, Index LTP, Index LTR, bool BC_> +struct ReductionPannel { + static EIGEN_CONSTEXPR Index LocalThreadSizeP = LTP; + static EIGEN_CONSTEXPR Index LocalThreadSizeR = LTR; + static EIGEN_CONSTEXPR bool BC = BC_; +}; + +template <typename Self, typename Op, TensorSycl::internal::reduction_dim rt> +struct PartialReducerLauncher { + typedef typename Self::EvaluatorPointerType EvaluatorPointerType; + typedef typename Self::CoeffReturnType CoeffReturnType; + typedef typename Self::Storage Storage; + typedef typename Self::Index Index; + typedef ReductionPannel<typename Self::Index, EIGEN_SYCL_LOCAL_THREAD_DIM0, EIGEN_SYCL_LOCAL_THREAD_DIM1, true> + PannelParameters; + + typedef PartialReductionKernel<Self, Op, PannelParameters, rt> SyclReducerKerneType; + + static bool run(const Self &self, const Op &reducer, const Eigen::SyclDevice &dev, EvaluatorPointerType output, + Index num_coeffs_to_reduce, Index num_coeffs_to_preserve) { + Index roundUpP = roundUp(num_coeffs_to_preserve, PannelParameters::LocalThreadSizeP); + + // getPowerOfTwo makes sure local range is power of 2 and <= + // maxSyclThreadPerBlock this will help us to avoid extra check on the + // kernel + static_assert(!((PannelParameters::LocalThreadSizeP * PannelParameters::LocalThreadSizeR) & + (PannelParameters::LocalThreadSizeP * PannelParameters::LocalThreadSizeR - 1)), + "The Local thread size must be a power of 2 for the reduction " + "operation"); + + EIGEN_CONSTEXPR Index localRange = PannelParameters::LocalThreadSizeP * PannelParameters::LocalThreadSizeR; + // In this step, we force the code not to be more than 2-step reduction: + // Our empirical research shows that if each thread reduces at least 64 + // elemnts individually, we get better performance. However, this can change + // on different platforms. In this step we force the code not to be + // morthan step reduction: Our empirical research shows that for inner_most + // dim reducer, it is better to have 8 group in a reduce dimension for sizes + // > 1024 to achieve the best performance. + const Index reductionPerThread = 64; + Index cu = dev.getPowerOfTwo(dev.getNumSyclMultiProcessors(), true); + const Index pNumGroups = roundUpP / PannelParameters::LocalThreadSizeP; + Index rGroups = (cu + pNumGroups - 1) / pNumGroups; + const Index rNumGroups = num_coeffs_to_reduce > reductionPerThread * localRange ? std::min(rGroups, localRange) : 1; + const Index globalRange = pNumGroups * rNumGroups * localRange; + + EIGEN_CONSTEXPR Index scratchSize = + PannelParameters::LocalThreadSizeR * (PannelParameters::LocalThreadSizeP + PannelParameters::BC); + auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(globalRange), cl::sycl::range<1>(localRange)); + if (rNumGroups > 1) { + CoeffReturnType *temp_pointer = static_cast<CoeffReturnType *>( + dev.allocate_temp(num_coeffs_to_preserve * rNumGroups * sizeof(CoeffReturnType))); + EvaluatorPointerType temp_accessor = dev.get(temp_pointer); + dev.template unary_kernel_launcher<CoeffReturnType, SyclReducerKerneType>( + self, temp_accessor, thread_range, scratchSize, reducer, pNumGroups, rNumGroups, num_coeffs_to_preserve, + num_coeffs_to_reduce); + + typedef SecondStepPartialReduction<CoeffReturnType, Index, EvaluatorPointerType, EvaluatorPointerType, Op> + SecondStepPartialReductionKernel; + + dev.template unary_kernel_launcher<CoeffReturnType, SecondStepPartialReductionKernel>( + temp_accessor, output, + cl::sycl::nd_range<1>(cl::sycl::range<1>(pNumGroups * localRange), cl::sycl::range<1>(localRange)), Index(1), + reducer, num_coeffs_to_preserve, rNumGroups); + + self.device().deallocate_temp(temp_pointer); + } else { + dev.template unary_kernel_launcher<CoeffReturnType, SyclReducerKerneType>( + self, output, thread_range, scratchSize, reducer, pNumGroups, rNumGroups, num_coeffs_to_preserve, + num_coeffs_to_reduce); + } + return false; + } +}; +} // namespace internal +} // namespace TensorSycl + +namespace internal { + +template <typename Self, typename Op, bool Vectorizable> +struct FullReducer<Self, Op, Eigen::SyclDevice, Vectorizable> { + typedef typename Self::CoeffReturnType CoeffReturnType; + typedef typename Self::EvaluatorPointerType EvaluatorPointerType; + static EIGEN_CONSTEXPR bool HasOptimizedImplementation = true; + static EIGEN_CONSTEXPR int PacketSize = Self::PacketAccess ? Self::PacketSize : 1; + static void run(const Self &self, Op &reducer, const Eigen::SyclDevice &dev, EvaluatorPointerType data) { + typedef typename conditional<Self::PacketAccess, typename Self::PacketReturnType, CoeffReturnType>::type OutType; + static_assert(!((EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1) & + (EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1 - 1)), + "The Local thread size must be a power of 2 for the reduction " + "operation"); + EIGEN_CONSTEXPR Index local_range = EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1; + + typename Self::Index inputSize = self.impl().dimensions().TotalSize(); + // In this step we force the code not to be more than 2-step reduction: + // Our empirical research shows that if each thread reduces at least 512 + // elemnts individually, we get better performance. + const Index reductionPerThread = 2048; + // const Index num_work_group = + Index reductionGroup = dev.getPowerOfTwo( + (inputSize + (reductionPerThread * local_range - 1)) / (reductionPerThread * local_range), true); + const Index num_work_group = std::min(reductionGroup, local_range); + // 1 + // ? local_range + // : 1); + const Index global_range = num_work_group * local_range; + + auto thread_range = cl::sycl::nd_range<1>(cl::sycl::range<1>(global_range), cl::sycl::range<1>(local_range)); + typedef TensorSycl::internal::FullReductionKernelFunctor<Self, Op, local_range> reduction_kernel_t; + if (num_work_group > 1) { + CoeffReturnType *temp_pointer = + static_cast<CoeffReturnType *>(dev.allocate_temp(num_work_group * sizeof(CoeffReturnType))); + typename Self::EvaluatorPointerType tmp_global_accessor = dev.get(temp_pointer); + dev.template unary_kernel_launcher<OutType, reduction_kernel_t>(self, tmp_global_accessor, thread_range, + local_range, inputSize, reducer); + + typedef TensorSycl::internal::SecondStepFullReducer<CoeffReturnType, Op, EvaluatorPointerType, + EvaluatorPointerType, Index, local_range> + GenericRKernel; + dev.template unary_kernel_launcher<CoeffReturnType, GenericRKernel>( + tmp_global_accessor, data, + cl::sycl::nd_range<1>(cl::sycl::range<1>(num_work_group), cl::sycl::range<1>(num_work_group)), num_work_group, + reducer); + + dev.deallocate_temp(temp_pointer); + } else { + dev.template unary_kernel_launcher<OutType, reduction_kernel_t>(self, data, thread_range, local_range, inputSize, + reducer); + } + } +}; +// vectorizable inner_most most dim preserver +// col reduction +template <typename Self, typename Op> +struct OuterReducer<Self, Op, Eigen::SyclDevice> { + static EIGEN_CONSTEXPR bool HasOptimizedImplementation = true; + + static bool run(const Self &self, const Op &reducer, const Eigen::SyclDevice &dev, + typename Self::EvaluatorPointerType output, typename Self::Index num_coeffs_to_reduce, + typename Self::Index num_coeffs_to_preserve) { + return ::Eigen::TensorSycl::internal::PartialReducerLauncher< + Self, Op, ::Eigen::TensorSycl::internal::reduction_dim::outer_most>::run(self, reducer, dev, output, + num_coeffs_to_reduce, + num_coeffs_to_preserve); + } +}; +// row reduction +template <typename Self, typename Op> +struct InnerReducer<Self, Op, Eigen::SyclDevice> { + static EIGEN_CONSTEXPR bool HasOptimizedImplementation = true; + + static bool run(const Self &self, const Op &reducer, const Eigen::SyclDevice &dev, + typename Self::EvaluatorPointerType output, typename Self::Index num_coeffs_to_reduce, + typename Self::Index num_coeffs_to_preserve) { + return ::Eigen::TensorSycl::internal::PartialReducerLauncher< + Self, Op, ::Eigen::TensorSycl::internal::reduction_dim::inner_most>::run(self, reducer, dev, output, + num_coeffs_to_reduce, + num_coeffs_to_preserve); + } +}; + +// ArmgMax uses this kernel for partial reduction// +// TODO(@mehdi.goli) come up with a better kernel +// generic partial reduction +template <typename Self, typename Op> +struct GenericReducer<Self, Op, Eigen::SyclDevice> { + static EIGEN_CONSTEXPR bool HasOptimizedImplementation = false; + static bool run(const Self &self, const Op &reducer, const Eigen::SyclDevice &dev, + typename Self::EvaluatorPointerType output, typename Self::Index num_values_to_reduce, + typename Self::Index num_coeffs_to_preserve) { + typename Self::Index range, GRange, tileSize; + dev.parallel_for_setup(num_coeffs_to_preserve, tileSize, range, GRange); + + dev.template unary_kernel_launcher<typename Self::CoeffReturnType, + TensorSycl::internal::GenericNondeterministicReducer<Self, Op>>( + self, output, cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), Index(1), + reducer, range, (num_values_to_reduce != 0) ? num_values_to_reduce : static_cast<Index>(1)); + return false; + } +}; + +} // namespace internal +} // namespace Eigen + +#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorRef.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorRef.h new file mode 100644 index 0000000..a27d364 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorRef.h @@ -0,0 +1,454 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_REF_H +#define EIGEN_CXX11_TENSOR_TENSOR_REF_H + +namespace Eigen { + +namespace internal { + +template <typename Dimensions, typename Scalar> +class TensorLazyBaseEvaluator { + public: + TensorLazyBaseEvaluator() : m_refcount(0) { } + virtual ~TensorLazyBaseEvaluator() { } + + EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const = 0; + EIGEN_DEVICE_FUNC virtual const Scalar* data() const = 0; + + EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const = 0; + EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) = 0; + + void incrRefCount() { ++m_refcount; } + void decrRefCount() { --m_refcount; } + int refCount() const { return m_refcount; } + + private: + // No copy, no assignment; + TensorLazyBaseEvaluator(const TensorLazyBaseEvaluator& other); + TensorLazyBaseEvaluator& operator = (const TensorLazyBaseEvaluator& other); + + int m_refcount; +}; + + +template <typename Dimensions, typename Expr, typename Device> +class TensorLazyEvaluatorReadOnly : public TensorLazyBaseEvaluator<Dimensions, typename TensorEvaluator<Expr, Device>::Scalar> { + public: + // typedef typename TensorEvaluator<Expr, Device>::Dimensions Dimensions; + typedef typename TensorEvaluator<Expr, Device>::Scalar Scalar; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + typedef TensorEvaluator<Expr, Device> EvalType; + + TensorLazyEvaluatorReadOnly(const Expr& expr, const Device& device) : m_impl(expr, device), m_dummy(Scalar(0)) { + m_dims = m_impl.dimensions(); + m_impl.evalSubExprsIfNeeded(NULL); + } + virtual ~TensorLazyEvaluatorReadOnly() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const { + return m_dims; + } + EIGEN_DEVICE_FUNC virtual const Scalar* data() const { + return m_impl.data(); + } + + EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const { + return m_impl.coeff(index); + } + EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex /*index*/) { + eigen_assert(false && "can't reference the coefficient of a rvalue"); + return m_dummy; + }; + + protected: + TensorEvaluator<Expr, Device> m_impl; + Dimensions m_dims; + Scalar m_dummy; +}; + +template <typename Dimensions, typename Expr, typename Device> +class TensorLazyEvaluatorWritable : public TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> { + public: + typedef TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> Base; + typedef typename Base::Scalar Scalar; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + TensorLazyEvaluatorWritable(const Expr& expr, const Device& device) : Base(expr, device) { + } + virtual ~TensorLazyEvaluatorWritable() { + } + + EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) { + return this->m_impl.coeffRef(index); + } +}; + +template <typename Dimensions, typename Expr, typename Device> +class TensorLazyEvaluator : public internal::conditional<bool(internal::is_lvalue<Expr>::value), + TensorLazyEvaluatorWritable<Dimensions, Expr, Device>, + TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type { + public: + typedef typename internal::conditional<bool(internal::is_lvalue<Expr>::value), + TensorLazyEvaluatorWritable<Dimensions, Expr, Device>, + TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type Base; + typedef typename Base::Scalar Scalar; + + TensorLazyEvaluator(const Expr& expr, const Device& device) : Base(expr, device) { + } + virtual ~TensorLazyEvaluator() { + } +}; + +} // namespace internal + + +/** \class TensorRef + * \ingroup CXX11_Tensor_Module + * + * \brief A reference to a tensor expression + * The expression will be evaluated lazily (as much as possible). + * + */ +template<typename PlainObjectType> class TensorRef : public TensorBase<TensorRef<PlainObjectType> > +{ + public: + typedef TensorRef<PlainObjectType> Self; + typedef typename PlainObjectType::Base Base; + typedef typename Eigen::internal::nested<Self>::type Nested; + typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; + typedef typename internal::traits<PlainObjectType>::Index Index; + typedef typename internal::traits<PlainObjectType>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename Base::CoeffReturnType CoeffReturnType; + typedef Scalar* PointerType; + typedef PointerType PointerArgType; + + static const Index NumIndices = PlainObjectType::NumIndices; + typedef typename PlainObjectType::Dimensions Dimensions; + + enum { + IsAligned = false, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = false, + Layout = PlainObjectType::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -----------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorRef() : m_evaluator(NULL) { + } + + template <typename Expression> + EIGEN_STRONG_INLINE TensorRef(const Expression& expr) : m_evaluator(new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice())) { + m_evaluator->incrRefCount(); + } + + template <typename Expression> + EIGEN_STRONG_INLINE TensorRef& operator = (const Expression& expr) { + unrefEvaluator(); + m_evaluator = new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice()); + m_evaluator->incrRefCount(); + return *this; + } + + ~TensorRef() { + unrefEvaluator(); + } + + TensorRef(const TensorRef& other) : m_evaluator(other.m_evaluator) { + eigen_assert(m_evaluator->refCount() > 0); + m_evaluator->incrRefCount(); + } + + TensorRef& operator = (const TensorRef& other) { + if (this != &other) { + unrefEvaluator(); + m_evaluator = other.m_evaluator; + eigen_assert(m_evaluator->refCount() > 0); + m_evaluator->incrRefCount(); + } + return *this; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rank() const { return m_evaluator->dimensions().size(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_evaluator->dimensions()[n]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_evaluator->dimensions(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index size() const { return m_evaluator->dimensions().TotalSize(); } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar* data() const { return m_evaluator->data(); } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index index) const + { + return m_evaluator->coeff(index); + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index firstIndex, IndexTypes... otherIndices) const + { + const std::size_t num_indices = (sizeof...(otherIndices) + 1); + const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; + return coeff(indices); + } + template<typename... IndexTypes> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices) + { + const std::size_t num_indices = (sizeof...(otherIndices) + 1); + const array<Index, num_indices> indices{{firstIndex, otherIndices...}}; + return coeffRef(indices); + } +#else + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1) const + { + array<Index, 2> indices; + indices[0] = i0; + indices[1] = i1; + return coeff(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2) const + { + array<Index, 3> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + return coeff(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3) const + { + array<Index, 4> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + indices[3] = i3; + return coeff(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const + { + array<Index, 5> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + indices[3] = i3; + indices[4] = i4; + return coeff(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1) + { + array<Index, 2> indices; + indices[0] = i0; + indices[1] = i1; + return coeffRef(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2) + { + array<Index, 3> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + return coeffRef(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) + { + array<Index, 4> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + indices[3] = i3; + return coeffRef(indices); + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2, Index i3, Index i4) + { + array<Index, 5> indices; + indices[0] = i0; + indices[1] = i1; + indices[2] = i2; + indices[3] = i3; + indices[4] = i4; + return coeffRef(indices); + } +#endif + + template <std::size_t NumIndices> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar coeff(const array<Index, NumIndices>& indices) const + { + const Dimensions& dims = this->dimensions(); + Index index = 0; + if (PlainObjectType::Options & RowMajor) { + index += indices[0]; + for (size_t i = 1; i < NumIndices; ++i) { + index = index * dims[i] + indices[i]; + } + } else { + index += indices[NumIndices-1]; + for (int i = NumIndices-2; i >= 0; --i) { + index = index * dims[i] + indices[i]; + } + } + return m_evaluator->coeff(index); + } + template <std::size_t NumIndices> EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) + { + const Dimensions& dims = this->dimensions(); + Index index = 0; + if (PlainObjectType::Options & RowMajor) { + index += indices[0]; + for (size_t i = 1; i < NumIndices; ++i) { + index = index * dims[i] + indices[i]; + } + } else { + index += indices[NumIndices-1]; + for (int i = NumIndices-2; i >= 0; --i) { + index = index * dims[i] + indices[i]; + } + } + return m_evaluator->coeffRef(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const Scalar coeff(Index index) const + { + return m_evaluator->coeff(index); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) + { + return m_evaluator->coeffRef(index); + } + + private: + EIGEN_STRONG_INLINE void unrefEvaluator() { + if (m_evaluator) { + m_evaluator->decrRefCount(); + if (m_evaluator->refCount() == 0) { + delete m_evaluator; + } + } + } + + internal::TensorLazyBaseEvaluator<Dimensions, Scalar>* m_evaluator; +}; + + +// evaluator for rvalues +template<typename Derived, typename Device> +struct TensorEvaluator<const TensorRef<Derived>, Device> +{ + typedef typename Derived::Index Index; + typedef typename Derived::Scalar Scalar; + typedef typename Derived::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename Derived::Dimensions Dimensions; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorRef<Derived>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const TensorRef<Derived>& m, const Device&) + : m_ref(m) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_ref.dimensions(); } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { + return m_ref.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { + return m_ref.coeffRef(index); + } + + EIGEN_DEVICE_FUNC const Scalar* data() const { return m_ref.data(); } + + protected: + TensorRef<Derived> m_ref; +}; + + +// evaluator for lvalues +template<typename Derived, typename Device> +struct TensorEvaluator<TensorRef<Derived>, Device> : public TensorEvaluator<const TensorRef<Derived>, Device> +{ + typedef typename Derived::Index Index; + typedef typename Derived::Scalar Scalar; + typedef typename Derived::Scalar CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef typename Derived::Dimensions Dimensions; + + typedef TensorEvaluator<const TensorRef<Derived>, Device> Base; + + enum { + IsAligned = false, + PacketAccess = false, + BlockAccess = false, + PreferBlockAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(TensorRef<Derived>& m, const Device& d) : Base(m, d) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { + return this->m_ref.coeffRef(index); + } +}; + + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_REF_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorReverse.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorReverse.h new file mode 100644 index 0000000..586ce68 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorReverse.h @@ -0,0 +1,465 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com> +// Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H +#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H +namespace Eigen { + +/** \class TensorReverse + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reverse elements class. + * + */ +namespace internal { +template<typename ReverseDimensions, typename XprType> +struct traits<TensorReverseOp<ReverseDimensions, + XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename ReverseDimensions, typename XprType> +struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense> +{ + typedef const TensorReverseOp<ReverseDimensions, XprType>& type; +}; + +template<typename ReverseDimensions, typename XprType> +struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1, + typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type> +{ + typedef TensorReverseOp<ReverseDimensions, XprType> type; +}; + +} // end namespace internal + +template<typename ReverseDimensions, typename XprType> +class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions, + XprType>, WriteAccessors> +{ + public: + typedef TensorBase<TensorReverseOp<ReverseDimensions, XprType>, WriteAccessors>Base; + typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested; + typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind + StorageKind; + typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp( + const XprType& expr, const ReverseDimensions& reverse_dims) + : m_xpr(expr), m_reverse_dims(reverse_dims) { } + + EIGEN_DEVICE_FUNC + const ReverseDimensions& reverse() const { return m_reverse_dims; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReverseOp) + + + protected: + typename XprType::Nested m_xpr; + const ReverseDimensions m_reverse_dims; +}; + +// Eval as rvalue +template<typename ReverseDimensions, typename ArgType, typename Device> +struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> +{ + typedef TensorReverseOp<ReverseDimensions, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<ReverseDimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = NumDims > 0, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + typedef internal::TensorIntDivisor<Index> IndexDivisor; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock + ArgTensorBlock; + + typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), + m_reverse(op.reverse()), + m_device(device) + { + // Reversing a scalar isn't supported yet. It would be a no-op anyway. + EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + + // Compute strides + m_dimensions = m_impl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_strides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_strides[i] = m_strides[i-1] * m_dimensions[i-1]; + if (m_strides[i] > 0) m_fastStrides[i] = IndexDivisor(m_strides[i]); + } + } else { + m_strides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_strides[i] = m_strides[i+1] * m_dimensions[i+1]; + if (m_strides[i] > 0) m_fastStrides[i] = IndexDivisor(m_strides[i]); + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex( + Index index) const { + eigen_assert(index < dimensions().TotalSize()); + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + Index idx = index / m_fastStrides[i]; + index -= idx * m_strides[i]; + if (m_reverse[i]) { + idx = m_dimensions[i] - idx - 1; + } + inputIndex += idx * m_strides[i] ; + } + if (m_reverse[0]) { + inputIndex += (m_dimensions[0] - index - 1); + } else { + inputIndex += index; + } + } else { + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + Index idx = index / m_fastStrides[i]; + index -= idx * m_strides[i]; + if (m_reverse[i]) { + idx = m_dimensions[i] - idx - 1; + } + inputIndex += idx * m_strides[i] ; + } + if (m_reverse[NumDims-1]) { + inputIndex += (m_dimensions[NumDims-1] - index - 1); + } else { + inputIndex += index; + } + } + return inputIndex; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff( + Index index) const { + return m_impl.coeff(reverseIndex(index)); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + // TODO(ndjaitly): write a better packing routine that uses + // local structure. + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type + values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + const size_t target_size = m_device.lastLevelCacheSize(); + // Block evaluation reads underlying memory in reverse order, and default + // cost model does not properly catch this in bytes stored/loaded. + return internal::TensorBlockResourceRequirements::skewed<Scalar>( + target_size) + .addCostPerCoeff({0, 0, 24}); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool /*root_of_expr_ast*/ = false) const { + // TODO(ezhulenev): If underlying tensor expression supports and prefers + // block evaluation we must use it. Currently we use coeff and packet + // access into the underlying tensor expression. + // static const bool useBlockAccessForArgType = + // TensorEvaluator<ArgType, Device>::BlockAccess && + // TensorEvaluator<ArgType, Device>::PreferBlockAccess; + + static const bool isColMajor = + static_cast<int>(Layout) == static_cast<int>(ColMajor); + + static const Index inner_dim_idx = isColMajor ? 0 : NumDims - 1; + const bool inner_dim_reversed = m_reverse[inner_dim_idx]; + + // Offset in the output block. + Index block_offset = 0; + + // Offset in the input Tensor. + Index input_offset = reverseIndex(desc.offset()); + + // Initialize output block iterator state. Dimension in this array are + // always in inner_most -> outer_most order (col major layout). + array<BlockIteratorState, NumDims> it; + for (int i = 0; i < NumDims; ++i) { + const int dim = isColMajor ? i : NumDims - 1 - i; + it[i].size = desc.dimension(dim); + it[i].count = 0; + it[i].reverse = m_reverse[dim]; + + it[i].block_stride = + i == 0 ? 1 : (it[i - 1].size * it[i - 1].block_stride); + it[i].block_span = it[i].block_stride * (it[i].size - 1); + + it[i].input_stride = m_strides[dim]; + it[i].input_span = it[i].input_stride * (it[i].size - 1); + + if (it[i].reverse) { + it[i].input_stride = -1 * it[i].input_stride; + it[i].input_span = -1 * it[i].input_span; + } + } + + // If multiple inner dimensions have the same reverse flag, check if we can + // merge them into a single virtual inner dimension. + int effective_inner_dim = 0; + for (int i = 1; i < NumDims; ++i) { + if (it[i].reverse != it[effective_inner_dim].reverse) break; + if (it[i].block_stride != it[effective_inner_dim].size) break; + if (it[i].block_stride != numext::abs(it[i].input_stride)) break; + + it[i].size = it[effective_inner_dim].size * it[i].size; + + it[i].block_stride = 1; + it[i].input_stride = (inner_dim_reversed ? -1 : 1); + + it[i].block_span = it[i].block_stride * (it[i].size - 1); + it[i].input_span = it[i].input_stride * (it[i].size - 1); + + effective_inner_dim = i; + } + + eigen_assert(it[effective_inner_dim].block_stride == 1); + eigen_assert(it[effective_inner_dim].input_stride == + (inner_dim_reversed ? -1 : 1)); + + const Index inner_dim_size = it[effective_inner_dim].size; + + // Prepare storage for the materialized reverse result. + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage(desc, scratch); + CoeffReturnType* block_buffer = block_storage.data(); + + while (it[NumDims - 1].count < it[NumDims - 1].size) { + // Copy inner-most dimension data from reversed location in input. + Index dst = block_offset; + Index src = input_offset; + + // NOTE(ezhulenev): Adding vectorized path with internal::preverse showed + // worse results in benchmarks than a simple coefficient loop. + if (inner_dim_reversed) { + for (Index i = 0; i < inner_dim_size; ++i) { + block_buffer[dst] = m_impl.coeff(src); + ++dst; + --src; + } + } else { + for (Index i = 0; i < inner_dim_size; ++i) { + block_buffer[dst] = m_impl.coeff(src); + ++dst; + ++src; + } + } + + // For the 1d tensor we need to generate only one inner-most dimension. + if ((NumDims - effective_inner_dim) == 1) break; + + // Update offset. + for (Index i = effective_inner_dim + 1; i < NumDims; ++i) { + if (++it[i].count < it[i].size) { + block_offset += it[i].block_stride; + input_offset += it[i].input_stride; + break; + } + if (i != NumDims - 1) it[i].count = 0; + block_offset -= it[i].block_span; + input_offset -= it[i].input_span; + } + } + + return block_storage.AsTensorMaterializedBlock(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + + 2 * TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>()); + for (int i = 0; i < NumDims; ++i) { + if (m_reverse[i]) { + compute_cost += 2 * TensorOpCost::AddCost<Index>(); + } + } + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize); + } + + EIGEN_DEVICE_FUNC typename Storage::Type data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + Dimensions m_dimensions; + array<Index, NumDims> m_strides; + array<IndexDivisor, NumDims> m_fastStrides; + TensorEvaluator<ArgType, Device> m_impl; + ReverseDimensions m_reverse; + const Device EIGEN_DEVICE_REF m_device; + + private: + struct BlockIteratorState { + BlockIteratorState() + : size(0), + count(0), + reverse(false), + block_stride(0), + block_span(0), + input_stride(0), + input_span(0) {} + + Index size; + Index count; + bool reverse; + Index block_stride; + Index block_span; + Index input_stride; + Index input_span; + }; +}; + +// Eval as lvalue + +template <typename ReverseDimensions, typename ArgType, typename Device> +struct TensorEvaluator<TensorReverseOp<ReverseDimensions, ArgType>, Device> + : public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, + Device> { + typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, + Device> Base; + typedef TensorReverseOp<ReverseDimensions, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<ReverseDimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dimensions& dimensions() const { return this->m_dimensions; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { + return this->m_impl.coeffRef(this->reverseIndex(index)); + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + // This code is pilfered from TensorMorphing.h + EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + this->coeffRef(index+i) = values[i]; + } + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorScan.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorScan.h new file mode 100644 index 0000000..beae854 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorScan.h @@ -0,0 +1,528 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H +#define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H + +namespace Eigen { + +namespace internal { + +template <typename Op, typename XprType> +struct traits<TensorScanOp<Op, XprType> > + : public traits<XprType> { + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Op, typename XprType> +struct eval<TensorScanOp<Op, XprType>, Eigen::Dense> +{ + typedef const TensorScanOp<Op, XprType>& type; +}; + +template<typename Op, typename XprType> +struct nested<TensorScanOp<Op, XprType>, 1, + typename eval<TensorScanOp<Op, XprType> >::type> +{ + typedef TensorScanOp<Op, XprType> type; +}; +} // end namespace internal + +/** \class TensorScan + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor scan class. + */ +template <typename Op, typename XprType> +class TensorScanOp + : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> { +public: + typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorScanOp>::type Nested; + typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorScanOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp( + const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op()) + : m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Index axis() const { return m_axis; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const XprType& expression() const { return m_expr; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Op accumulator() const { return m_accumulator; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + bool exclusive() const { return m_exclusive; } + +protected: + typename XprType::Nested m_expr; + const Index m_axis; + const Op m_accumulator; + const bool m_exclusive; +}; + + +namespace internal { + +template <typename Self> +EIGEN_STRONG_INLINE void ReduceScalar(Self& self, Index offset, + typename Self::CoeffReturnType* data) { + // Compute the scan along the axis, starting at the given offset + typename Self::CoeffReturnType accum = self.accumulator().initialize(); + if (self.stride() == 1) { + if (self.exclusive()) { + for (Index curr = offset; curr < offset + self.size(); ++curr) { + data[curr] = self.accumulator().finalize(accum); + self.accumulator().reduce(self.inner().coeff(curr), &accum); + } + } else { + for (Index curr = offset; curr < offset + self.size(); ++curr) { + self.accumulator().reduce(self.inner().coeff(curr), &accum); + data[curr] = self.accumulator().finalize(accum); + } + } + } else { + if (self.exclusive()) { + for (Index idx3 = 0; idx3 < self.size(); idx3++) { + Index curr = offset + idx3 * self.stride(); + data[curr] = self.accumulator().finalize(accum); + self.accumulator().reduce(self.inner().coeff(curr), &accum); + } + } else { + for (Index idx3 = 0; idx3 < self.size(); idx3++) { + Index curr = offset + idx3 * self.stride(); + self.accumulator().reduce(self.inner().coeff(curr), &accum); + data[curr] = self.accumulator().finalize(accum); + } + } + } +} + +template <typename Self> +EIGEN_STRONG_INLINE void ReducePacket(Self& self, Index offset, + typename Self::CoeffReturnType* data) { + using Scalar = typename Self::CoeffReturnType; + using Packet = typename Self::PacketReturnType; + // Compute the scan along the axis, starting at the calculated offset + Packet accum = self.accumulator().template initializePacket<Packet>(); + if (self.stride() == 1) { + if (self.exclusive()) { + for (Index curr = offset; curr < offset + self.size(); ++curr) { + internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum)); + self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum); + } + } else { + for (Index curr = offset; curr < offset + self.size(); ++curr) { + self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum); + internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum)); + } + } + } else { + if (self.exclusive()) { + for (Index idx3 = 0; idx3 < self.size(); idx3++) { + const Index curr = offset + idx3 * self.stride(); + internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum)); + self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum); + } + } else { + for (Index idx3 = 0; idx3 < self.size(); idx3++) { + const Index curr = offset + idx3 * self.stride(); + self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum); + internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum)); + } + } + } +} + +template <typename Self, bool Vectorize, bool Parallel> +struct ReduceBlock { + EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1, + typename Self::CoeffReturnType* data) { + for (Index idx2 = 0; idx2 < self.stride(); idx2++) { + // Calculate the starting offset for the scan + Index offset = idx1 + idx2; + ReduceScalar(self, offset, data); + } + } +}; + +// Specialization for vectorized reduction. +template <typename Self> +struct ReduceBlock<Self, /*Vectorize=*/true, /*Parallel=*/false> { + EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1, + typename Self::CoeffReturnType* data) { + using Packet = typename Self::PacketReturnType; + const int PacketSize = internal::unpacket_traits<Packet>::size; + Index idx2 = 0; + for (; idx2 + PacketSize <= self.stride(); idx2 += PacketSize) { + // Calculate the starting offset for the packet scan + Index offset = idx1 + idx2; + ReducePacket(self, offset, data); + } + for (; idx2 < self.stride(); idx2++) { + // Calculate the starting offset for the scan + Index offset = idx1 + idx2; + ReduceScalar(self, offset, data); + } + } +}; + +// Single-threaded CPU implementation of scan +template <typename Self, typename Reducer, typename Device, + bool Vectorize = + (TensorEvaluator<typename Self::ChildTypeNoConst, Device>::PacketAccess && + internal::reducer_traits<Reducer, Device>::PacketAccess)> +struct ScanLauncher { + void operator()(Self& self, typename Self::CoeffReturnType* data) { + Index total_size = internal::array_prod(self.dimensions()); + + // We fix the index along the scan axis to 0 and perform a + // scan per remaining entry. The iteration is split into two nested + // loops to avoid an integer division by keeping track of each idx1 and + // idx2. + for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) { + ReduceBlock<Self, Vectorize, /*Parallel=*/false> block_reducer; + block_reducer(self, idx1, data); + } + } +}; + +#ifdef EIGEN_USE_THREADS + +// Adjust block_size to avoid false sharing of cachelines among +// threads. Currently set to twice the cache line size on Intel and ARM +// processors. +EIGEN_STRONG_INLINE Index AdjustBlockSize(Index item_size, Index block_size) { + EIGEN_CONSTEXPR Index kBlockAlignment = 128; + const Index items_per_cacheline = + numext::maxi<Index>(1, kBlockAlignment / item_size); + return items_per_cacheline * divup(block_size, items_per_cacheline); +} + +template <typename Self> +struct ReduceBlock<Self, /*Vectorize=*/true, /*Parallel=*/true> { + EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1, + typename Self::CoeffReturnType* data) { + using Scalar = typename Self::CoeffReturnType; + using Packet = typename Self::PacketReturnType; + const int PacketSize = internal::unpacket_traits<Packet>::size; + Index num_scalars = self.stride(); + Index num_packets = 0; + if (self.stride() >= PacketSize) { + num_packets = self.stride() / PacketSize; + self.device().parallelFor( + num_packets, + TensorOpCost(PacketSize * self.size(), PacketSize * self.size(), + 16 * PacketSize * self.size(), true, PacketSize), + // Make the shard size large enough that two neighboring threads + // won't write to the same cacheline of `data`. + [=](Index blk_size) { + return AdjustBlockSize(PacketSize * sizeof(Scalar), blk_size); + }, + [&](Index first, Index last) { + for (Index packet = first; packet < last; ++packet) { + const Index idx2 = packet * PacketSize; + ReducePacket(self, idx1 + idx2, data); + } + }); + num_scalars -= num_packets * PacketSize; + } + self.device().parallelFor( + num_scalars, TensorOpCost(self.size(), self.size(), 16 * self.size()), + // Make the shard size large enough that two neighboring threads + // won't write to the same cacheline of `data`. + [=](Index blk_size) { + return AdjustBlockSize(sizeof(Scalar), blk_size); + }, + [&](Index first, Index last) { + for (Index scalar = first; scalar < last; ++scalar) { + const Index idx2 = num_packets * PacketSize + scalar; + ReduceScalar(self, idx1 + idx2, data); + } + }); + } +}; + +template <typename Self> +struct ReduceBlock<Self, /*Vectorize=*/false, /*Parallel=*/true> { + EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1, + typename Self::CoeffReturnType* data) { + using Scalar = typename Self::CoeffReturnType; + self.device().parallelFor( + self.stride(), TensorOpCost(self.size(), self.size(), 16 * self.size()), + // Make the shard size large enough that two neighboring threads + // won't write to the same cacheline of `data`. + [=](Index blk_size) { + return AdjustBlockSize(sizeof(Scalar), blk_size); + }, + [&](Index first, Index last) { + for (Index idx2 = first; idx2 < last; ++idx2) { + ReduceScalar(self, idx1 + idx2, data); + } + }); + } +}; + +// Specialization for multi-threaded execution. +template <typename Self, typename Reducer, bool Vectorize> +struct ScanLauncher<Self, Reducer, ThreadPoolDevice, Vectorize> { + void operator()(Self& self, typename Self::CoeffReturnType* data) { + using Scalar = typename Self::CoeffReturnType; + using Packet = typename Self::PacketReturnType; + const int PacketSize = internal::unpacket_traits<Packet>::size; + const Index total_size = internal::array_prod(self.dimensions()); + const Index inner_block_size = self.stride() * self.size(); + bool parallelize_by_outer_blocks = (total_size >= (self.stride() * inner_block_size)); + + if ((parallelize_by_outer_blocks && total_size <= 4096) || + (!parallelize_by_outer_blocks && self.stride() < PacketSize)) { + ScanLauncher<Self, Reducer, DefaultDevice, Vectorize> launcher; + launcher(self, data); + return; + } + + if (parallelize_by_outer_blocks) { + // Parallelize over outer blocks. + const Index num_outer_blocks = total_size / inner_block_size; + self.device().parallelFor( + num_outer_blocks, + TensorOpCost(inner_block_size, inner_block_size, + 16 * PacketSize * inner_block_size, Vectorize, + PacketSize), + [=](Index blk_size) { + return AdjustBlockSize(inner_block_size * sizeof(Scalar), blk_size); + }, + [&](Index first, Index last) { + for (Index idx1 = first; idx1 < last; ++idx1) { + ReduceBlock<Self, Vectorize, /*Parallelize=*/false> block_reducer; + block_reducer(self, idx1 * inner_block_size, data); + } + }); + } else { + // Parallelize over inner packets/scalars dimensions when the reduction + // axis is not an inner dimension. + ReduceBlock<Self, Vectorize, /*Parallelize=*/true> block_reducer; + for (Index idx1 = 0; idx1 < total_size; + idx1 += self.stride() * self.size()) { + block_reducer(self, idx1, data); + } + } + } +}; +#endif // EIGEN_USE_THREADS + +#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC)) + +// GPU implementation of scan +// TODO(ibab) This placeholder implementation performs multiple scans in +// parallel, but it would be better to use a parallel scan algorithm and +// optimize memory access. +template <typename Self, typename Reducer> +__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) { + // Compute offset as in the CPU version + Index val = threadIdx.x + blockIdx.x * blockDim.x; + Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride(); + + if (offset + (self.size() - 1) * self.stride() < total_size) { + // Compute the scan along the axis, starting at the calculated offset + typename Self::CoeffReturnType accum = self.accumulator().initialize(); + for (Index idx = 0; idx < self.size(); idx++) { + Index curr = offset + idx * self.stride(); + if (self.exclusive()) { + data[curr] = self.accumulator().finalize(accum); + self.accumulator().reduce(self.inner().coeff(curr), &accum); + } else { + self.accumulator().reduce(self.inner().coeff(curr), &accum); + data[curr] = self.accumulator().finalize(accum); + } + } + } + __syncthreads(); + +} + +template <typename Self, typename Reducer, bool Vectorize> +struct ScanLauncher<Self, Reducer, GpuDevice, Vectorize> { + void operator()(const Self& self, typename Self::CoeffReturnType* data) { + Index total_size = internal::array_prod(self.dimensions()); + Index num_blocks = (total_size / self.size() + 63) / 64; + Index block_size = 64; + + LAUNCH_GPU_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data); + } +}; +#endif // EIGEN_USE_GPU && (EIGEN_GPUCC) + +} // namespace internal + +// Eval as rvalue +template <typename Op, typename ArgType, typename Device> +struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> { + + typedef TensorScanOp<Op, ArgType> XprType; + typedef typename XprType::Index Index; + typedef const ArgType ChildTypeNoConst; + typedef const ArgType ChildType; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self; + typedef StorageMemory<Scalar, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = false, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = true + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), + m_device(device), + m_exclusive(op.exclusive()), + m_accumulator(op.accumulator()), + m_size(m_impl.dimensions()[op.axis()]), + m_stride(1), m_consume_dim(op.axis()), + m_output(NULL) { + + // Accumulating a scalar isn't supported. + EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(op.axis() >= 0 && op.axis() < NumDims); + + // Compute stride of scan axis + const Dimensions& dims = m_impl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < op.axis(); ++i) { + m_stride = m_stride * dims[i]; + } + } else { + // dims can only be indexed through unsigned integers, + // so let's use an unsigned type to let the compiler knows. + // This prevents stupid warnings: ""'*((void*)(& evaluator)+64)[18446744073709551615]' may be used uninitialized in this function" + unsigned int axis = internal::convert_index<unsigned int>(op.axis()); + for (unsigned int i = NumDims - 1; i > axis; --i) { + m_stride = m_stride * dims[i]; + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_impl.dimensions(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const { + return m_stride; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& consume_dim() const { + return m_consume_dim; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const { + return m_size; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const { + return m_accumulator; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const { + return m_exclusive; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const { + return m_impl; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { + return m_device; + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { + m_impl.evalSubExprsIfNeeded(NULL); + internal::ScanLauncher<Self, Op, Device> launcher; + if (data) { + launcher(*this, data); + return false; + } + + const Index total_size = internal::array_prod(dimensions()); + m_output = static_cast<EvaluatorPointerType>(m_device.get((Scalar*) m_device.allocate_temp(total_size * sizeof(Scalar)))); + launcher(*this, m_output); + return true; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { + return internal::ploadt<PacketReturnType, LoadMode>(m_output + index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const + { + return m_output; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_output[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { + return TensorOpCost(sizeof(CoeffReturnType), 0, 0); + } + + EIGEN_STRONG_INLINE void cleanup() { + if (m_output) { + m_device.deallocate_temp(m_output); + m_output = NULL; + } + m_impl.cleanup(); + } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + m_output.bind(cgh); + } +#endif +protected: + TensorEvaluator<ArgType, Device> m_impl; + const Device EIGEN_DEVICE_REF m_device; + const bool m_exclusive; + Op m_accumulator; + const Index m_size; + Index m_stride; + Index m_consume_dim; + EvaluatorPointerType m_output; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorScanSycl.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorScanSycl.h new file mode 100644 index 0000000..7f68ecb --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorScanSycl.h @@ -0,0 +1,513 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +/***************************************************************** + * TensorScanSycl.h + * + * \brief: + * Tensor Scan Sycl implement the extend version of + * "Efficient parallel scan algorithms for GPUs." .for Tensor operations. + * The algorithm requires up to 3 stage (consequently 3 kernels) depending on + * the size of the tensor. In the first kernel (ScanKernelFunctor), each + * threads within the work-group individually reduces the allocated elements per + * thread in order to reduces the total number of blocks. In the next step all + * thread within the work-group will reduce the associated blocks into the + * temporary buffers. In the next kernel(ScanBlockKernelFunctor), the temporary + * buffer is given as an input and all the threads within a work-group scan and + * reduces the boundaries between the blocks (generated from the previous + * kernel). and write the data on the temporary buffer. If the second kernel is + * required, the third and final kerenl (ScanAdjustmentKernelFunctor) will + * adjust the final result into the output buffer. + * The original algorithm for the parallel prefix sum can be found here: + * + * Sengupta, Shubhabrata, Mark Harris, and Michael Garland. "Efficient parallel + * scan algorithms for GPUs." NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003 + *1, no. 1 (2008): 1-17. + *****************************************************************/ + +#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_SYCL_SYCL_HPP +#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_SYCL_SYCL_HPP + +namespace Eigen { +namespace TensorSycl { +namespace internal { + +#ifndef EIGEN_SYCL_MAX_GLOBAL_RANGE +#define EIGEN_SYCL_MAX_GLOBAL_RANGE (EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1 * 4) +#endif + +template <typename index_t> +struct ScanParameters { + // must be power of 2 + static EIGEN_CONSTEXPR index_t ScanPerThread = 8; + const index_t total_size; + const index_t non_scan_size; + const index_t scan_size; + const index_t non_scan_stride; + const index_t scan_stride; + const index_t panel_threads; + const index_t group_threads; + const index_t block_threads; + const index_t elements_per_group; + const index_t elements_per_block; + const index_t loop_range; + + ScanParameters(index_t total_size_, index_t non_scan_size_, index_t scan_size_, index_t non_scan_stride_, + index_t scan_stride_, index_t panel_threads_, index_t group_threads_, index_t block_threads_, + index_t elements_per_group_, index_t elements_per_block_, index_t loop_range_) + : total_size(total_size_), + non_scan_size(non_scan_size_), + scan_size(scan_size_), + non_scan_stride(non_scan_stride_), + scan_stride(scan_stride_), + panel_threads(panel_threads_), + group_threads(group_threads_), + block_threads(block_threads_), + elements_per_group(elements_per_group_), + elements_per_block(elements_per_block_), + loop_range(loop_range_) {} +}; + +enum class scan_step { first, second }; +template <typename Evaluator, typename CoeffReturnType, typename OutAccessor, typename Op, typename Index, + scan_step stp> +struct ScanKernelFunctor { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + LocalAccessor; + static EIGEN_CONSTEXPR int PacketSize = ScanParameters<Index>::ScanPerThread / 2; + + LocalAccessor scratch; + Evaluator dev_eval; + OutAccessor out_accessor; + OutAccessor temp_accessor; + const ScanParameters<Index> scanParameters; + Op accumulator; + const bool inclusive; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScanKernelFunctor(LocalAccessor scratch_, const Evaluator dev_eval_, + OutAccessor out_accessor_, OutAccessor temp_accessor_, + const ScanParameters<Index> scanParameters_, Op accumulator_, + const bool inclusive_) + : scratch(scratch_), + dev_eval(dev_eval_), + out_accessor(out_accessor_), + temp_accessor(temp_accessor_), + scanParameters(scanParameters_), + accumulator(accumulator_), + inclusive(inclusive_) {} + + template <scan_step sst = stp, typename Input> + typename ::Eigen::internal::enable_if<sst == scan_step::first, CoeffReturnType>::type EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE + read(const Input &inpt, Index global_id) { + return inpt.coeff(global_id); + } + + template <scan_step sst = stp, typename Input> + typename ::Eigen::internal::enable_if<sst != scan_step::first, CoeffReturnType>::type EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE + read(const Input &inpt, Index global_id) { + return inpt[global_id]; + } + + template <scan_step sst = stp, typename InclusiveOp> + typename ::Eigen::internal::enable_if<sst == scan_step::first>::type EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + first_step_inclusive_Operation(InclusiveOp inclusive_op) { + inclusive_op(); + } + + template <scan_step sst = stp, typename InclusiveOp> + typename ::Eigen::internal::enable_if<sst != scan_step::first>::type EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + first_step_inclusive_Operation(InclusiveOp) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + auto out_ptr = out_accessor.get_pointer(); + auto tmp_ptr = temp_accessor.get_pointer(); + auto scratch_ptr = scratch.get_pointer().get(); + + for (Index loop_offset = 0; loop_offset < scanParameters.loop_range; loop_offset++) { + Index data_offset = (itemID.get_global_id(0) + (itemID.get_global_range(0) * loop_offset)); + Index tmp = data_offset % scanParameters.panel_threads; + const Index panel_id = data_offset / scanParameters.panel_threads; + const Index group_id = tmp / scanParameters.group_threads; + tmp = tmp % scanParameters.group_threads; + const Index block_id = tmp / scanParameters.block_threads; + const Index local_id = tmp % scanParameters.block_threads; + // we put one element per packet in scratch_mem + const Index scratch_stride = scanParameters.elements_per_block / PacketSize; + const Index scratch_offset = (itemID.get_local_id(0) / scanParameters.block_threads) * scratch_stride; + CoeffReturnType private_scan[ScanParameters<Index>::ScanPerThread]; + CoeffReturnType inclusive_scan; + // the actual panel size is scan_size * non_scan_size. + // elements_per_panel is roundup to power of 2 for binary tree + const Index panel_offset = panel_id * scanParameters.scan_size * scanParameters.non_scan_size; + const Index group_offset = group_id * scanParameters.non_scan_stride; + // This will be effective when the size is bigger than elements_per_block + const Index block_offset = block_id * scanParameters.elements_per_block * scanParameters.scan_stride; + const Index thread_offset = (ScanParameters<Index>::ScanPerThread * local_id * scanParameters.scan_stride); + const Index global_offset = panel_offset + group_offset + block_offset + thread_offset; + Index next_elements = 0; + EIGEN_UNROLL_LOOP + for (int i = 0; i < ScanParameters<Index>::ScanPerThread; i++) { + Index global_id = global_offset + next_elements; + private_scan[i] = ((((block_id * scanParameters.elements_per_block) + + (ScanParameters<Index>::ScanPerThread * local_id) + i) < scanParameters.scan_size) && + (global_id < scanParameters.total_size)) + ? read(dev_eval, global_id) + : accumulator.initialize(); + next_elements += scanParameters.scan_stride; + } + first_step_inclusive_Operation([&]() EIGEN_DEVICE_FUNC { + if (inclusive) { + inclusive_scan = private_scan[ScanParameters<Index>::ScanPerThread - 1]; + } + }); + // This for loop must be 2 + EIGEN_UNROLL_LOOP + for (int packetIndex = 0; packetIndex < ScanParameters<Index>::ScanPerThread; packetIndex += PacketSize) { + Index private_offset = 1; + // build sum in place up the tree + EIGEN_UNROLL_LOOP + for (Index d = PacketSize >> 1; d > 0; d >>= 1) { + EIGEN_UNROLL_LOOP + for (Index l = 0; l < d; l++) { + Index ai = private_offset * (2 * l + 1) - 1 + packetIndex; + Index bi = private_offset * (2 * l + 2) - 1 + packetIndex; + CoeffReturnType accum = accumulator.initialize(); + accumulator.reduce(private_scan[ai], &accum); + accumulator.reduce(private_scan[bi], &accum); + private_scan[bi] = accumulator.finalize(accum); + } + private_offset *= 2; + } + scratch_ptr[2 * local_id + (packetIndex / PacketSize) + scratch_offset] = + private_scan[PacketSize - 1 + packetIndex]; + private_scan[PacketSize - 1 + packetIndex] = accumulator.initialize(); + // traverse down tree & build scan + EIGEN_UNROLL_LOOP + for (Index d = 1; d < PacketSize; d *= 2) { + private_offset >>= 1; + EIGEN_UNROLL_LOOP + for (Index l = 0; l < d; l++) { + Index ai = private_offset * (2 * l + 1) - 1 + packetIndex; + Index bi = private_offset * (2 * l + 2) - 1 + packetIndex; + CoeffReturnType accum = accumulator.initialize(); + accumulator.reduce(private_scan[ai], &accum); + accumulator.reduce(private_scan[bi], &accum); + private_scan[ai] = private_scan[bi]; + private_scan[bi] = accumulator.finalize(accum); + } + } + } + + Index offset = 1; + // build sum in place up the tree + for (Index d = scratch_stride >> 1; d > 0; d >>= 1) { + // Synchronise + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (local_id < d) { + Index ai = offset * (2 * local_id + 1) - 1 + scratch_offset; + Index bi = offset * (2 * local_id + 2) - 1 + scratch_offset; + CoeffReturnType accum = accumulator.initialize(); + accumulator.reduce(scratch_ptr[ai], &accum); + accumulator.reduce(scratch_ptr[bi], &accum); + scratch_ptr[bi] = accumulator.finalize(accum); + } + offset *= 2; + } + // Synchronise + itemID.barrier(cl::sycl::access::fence_space::local_space); + // next step optimisation + if (local_id == 0) { + if (((scanParameters.elements_per_group / scanParameters.elements_per_block) > 1)) { + const Index temp_id = panel_id * (scanParameters.elements_per_group / scanParameters.elements_per_block) * + scanParameters.non_scan_size + + group_id * (scanParameters.elements_per_group / scanParameters.elements_per_block) + + block_id; + tmp_ptr[temp_id] = scratch_ptr[scratch_stride - 1 + scratch_offset]; + } + // clear the last element + scratch_ptr[scratch_stride - 1 + scratch_offset] = accumulator.initialize(); + } + // traverse down tree & build scan + for (Index d = 1; d < scratch_stride; d *= 2) { + offset >>= 1; + // Synchronise + itemID.barrier(cl::sycl::access::fence_space::local_space); + if (local_id < d) { + Index ai = offset * (2 * local_id + 1) - 1 + scratch_offset; + Index bi = offset * (2 * local_id + 2) - 1 + scratch_offset; + CoeffReturnType accum = accumulator.initialize(); + accumulator.reduce(scratch_ptr[ai], &accum); + accumulator.reduce(scratch_ptr[bi], &accum); + scratch_ptr[ai] = scratch_ptr[bi]; + scratch_ptr[bi] = accumulator.finalize(accum); + } + } + // Synchronise + itemID.barrier(cl::sycl::access::fence_space::local_space); + // This for loop must be 2 + EIGEN_UNROLL_LOOP + for (int packetIndex = 0; packetIndex < ScanParameters<Index>::ScanPerThread; packetIndex += PacketSize) { + EIGEN_UNROLL_LOOP + for (Index i = 0; i < PacketSize; i++) { + CoeffReturnType accum = private_scan[packetIndex + i]; + accumulator.reduce(scratch_ptr[2 * local_id + (packetIndex / PacketSize) + scratch_offset], &accum); + private_scan[packetIndex + i] = accumulator.finalize(accum); + } + } + first_step_inclusive_Operation([&]() EIGEN_DEVICE_FUNC { + if (inclusive) { + accumulator.reduce(private_scan[ScanParameters<Index>::ScanPerThread - 1], &inclusive_scan); + private_scan[0] = accumulator.finalize(inclusive_scan); + } + }); + next_elements = 0; + // right the first set of private param + EIGEN_UNROLL_LOOP + for (Index i = 0; i < ScanParameters<Index>::ScanPerThread; i++) { + Index global_id = global_offset + next_elements; + if ((((block_id * scanParameters.elements_per_block) + (ScanParameters<Index>::ScanPerThread * local_id) + i) < + scanParameters.scan_size) && + (global_id < scanParameters.total_size)) { + Index private_id = (i * !inclusive) + (((i + 1) % ScanParameters<Index>::ScanPerThread) * (inclusive)); + out_ptr[global_id] = private_scan[private_id]; + } + next_elements += scanParameters.scan_stride; + } + } // end for loop + } +}; + +template <typename CoeffReturnType, typename InAccessor, typename OutAccessor, typename Op, typename Index> +struct ScanAdjustmentKernelFunctor { + typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> + LocalAccessor; + static EIGEN_CONSTEXPR int PacketSize = ScanParameters<Index>::ScanPerThread / 2; + InAccessor in_accessor; + OutAccessor out_accessor; + const ScanParameters<Index> scanParameters; + Op accumulator; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScanAdjustmentKernelFunctor(LocalAccessor, InAccessor in_accessor_, + OutAccessor out_accessor_, + const ScanParameters<Index> scanParameters_, + Op accumulator_) + : in_accessor(in_accessor_), + out_accessor(out_accessor_), + scanParameters(scanParameters_), + accumulator(accumulator_) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void operator()(cl::sycl::nd_item<1> itemID) { + auto in_ptr = in_accessor.get_pointer(); + auto out_ptr = out_accessor.get_pointer(); + + for (Index loop_offset = 0; loop_offset < scanParameters.loop_range; loop_offset++) { + Index data_offset = (itemID.get_global_id(0) + (itemID.get_global_range(0) * loop_offset)); + Index tmp = data_offset % scanParameters.panel_threads; + const Index panel_id = data_offset / scanParameters.panel_threads; + const Index group_id = tmp / scanParameters.group_threads; + tmp = tmp % scanParameters.group_threads; + const Index block_id = tmp / scanParameters.block_threads; + const Index local_id = tmp % scanParameters.block_threads; + + // the actual panel size is scan_size * non_scan_size. + // elements_per_panel is roundup to power of 2 for binary tree + const Index panel_offset = panel_id * scanParameters.scan_size * scanParameters.non_scan_size; + const Index group_offset = group_id * scanParameters.non_scan_stride; + // This will be effective when the size is bigger than elements_per_block + const Index block_offset = block_id * scanParameters.elements_per_block * scanParameters.scan_stride; + const Index thread_offset = ScanParameters<Index>::ScanPerThread * local_id * scanParameters.scan_stride; + + const Index global_offset = panel_offset + group_offset + block_offset + thread_offset; + const Index block_size = scanParameters.elements_per_group / scanParameters.elements_per_block; + const Index in_id = (panel_id * block_size * scanParameters.non_scan_size) + (group_id * block_size) + block_id; + CoeffReturnType adjust_val = in_ptr[in_id]; + + Index next_elements = 0; + EIGEN_UNROLL_LOOP + for (Index i = 0; i < ScanParameters<Index>::ScanPerThread; i++) { + Index global_id = global_offset + next_elements; + if ((((block_id * scanParameters.elements_per_block) + (ScanParameters<Index>::ScanPerThread * local_id) + i) < + scanParameters.scan_size) && + (global_id < scanParameters.total_size)) { + CoeffReturnType accum = adjust_val; + accumulator.reduce(out_ptr[global_id], &accum); + out_ptr[global_id] = accumulator.finalize(accum); + } + next_elements += scanParameters.scan_stride; + } + } + } +}; + +template <typename Index> +struct ScanInfo { + const Index &total_size; + const Index &scan_size; + const Index &panel_size; + const Index &non_scan_size; + const Index &scan_stride; + const Index &non_scan_stride; + + Index max_elements_per_block; + Index block_size; + Index panel_threads; + Index group_threads; + Index block_threads; + Index elements_per_group; + Index elements_per_block; + Index loop_range; + Index global_range; + Index local_range; + const Eigen::SyclDevice &dev; + EIGEN_STRONG_INLINE ScanInfo(const Index &total_size_, const Index &scan_size_, const Index &panel_size_, + const Index &non_scan_size_, const Index &scan_stride_, const Index &non_scan_stride_, + const Eigen::SyclDevice &dev_) + : total_size(total_size_), + scan_size(scan_size_), + panel_size(panel_size_), + non_scan_size(non_scan_size_), + scan_stride(scan_stride_), + non_scan_stride(non_scan_stride_), + dev(dev_) { + // must be power of 2 + local_range = std::min(Index(dev.getNearestPowerOfTwoWorkGroupSize()), + Index(EIGEN_SYCL_LOCAL_THREAD_DIM0 * EIGEN_SYCL_LOCAL_THREAD_DIM1)); + + max_elements_per_block = local_range * ScanParameters<Index>::ScanPerThread; + + elements_per_group = + dev.getPowerOfTwo(Index(roundUp(Index(scan_size), ScanParameters<Index>::ScanPerThread)), true); + const Index elements_per_panel = elements_per_group * non_scan_size; + elements_per_block = std::min(Index(elements_per_group), Index(max_elements_per_block)); + panel_threads = elements_per_panel / ScanParameters<Index>::ScanPerThread; + group_threads = elements_per_group / ScanParameters<Index>::ScanPerThread; + block_threads = elements_per_block / ScanParameters<Index>::ScanPerThread; + block_size = elements_per_group / elements_per_block; +#ifdef EIGEN_SYCL_MAX_GLOBAL_RANGE + const Index max_threads = std::min(Index(panel_threads * panel_size), Index(EIGEN_SYCL_MAX_GLOBAL_RANGE)); +#else + const Index max_threads = panel_threads * panel_size; +#endif + global_range = roundUp(max_threads, local_range); + loop_range = Index( + std::ceil(double(elements_per_panel * panel_size) / (global_range * ScanParameters<Index>::ScanPerThread))); + } + inline ScanParameters<Index> get_scan_parameter() { + return ScanParameters<Index>(total_size, non_scan_size, scan_size, non_scan_stride, scan_stride, panel_threads, + group_threads, block_threads, elements_per_group, elements_per_block, loop_range); + } + inline cl::sycl::nd_range<1> get_thread_range() { + return cl::sycl::nd_range<1>(cl::sycl::range<1>(global_range), cl::sycl::range<1>(local_range)); + } +}; + +template <typename EvaluatorPointerType, typename CoeffReturnType, typename Reducer, typename Index> +struct SYCLAdjustBlockOffset { + EIGEN_STRONG_INLINE static void adjust_scan_block_offset(EvaluatorPointerType in_ptr, EvaluatorPointerType out_ptr, + Reducer &accumulator, const Index total_size, + const Index scan_size, const Index panel_size, + const Index non_scan_size, const Index scan_stride, + const Index non_scan_stride, const Eigen::SyclDevice &dev) { + auto scan_info = + ScanInfo<Index>(total_size, scan_size, panel_size, non_scan_size, scan_stride, non_scan_stride, dev); + + typedef ScanAdjustmentKernelFunctor<CoeffReturnType, EvaluatorPointerType, EvaluatorPointerType, Reducer, Index> + AdjustFuctor; + dev.template unary_kernel_launcher<CoeffReturnType, AdjustFuctor>(in_ptr, out_ptr, scan_info.get_thread_range(), + scan_info.max_elements_per_block, + scan_info.get_scan_parameter(), accumulator); + } +}; + +template <typename CoeffReturnType, scan_step stp> +struct ScanLauncher_impl { + template <typename Input, typename EvaluatorPointerType, typename Reducer, typename Index> + EIGEN_STRONG_INLINE static void scan_block(Input in_ptr, EvaluatorPointerType out_ptr, Reducer &accumulator, + const Index total_size, const Index scan_size, const Index panel_size, + const Index non_scan_size, const Index scan_stride, + const Index non_scan_stride, const bool inclusive, + const Eigen::SyclDevice &dev) { + auto scan_info = + ScanInfo<Index>(total_size, scan_size, panel_size, non_scan_size, scan_stride, non_scan_stride, dev); + const Index temp_pointer_size = scan_info.block_size * non_scan_size * panel_size; + const Index scratch_size = scan_info.max_elements_per_block / (ScanParameters<Index>::ScanPerThread / 2); + CoeffReturnType *temp_pointer = + static_cast<CoeffReturnType *>(dev.allocate_temp(temp_pointer_size * sizeof(CoeffReturnType))); + EvaluatorPointerType tmp_global_accessor = dev.get(temp_pointer); + + typedef ScanKernelFunctor<Input, CoeffReturnType, EvaluatorPointerType, Reducer, Index, stp> ScanFunctor; + dev.template binary_kernel_launcher<CoeffReturnType, ScanFunctor>( + in_ptr, out_ptr, tmp_global_accessor, scan_info.get_thread_range(), scratch_size, + scan_info.get_scan_parameter(), accumulator, inclusive); + + if (scan_info.block_size > 1) { + ScanLauncher_impl<CoeffReturnType, scan_step::second>::scan_block( + tmp_global_accessor, tmp_global_accessor, accumulator, temp_pointer_size, scan_info.block_size, panel_size, + non_scan_size, Index(1), scan_info.block_size, false, dev); + + SYCLAdjustBlockOffset<EvaluatorPointerType, CoeffReturnType, Reducer, Index>::adjust_scan_block_offset( + tmp_global_accessor, out_ptr, accumulator, total_size, scan_size, panel_size, non_scan_size, scan_stride, + non_scan_stride, dev); + } + dev.deallocate_temp(temp_pointer); + } +}; + +} // namespace internal +} // namespace TensorSycl +namespace internal { +template <typename Self, typename Reducer, bool vectorize> +struct ScanLauncher<Self, Reducer, Eigen::SyclDevice, vectorize> { + typedef typename Self::Index Index; + typedef typename Self::CoeffReturnType CoeffReturnType; + typedef typename Self::Storage Storage; + typedef typename Self::EvaluatorPointerType EvaluatorPointerType; + void operator()(Self &self, EvaluatorPointerType data) { + const Index total_size = internal::array_prod(self.dimensions()); + const Index scan_size = self.size(); + const Index scan_stride = self.stride(); + // this is the scan op (can be sum or ...) + auto accumulator = self.accumulator(); + auto inclusive = !self.exclusive(); + auto consume_dim = self.consume_dim(); + auto dev = self.device(); + + auto dims = self.inner().dimensions(); + + Index non_scan_size = 1; + Index panel_size = 1; + if (static_cast<int>(Self::Layout) == static_cast<int>(ColMajor)) { + for (int i = 0; i < consume_dim; i++) { + non_scan_size *= dims[i]; + } + for (int i = consume_dim + 1; i < Self::NumDims; i++) { + panel_size *= dims[i]; + } + } else { + for (int i = Self::NumDims - 1; i > consume_dim; i--) { + non_scan_size *= dims[i]; + } + for (int i = consume_dim - 1; i >= 0; i--) { + panel_size *= dims[i]; + } + } + const Index non_scan_stride = (scan_stride > 1) ? 1 : scan_size; + auto eval_impl = self.inner(); + TensorSycl::internal::ScanLauncher_impl<CoeffReturnType, TensorSycl::internal::scan_step::first>::scan_block( + eval_impl, data, accumulator, total_size, scan_size, panel_size, non_scan_size, scan_stride, non_scan_stride, + inclusive, dev); + } +}; +} // namespace internal +} // namespace Eigen + +#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_SYCL_SYCL_HPP diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorShuffling.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorShuffling.h new file mode 100644 index 0000000..e5e5efd --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorShuffling.h @@ -0,0 +1,471 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H +#define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H + +namespace Eigen { + +/** \class TensorShuffling + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor shuffling class. + * + * + */ +namespace internal { +template<typename Shuffle, typename XprType> +struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Shuffle, typename XprType> +struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense> +{ + typedef const TensorShufflingOp<Shuffle, XprType>& type; +}; + +template<typename Shuffle, typename XprType> +struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type> +{ + typedef TensorShufflingOp<Shuffle, XprType> type; +}; + +} // end namespace internal + + + +template<typename Shuffle, typename XprType> +class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> > +{ + public: + typedef TensorBase<TensorShufflingOp<Shuffle, XprType> > Base; + typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shfl) + : m_xpr(expr), m_shuffle(shfl) {} + + EIGEN_DEVICE_FUNC + const Shuffle& shufflePermutation() const { return m_shuffle; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorShufflingOp) + + + protected: + typename XprType::Nested m_xpr; + const Shuffle m_shuffle; +}; + + +// Eval as rvalue +template<typename Shuffle, typename ArgType, typename Device> +struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> +{ + typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Self; + typedef TensorShufflingOp<Shuffle, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch; + + typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, + Layout, Index> + TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_device(device), + m_impl(op.expression(), device) + { + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + const Shuffle& shuffle = op.shufflePermutation(); + m_is_identity = true; + for (int i = 0; i < NumDims; ++i) { + m_shuffle[i] = static_cast<int>(shuffle[i]); + m_dimensions[i] = input_dims[shuffle[i]]; + m_inverseShuffle[shuffle[i]] = i; + if (m_is_identity && shuffle[i] != i) { + m_is_identity = false; + } + } + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_unshuffledInputStrides[0] = 1; + m_outputStrides[0] = 1; + + for (int i = 1; i < NumDims; ++i) { + m_unshuffledInputStrides[i] = + m_unshuffledInputStrides[i - 1] * input_dims[i - 1]; + m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>( + m_outputStrides[i] > 0 ? m_outputStrides[i] : Index(1)); + } + } else { + m_unshuffledInputStrides[NumDims - 1] = 1; + m_outputStrides[NumDims - 1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_unshuffledInputStrides[i] = + m_unshuffledInputStrides[i + 1] * input_dims[i + 1]; + m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; + m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>( + m_outputStrides[i] > 0 ? m_outputStrides[i] : Index(1)); + } + } + + for (int i = 0; i < NumDims; ++i) { + m_inputStrides[i] = m_unshuffledInputStrides[shuffle[i]]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + +#ifdef EIGEN_USE_THREADS + template <typename EvalSubExprsCallback> + EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( + EvaluatorPointerType, EvalSubExprsCallback done) { + m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); }); + } +#endif // EIGEN_USE_THREADS + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + if (m_is_identity) { + return m_impl.coeff(index); + } else { + return m_impl.coeff(srcCoeff(index)); + } + } + + template <int LoadMode, typename Self, bool ImplPacketAccess> + struct PacketLoader { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + static PacketReturnType Run(const Self& self, Index index) { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = self.coeff(index + i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + }; + + template<int LoadMode, typename Self> + struct PacketLoader<LoadMode, Self, true> { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + static PacketReturnType Run(const Self& self, Index index) { + if (self.m_is_identity) { + return self.m_impl.template packet<LoadMode>(index); + } else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = self.coeff(index + i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + }; + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + PacketSize - 1 < dimensions().TotalSize()); + return PacketLoader<LoadMode, Self, TensorEvaluator<ArgType, Device>::PacketAccess>::Run(*this, index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + internal::TensorBlockResourceRequirements getResourceRequirements() const { + static const int inner_dim = + Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1; + + const size_t target_size = m_device.firstLevelCacheSize(); + const bool inner_dim_shuffled = m_shuffle[inner_dim] != inner_dim; + + // Shuffled inner dimensions leads to a random memory access, which is not + // captured by default cost model bytes loaded/stored. We add this cost + // explicitly. The number of cycles picked based on the benchmarks. + // TODO(ezhulenev): This number was picked based on a very questionable + // benchmarks, add benchmarks that are representative of real workloads. + using BlockRequirements = internal::TensorBlockResourceRequirements; + if (inner_dim_shuffled) { + return BlockRequirements::uniform<Scalar>(target_size) + .addCostPerCoeff({0, 0, NumDims * 28}); + } else { + return BlockRequirements::skewed<Scalar>(target_size); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock + block(TensorBlockDesc& desc, TensorBlockScratch& scratch, + bool root_of_expr_ast = false) const { + assert(m_impl.data() != NULL); + + typedef internal::TensorBlockIO<ScalarNoConst, Index, NumDims, Layout> + TensorBlockIO; + typedef typename TensorBlockIO::Dst TensorBlockIODst; + typedef typename TensorBlockIO::Src TensorBlockIOSrc; + + const typename TensorBlock::Storage block_storage = + TensorBlock::prepareStorage( + desc, scratch, /*allow_strided_storage=*/root_of_expr_ast); + + typename TensorBlockIO::Dimensions input_strides(m_unshuffledInputStrides); + TensorBlockIOSrc src(input_strides, m_impl.data(), srcCoeff(desc.offset())); + + TensorBlockIODst dst(block_storage.dimensions(), block_storage.strides(), + block_storage.data()); + + typename TensorBlockIO::DimensionsMap dst_to_src_dim_map(m_shuffle); + TensorBlockIO::Copy(dst, src, dst_to_src_dim_map); + + return block_storage.AsTensorMaterializedBlock(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + const double compute_cost = m_is_identity ? TensorOpCost::AddCost<Index>() : + NumDims * (2 * TensorOpCost::AddCost<Index>() + + 2 * TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>()); + return m_impl.costPerCoeff(vectorized) + + TensorOpCost(0, 0, compute_cost, m_is_identity /* vectorized */, PacketSize); + } + + EIGEN_DEVICE_FUNC typename Storage::Type data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index GetBlockOutputIndex( + Index input_index, + const DSizes<Index, NumDims>& input_block_strides, + const DSizes<Index, NumDims>& output_block_strides, + const DSizes<internal::TensorIntDivisor<Index>, NumDims>& fast_input_block_strides) const { + Index output_index = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = input_index / fast_input_block_strides[i]; + output_index += idx * output_block_strides[m_inverseShuffle[i]]; + input_index -= idx * input_block_strides[i]; + } + return output_index + input_index * + output_block_strides[m_inverseShuffle[0]]; + } else { + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = input_index / fast_input_block_strides[i]; + output_index += idx * output_block_strides[m_inverseShuffle[i]]; + input_index -= idx * input_block_strides[i]; + } + return output_index + input_index * + output_block_strides[m_inverseShuffle[NumDims - 1]]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += idx * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + return inputIndex + index * m_inputStrides[0]; + } else { + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_fastOutputStrides[i]; + inputIndex += idx * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + return inputIndex + index * m_inputStrides[NumDims - 1]; + } + } + + Dimensions m_dimensions; + bool m_is_identity; + array<int, NumDims> m_shuffle; + array<Index, NumDims> m_inverseShuffle; // TODO(ezhulenev): Make it int type. + array<Index, NumDims> m_outputStrides; + array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides; + array<Index, NumDims> m_inputStrides; + array<Index, NumDims> m_unshuffledInputStrides; + + const Device EIGEN_DEVICE_REF m_device; + TensorEvaluator<ArgType, Device> m_impl; +}; + + +// Eval as lvalue +template<typename Shuffle, typename ArgType, typename Device> +struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device> + : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> +{ + typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base; + + typedef TensorShufflingOp<Shuffle, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + enum { + IsAligned = false, + PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), + BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess, + PreferBlockAccess = true, + Layout = TensorEvaluator<ArgType, Device>::Layout, + RawAccess = false + }; + + typedef typename internal::remove_const<Scalar>::type ScalarNoConst; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) + { + return this->m_impl.coeffRef(this->srcCoeff(index)); + } + + template <int StoreMode> EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + internal::pstore<CoeffReturnType, PacketReturnType>(values, x); + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + this->coeffRef(index+i) = values[i]; + } + } + + template <typename TensorBlock> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( + const TensorBlockDesc& desc, const TensorBlock& block) { + eigen_assert(this->m_impl.data() != NULL); + + typedef internal::TensorBlockIO<ScalarNoConst, Index, NumDims, Layout> + TensorBlockIO; + typedef typename TensorBlockIO::Dst TensorBlockIODst; + typedef typename TensorBlockIO::Src TensorBlockIOSrc; + + const Scalar* block_buffer = block.data(); + + // TODO(ezhulenev): TensorBlockIO should be able to read from any Eigen + // expression with coefficient and packet access as `src`. + void* mem = NULL; + if (block_buffer == NULL) { + mem = this->m_device.allocate(desc.size() * sizeof(Scalar)); + ScalarNoConst* buf = static_cast<ScalarNoConst*>(mem); + + typedef internal::TensorBlockAssignment< + ScalarNoConst, NumDims, typename TensorBlock::XprType, Index> + TensorBlockAssignment; + + TensorBlockAssignment::Run( + TensorBlockAssignment::target( + desc.dimensions(), internal::strides<Layout>(desc.dimensions()), + buf), + block.expr()); + + block_buffer = buf; + } + + // Read from block. + TensorBlockIOSrc src(internal::strides<Layout>(desc.dimensions()), + block_buffer); + + // Write to the output buffer. + typename TensorBlockIO::Dimensions output_strides( + this->m_unshuffledInputStrides); + typename TensorBlockIO::Dimensions output_dimensions; + for (int i = 0; i < NumDims; ++i) { + output_dimensions[this->m_shuffle[i]] = desc.dimension(i); + } + TensorBlockIODst dst(output_dimensions, output_strides, this->m_impl.data(), + this->srcCoeff(desc.offset())); + + // Reorder dimensions according to the shuffle. + typename TensorBlockIO::DimensionsMap dst_to_src_dim_map; + for (int i = 0; i < NumDims; ++i) { + dst_to_src_dim_map[i] = static_cast<int>(this->m_inverseShuffle[i]); + } + TensorBlockIO::Copy(dst, src, dst_to_src_dim_map); + + // Deallocate temporary buffer used for the block materialization. + if (mem != NULL) this->m_device.deallocate(mem); + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorStorage.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorStorage.h new file mode 100644 index 0000000..5ff0880 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorStorage.h @@ -0,0 +1,161 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSORSTORAGE_H +#define EIGEN_CXX11_TENSOR_TENSORSTORAGE_H + +#ifdef EIGEN_TENSOR_STORAGE_CTOR_PLUGIN + #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN EIGEN_TENSOR_STORAGE_CTOR_PLUGIN; +#else + #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN +#endif + +namespace Eigen { + +/** \internal + * + * \class TensorStorage + * \ingroup CXX11_Tensor_Module + * + * \brief Stores the data of a tensor + * + * This class stores the data of fixed-size, dynamic-size or mixed tensors + * in a way as compact as possible. + * + * \sa Tensor + */ +template<typename T, typename Dimensions, int Options> class TensorStorage; + + +// Pure fixed-size storage +template<typename T, typename FixedDimensions, int Options_> +class TensorStorage +{ + private: + static const std::size_t Size = FixedDimensions::total_size; + + // Allocate an array of size at least one to prevent compiler warnings. + static const std::size_t MinSize = max_n_1<Size>::size; + EIGEN_ALIGN_MAX T m_data[MinSize]; + + public: + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE TensorStorage() { + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T *data() { return m_data; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T *data() const { return m_data; } + + static EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const FixedDimensions& dimensions() + { + static const FixedDimensions* singleton_dimensions = new FixedDimensions(); + return *singleton_dimensions; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE DenseIndex size() const { return Size; } +}; + +// pure dynamic +template<typename T, typename IndexType, int NumIndices_, int Options_> +class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> +{ + public: + typedef IndexType Index; + typedef DSizes<IndexType, NumIndices_> Dimensions; + typedef TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> Self; + + EIGEN_DEVICE_FUNC TensorStorage() : m_data(0), m_dimensions() { + if (NumIndices_ == 0) { + m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1); + } + } + EIGEN_DEVICE_FUNC TensorStorage(internal::constructor_without_unaligned_array_assert) + : m_data(0), m_dimensions(internal::template repeat<NumIndices_, Index>(0)) {} + EIGEN_DEVICE_FUNC TensorStorage(Index size, const array<Index, NumIndices_>& dimensions) + : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_dimensions(dimensions) + { EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + template <typename... DenseIndex> + EIGEN_DEVICE_FUNC TensorStorage(DenseIndex... indices) : m_dimensions(indices...) { + m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(m_dimensions)); + } +#endif + + EIGEN_DEVICE_FUNC TensorStorage(const Self& other) + : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(other.m_dimensions))) + , m_dimensions(other.m_dimensions) + { + internal::smart_copy(other.m_data, other.m_data+internal::array_prod(other.m_dimensions), m_data); + } + EIGEN_DEVICE_FUNC Self& operator=(const Self& other) + { + if (this != &other) { + Self tmp(other); + this->swap(tmp); + } + return *this; + } + +#if EIGEN_HAS_RVALUE_REFERENCES + EIGEN_DEVICE_FUNC TensorStorage(Self&& other) : TensorStorage() + { + *this = std::move(other); + } + + EIGEN_DEVICE_FUNC Self& operator=(Self&& other) + { + numext::swap(m_data, other.m_data); + numext::swap(m_dimensions, other.m_dimensions); + return *this; + } +#endif + + EIGEN_DEVICE_FUNC ~TensorStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, internal::array_prod(m_dimensions)); } + EIGEN_DEVICE_FUNC void swap(Self& other) + { numext::swap(m_data,other.m_data); numext::swap(m_dimensions,other.m_dimensions); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {return m_dimensions;} + + EIGEN_DEVICE_FUNC void resize(Index size, const array<Index, NumIndices_>& nbDimensions) + { + const Index currentSz = internal::array_prod(m_dimensions); + if(size != currentSz) + { + internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, currentSz); + if (size) + m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size); + else if (NumIndices_ == 0) { + m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1); + } + else + m_data = 0; + EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) + } + m_dimensions = nbDimensions; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T *data() { return m_data; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T *data() const { return m_data; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } + + private: + T *m_data; + Dimensions m_dimensions; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSORSTORAGE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorStriding.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorStriding.h new file mode 100644 index 0000000..2f62a66 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorStriding.h @@ -0,0 +1,346 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H +#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H + +namespace Eigen { + +/** \class TensorStriding + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor striding class. + * + * + */ +namespace internal { +template<typename Strides, typename XprType> +struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; +}; + +template<typename Strides, typename XprType> +struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense> +{ + typedef const TensorStridingOp<Strides, XprType>EIGEN_DEVICE_REF type; +}; + +template<typename Strides, typename XprType> +struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type> +{ + typedef TensorStridingOp<Strides, XprType> type; +}; + +} // end namespace internal + + + +template<typename Strides, typename XprType> +class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> > +{ + public: + typedef TensorBase<TensorStridingOp<Strides, XprType> > Base; + typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested; + typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims) + : m_xpr(expr), m_dims(dims) {} + + EIGEN_DEVICE_FUNC + const Strides& strides() const { return m_dims; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingOp) + + protected: + typename XprType::Nested m_xpr; + const Strides m_dims; +}; + + +// Eval as rvalue +template<typename Strides, typename ArgType, typename Device> +struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> +{ + typedef TensorStridingOp<Strides, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device) + { + m_dimensions = m_impl.dimensions(); + for (int i = 0; i < NumDims; ++i) { + m_dimensions[i] =Eigen::numext::ceil(static_cast<float>(m_dimensions[i]) / op.strides()[i]); + } + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_outputStrides[0] = 1; + m_inputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; + m_inputStrides[i-1] *= op.strides()[i-1]; + } + m_inputStrides[NumDims-1] *= op.strides()[NumDims-1]; + } else { // RowMajor + m_outputStrides[NumDims-1] = 1; + m_inputStrides[NumDims-1] = 1; + for (int i = NumDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; + m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; + m_inputStrides[i+1] *= op.strides()[i+1]; + } + m_inputStrides[0] *= op.strides()[0]; + } + } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType/*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + return m_impl.coeff(srcCoeff(index)); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + Index inputIndices[] = {0, 0}; + Index indices[] = {index, index + PacketSize - 1}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx0 = indices[0] / m_outputStrides[i]; + const Index idx1 = indices[1] / m_outputStrides[i]; + inputIndices[0] += idx0 * m_inputStrides[i]; + inputIndices[1] += idx1 * m_inputStrides[i]; + indices[0] -= idx0 * m_outputStrides[i]; + indices[1] -= idx1 * m_outputStrides[i]; + } + inputIndices[0] += indices[0] * m_inputStrides[0]; + inputIndices[1] += indices[1] * m_inputStrides[0]; + } else { // RowMajor + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx0 = indices[0] / m_outputStrides[i]; + const Index idx1 = indices[1] / m_outputStrides[i]; + inputIndices[0] += idx0 * m_inputStrides[i]; + inputIndices[1] += idx1 * m_inputStrides[i]; + indices[0] -= idx0 * m_outputStrides[i]; + indices[1] -= idx1 * m_outputStrides[i]; + } + inputIndices[0] += indices[0] * m_inputStrides[NumDims-1]; + inputIndices[1] += indices[1] * m_inputStrides[NumDims-1]; + } + if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { + PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); + return rslt; + } + else { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + values[0] = m_impl.coeff(inputIndices[0]); + values[PacketSize-1] = m_impl.coeff(inputIndices[1]); + EIGEN_UNROLL_LOOP + for (int i = 1; i < PacketSize-1; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { + double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() + + TensorOpCost::MulCost<Index>() + + TensorOpCost::DivCost<Index>()) + + TensorOpCost::MulCost<Index>(); + if (vectorized) { + compute_cost *= 2; // packet() computes two indices + } + const int innerDim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : (NumDims - 1); + return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) + + // Computation is not vectorized per se, but it is done once per packet. + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC typename Storage::Type data() const { return NULL; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const + { + Index inputIndex = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + inputIndex += idx * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + inputIndex += index * m_inputStrides[0]; + } else { // RowMajor + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + inputIndex += idx * m_inputStrides[i]; + index -= idx * m_outputStrides[i]; + } + inputIndex += index * m_inputStrides[NumDims-1]; + } + return inputIndex; + } + + Dimensions m_dimensions; + array<Index, NumDims> m_outputStrides; + array<Index, NumDims> m_inputStrides; + TensorEvaluator<ArgType, Device> m_impl; +}; + +// Eval as lvalue +template<typename Strides, typename ArgType, typename Device> +struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device> + : public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> +{ + typedef TensorStridingOp<Strides, ArgType> XprType; + typedef TensorEvaluator<const XprType, Device> Base; + // typedef typename XprType::Index Index; + static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + // typedef DSizes<Index, NumDims> Dimensions; + + enum { + IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + PreferBlockAccess = false, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, // to be implemented + RawAccess = false + }; + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : Base(op, device) { } + + typedef typename XprType::Index Index; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) + { + return this->m_impl.coeffRef(this->srcCoeff(index)); + } + + template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketReturnType& x) + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize()); + + Index inputIndices[] = {0, 0}; + Index indices[] = {index, index + PacketSize - 1}; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + EIGEN_UNROLL_LOOP + for (int i = NumDims - 1; i > 0; --i) { + const Index idx0 = indices[0] / this->m_outputStrides[i]; + const Index idx1 = indices[1] / this->m_outputStrides[i]; + inputIndices[0] += idx0 * this->m_inputStrides[i]; + inputIndices[1] += idx1 * this->m_inputStrides[i]; + indices[0] -= idx0 * this->m_outputStrides[i]; + indices[1] -= idx1 * this->m_outputStrides[i]; + } + inputIndices[0] += indices[0] * this->m_inputStrides[0]; + inputIndices[1] += indices[1] * this->m_inputStrides[0]; + } else { // RowMajor + EIGEN_UNROLL_LOOP + for (int i = 0; i < NumDims - 1; ++i) { + const Index idx0 = indices[0] / this->m_outputStrides[i]; + const Index idx1 = indices[1] / this->m_outputStrides[i]; + inputIndices[0] += idx0 * this->m_inputStrides[i]; + inputIndices[1] += idx1 * this->m_inputStrides[i]; + indices[0] -= idx0 * this->m_outputStrides[i]; + indices[1] -= idx1 * this->m_outputStrides[i]; + } + inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1]; + inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1]; + } + if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { + this->m_impl.template writePacket<Unaligned>(inputIndices[0], x); + } + else { + EIGEN_ALIGN_MAX Scalar values[PacketSize]; + internal::pstore<Scalar, PacketReturnType>(values, x); + this->m_impl.coeffRef(inputIndices[0]) = values[0]; + this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize-1]; + EIGEN_UNROLL_LOOP + for (int i = 1; i < PacketSize-1; ++i) { + this->coeffRef(index+i) = values[i]; + } + } + } +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorTrace.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorTrace.h new file mode 100644 index 0000000..926ecdd --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorTrace.h @@ -0,0 +1,303 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gagan Goel <gagan.nith@gmail.com> +// Copyright (C) 2017 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRACE_H +#define EIGEN_CXX11_TENSOR_TENSOR_TRACE_H + +namespace Eigen { + +/** \class TensorTrace + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor Trace class. + * + * + */ + +namespace internal { +template<typename Dims, typename XprType> +struct traits<TensorTraceOp<Dims, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; + static const int Layout = XprTraits::Layout; +}; + +template<typename Dims, typename XprType> +struct eval<TensorTraceOp<Dims, XprType>, Eigen::Dense> +{ + typedef const TensorTraceOp<Dims, XprType>& type; +}; + +template<typename Dims, typename XprType> +struct nested<TensorTraceOp<Dims, XprType>, 1, typename eval<TensorTraceOp<Dims, XprType> >::type> +{ + typedef TensorTraceOp<Dims, XprType> type; +}; + +} // end namespace internal + + +template<typename Dims, typename XprType> +class TensorTraceOp : public TensorBase<TensorTraceOp<Dims, XprType> > +{ + public: + typedef typename Eigen::internal::traits<TensorTraceOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorTraceOp>::type Nested; + typedef typename Eigen::internal::traits<TensorTraceOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorTraceOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTraceOp(const XprType& expr, const Dims& dims) + : m_xpr(expr), m_dims(dims) { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dims& dims() const { return m_dims; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const Dims m_dims; +}; + + +// Eval as rvalue +template<typename Dims, typename ArgType, typename Device> +struct TensorEvaluator<const TensorTraceOp<Dims, ArgType>, Device> +{ + typedef TensorTraceOp<Dims, ArgType> XprType; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumReducedDims = internal::array_size<Dims>::value; + static const int NumOutputDims = NumInputDims - NumReducedDims; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumOutputDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_traceDim(1), m_device(device) + { + + EIGEN_STATIC_ASSERT((NumOutputDims >= 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((NumReducedDims >= 2) || ((NumReducedDims == 0) && (NumInputDims == 0)), YOU_MADE_A_PROGRAMMING_MISTAKE); + + for (int i = 0; i < NumInputDims; ++i) { + m_reduced[i] = false; + } + + const Dims& op_dims = op.dims(); + for (int i = 0; i < NumReducedDims; ++i) { + eigen_assert(op_dims[i] >= 0); + eigen_assert(op_dims[i] < NumInputDims); + m_reduced[op_dims[i]] = true; + } + + // All the dimensions should be distinct to compute the trace + int num_distinct_reduce_dims = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (m_reduced[i]) { + ++num_distinct_reduce_dims; + } + } + + eigen_assert(num_distinct_reduce_dims == NumReducedDims); + + // Compute the dimensions of the result. + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + + int output_index = 0; + int reduced_index = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (m_reduced[i]) { + m_reducedDims[reduced_index] = input_dims[i]; + if (reduced_index > 0) { + // All the trace dimensions must have the same size + eigen_assert(m_reducedDims[0] == m_reducedDims[reduced_index]); + } + ++reduced_index; + } + else { + m_dimensions[output_index] = input_dims[i]; + ++output_index; + } + } + + if (NumReducedDims != 0) { + m_traceDim = m_reducedDims[0]; + } + + // Compute the output strides + if (NumOutputDims > 0) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_outputStrides[0] = 1; + for (int i = 1; i < NumOutputDims; ++i) { + m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; + } + } + else { + m_outputStrides.back() = 1; + for (int i = NumOutputDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; + } + } + } + + // Compute the input strides + if (NumInputDims > 0) { + array<Index, NumInputDims> input_strides; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + input_strides[0] = 1; + for (int i = 1; i < NumInputDims; ++i) { + input_strides[i] = input_strides[i - 1] * input_dims[i - 1]; + } + } + else { + input_strides.back() = 1; + for (int i = NumInputDims - 2; i >= 0; --i) { + input_strides[i] = input_strides[i + 1] * input_dims[i + 1]; + } + } + + output_index = 0; + reduced_index = 0; + for (int i = 0; i < NumInputDims; ++i) { + if(m_reduced[i]) { + m_reducedStrides[reduced_index] = input_strides[i]; + ++reduced_index; + } + else { + m_preservedStrides[output_index] = input_strides[i]; + ++output_index; + } + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_dimensions; + } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Initialize the result + CoeffReturnType result = internal::cast<int, CoeffReturnType>(0); + Index index_stride = 0; + for (int i = 0; i < NumReducedDims; ++i) { + index_stride += m_reducedStrides[i]; + } + + // If trace is requested along all dimensions, starting index would be 0 + Index cur_index = 0; + if (NumOutputDims != 0) + cur_index = firstInput(index); + for (Index i = 0; i < m_traceDim; ++i) { + result += m_impl.coeff(cur_index); + cur_index += index_stride; + } + + return result; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { + + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(index + PacketSize - 1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index + i); + } + PacketReturnType result = internal::ploadt<PacketReturnType, LoadMode>(values); + return result; + } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + + protected: + // Given the output index, finds the first index in the input tensor used to compute the trace + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { + Index startInput = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumOutputDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + startInput += index * m_preservedStrides[0]; + } + else { + for (int i = 0; i < NumOutputDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + startInput += index * m_preservedStrides[NumOutputDims - 1]; + } + return startInput; + } + + Dimensions m_dimensions; + TensorEvaluator<ArgType, Device> m_impl; + // Initialize the size of the trace dimension + Index m_traceDim; + const Device EIGEN_DEVICE_REF m_device; + array<bool, NumInputDims> m_reduced; + array<Index, NumReducedDims> m_reducedDims; + array<Index, NumOutputDims> m_outputStrides; + array<Index, NumReducedDims> m_reducedStrides; + array<Index, NumOutputDims> m_preservedStrides; +}; + + +} // End namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_TRACE_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorTraits.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorTraits.h new file mode 100644 index 0000000..4f7fd34 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorTraits.h @@ -0,0 +1,264 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H +#define EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H + +namespace Eigen { +namespace internal { + + +template<typename Scalar, int Options> +class compute_tensor_flags +{ + enum { + is_dynamic_size_storage = 1, + + is_aligned = + ( + ((Options&DontAlign)==0) && ( +#if EIGEN_MAX_STATIC_ALIGN_BYTES>0 + (!is_dynamic_size_storage) +#else + 0 +#endif + | +#if EIGEN_MAX_ALIGN_BYTES>0 + is_dynamic_size_storage +#else + 0 +#endif + ) + ), + packet_access_bit = packet_traits<Scalar>::Vectorizable && is_aligned ? PacketAccessBit : 0 + }; + + public: + enum { ret = packet_access_bit }; +}; + + +template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_> +struct traits<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > +{ + typedef Scalar_ Scalar; + typedef Dense StorageKind; + typedef IndexType_ Index; + static const int NumDimensions = NumIndices_; + static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor; + enum { + Options = Options_, + Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit) + }; + template <typename T> struct MakePointer { + typedef T* Type; + }; + typedef typename MakePointer<Scalar>::Type PointerType; +}; + + +template<typename Scalar_, typename Dimensions, int Options_, typename IndexType_> +struct traits<TensorFixedSize<Scalar_, Dimensions, Options_, IndexType_> > +{ + typedef Scalar_ Scalar; + typedef Dense StorageKind; + typedef IndexType_ Index; + static const int NumDimensions = array_size<Dimensions>::value; + static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor; + enum { + Options = Options_, + Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0: LvalueBit) + }; + template <typename T> struct MakePointer { + typedef T* Type; + }; + typedef typename MakePointer<Scalar>::Type PointerType; +}; + + +template<typename PlainObjectType, int Options_, template <class> class MakePointer_> +struct traits<TensorMap<PlainObjectType, Options_, MakePointer_> > + : public traits<PlainObjectType> +{ + typedef traits<PlainObjectType> BaseTraits; + typedef typename BaseTraits::Scalar Scalar; + typedef typename BaseTraits::StorageKind StorageKind; + typedef typename BaseTraits::Index Index; + static const int NumDimensions = BaseTraits::NumDimensions; + static const int Layout = BaseTraits::Layout; + enum { + Options = Options_, + Flags = BaseTraits::Flags + }; + template <class T> struct MakePointer { + // Intermediate typedef to workaround MSVC issue. + typedef MakePointer_<T> MakePointerT; + typedef typename MakePointerT::Type Type; + }; + typedef typename MakePointer<Scalar>::Type PointerType; +}; + +template<typename PlainObjectType> +struct traits<TensorRef<PlainObjectType> > + : public traits<PlainObjectType> +{ + typedef traits<PlainObjectType> BaseTraits; + typedef typename BaseTraits::Scalar Scalar; + typedef typename BaseTraits::StorageKind StorageKind; + typedef typename BaseTraits::Index Index; + static const int NumDimensions = BaseTraits::NumDimensions; + static const int Layout = BaseTraits::Layout; + enum { + Options = BaseTraits::Options, + Flags = BaseTraits::Flags + }; + typedef typename BaseTraits::PointerType PointerType; +}; + + +template<typename _Scalar, int NumIndices_, int Options, typename IndexType_> +struct eval<Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense> +{ + typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + +template<typename _Scalar, int NumIndices_, int Options, typename IndexType_> +struct eval<const Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense> +{ + typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + +template<typename Scalar_, typename Dimensions, int Options, typename IndexType_> +struct eval<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> +{ + typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + +template<typename Scalar_, typename Dimensions, int Options, typename IndexType_> +struct eval<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense> +{ + typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + +template<typename PlainObjectType, int Options, template <class> class MakePointer> +struct eval<TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> +{ + typedef const TensorMap<PlainObjectType, Options, MakePointer>EIGEN_DEVICE_REF type; +}; + +template<typename PlainObjectType, int Options, template <class> class MakePointer> +struct eval<const TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense> +{ + typedef const TensorMap<PlainObjectType, Options, MakePointer>EIGEN_DEVICE_REF type; +}; + +template<typename PlainObjectType> +struct eval<TensorRef<PlainObjectType>, Eigen::Dense> +{ + typedef const TensorRef<PlainObjectType>EIGEN_DEVICE_REF type; +}; + +template<typename PlainObjectType> +struct eval<const TensorRef<PlainObjectType>, Eigen::Dense> +{ + typedef const TensorRef<PlainObjectType>EIGEN_DEVICE_REF type; +}; + +// TODO nested<> does not exist anymore in Eigen/Core, and it thus has to be removed in favor of ref_selector. +template<typename T, int n=1, typename PlainObject = void> struct nested +{ + typedef typename ref_selector<T>::type type; +}; + +template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_> +struct nested<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > +{ + typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>EIGEN_DEVICE_REF type; +}; + +template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_> +struct nested<const Tensor<Scalar_, NumIndices_, Options_, IndexType_> > +{ + typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>EIGEN_DEVICE_REF type; +}; + +template <typename Scalar_, typename Dimensions, int Options, typename IndexType_> +struct nested<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > +{ + typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + +template <typename Scalar_, typename Dimensions, int Options, typename IndexType_> +struct nested<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> > +{ + typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>EIGEN_DEVICE_REF type; +}; + + +template <typename PlainObjectType> +struct nested<TensorRef<PlainObjectType> > +{ + typedef const TensorRef<PlainObjectType>EIGEN_DEVICE_REF type; +}; + +template <typename PlainObjectType> +struct nested<const TensorRef<PlainObjectType> > +{ + typedef const TensorRef<PlainObjectType>EIGEN_DEVICE_REF type; +}; + +} // end namespace internal + +// Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C, +// R, B), and convolve it with a set of filters, which can also be presented as +// a tensor (D, K, K, M), where M is the number of filters, K is the filter +// size, and each 3-dimensional tensor of size (D, K, K) is a filter. For +// simplicity we assume that we always use square filters (which is usually the +// case in images), hence the two Ks in the tensor dimension. It also takes in +// a few additional parameters: +// Stride (S): The convolution stride is the offset between locations where we +// apply the filters. A larger stride means that the output will be +// spatially smaller. +// Padding (P): The padding we apply to the input tensor along the R and C +// dimensions. This is usually used to make sure that the spatial +// dimensions of the output matches our intention. +// +// Two types of padding are often used: +// SAME: The pad value is computed so that the output will have size +// R/S and C/S. +// VALID: no padding is carried out. +// When we do padding, the padded values at the padded locations are usually +// zero. +// +// The output dimensions for convolution, when given all the parameters above, +// are as follows: +// When Padding = SAME: the output size is (B, R', C', M), where +// R' = ceil(float(R) / float(S)) +// C' = ceil(float(C) / float(S)) +// where ceil is the ceiling function. The input tensor is padded with 0 as +// needed. The number of padded rows and columns are computed as: +// Pr = ((R' - 1) * S + K - R) / 2 +// Pc = ((C' - 1) * S + K - C) / 2 +// when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2. +// This is where SAME comes from - the output has the same size as the input has. +// When Padding = VALID: the output size is computed as +// R' = ceil(float(R - K + 1) / float(S)) +// C' = ceil(float(C - K + 1) / float(S)) +// and the number of padded rows and columns are computed in the same way as in +// the SAME case. +// When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0, +// Pc=0. +typedef enum { + PADDING_VALID = 1, + PADDING_SAME = 2 +} PaddingType; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorUInt128.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorUInt128.h new file mode 100644 index 0000000..d23f2e4 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorUInt128.h @@ -0,0 +1,249 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_UINT128_H +#define EIGEN_CXX11_TENSOR_TENSOR_UINT128_H + +namespace Eigen { +namespace internal { + + +template <uint64_t n> +struct static_val { + static const uint64_t value = n; + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator uint64_t() const { return n; } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val() { } + + template <typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val(const T& v) { + EIGEN_UNUSED_VARIABLE(v); + eigen_assert(v == n); + } +}; + + +template <typename HIGH = uint64_t, typename LOW = uint64_t> +struct TensorUInt128 +{ + HIGH high; + LOW low; + + template<typename OTHER_HIGH, typename OTHER_LOW> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + TensorUInt128(const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) : high(other.high), low(other.low) { + EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE); + } + + template<typename OTHER_HIGH, typename OTHER_LOW> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + TensorUInt128& operator = (const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) { + EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE); + high = other.high; + low = other.low; + return *this; + } + + template<typename T> + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + explicit TensorUInt128(const T& x) : high(0), low(x) { + eigen_assert((static_cast<typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type>(x) <= NumTraits<uint64_t>::highest())); + eigen_assert(x >= 0); + } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + TensorUInt128(HIGH y, LOW x) : high(y), low(x) { } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator LOW() const { + return low; + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LOW lower() const { + return low; + } + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HIGH upper() const { + return high; + } +}; + + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool operator == (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + return (lhs.high == rhs.high) & (lhs.low == rhs.low); +} + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool operator != (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + return (lhs.high != rhs.high) | (lhs.low != rhs.low); +} + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool operator >= (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + if (lhs.high != rhs.high) { + return lhs.high > rhs.high; + } + return lhs.low >= rhs.low; +} + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +bool operator < (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + if (lhs.high != rhs.high) { + return lhs.high < rhs.high; + } + return lhs.low < rhs.low; +} + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +TensorUInt128<uint64_t, uint64_t> operator + (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + TensorUInt128<uint64_t, uint64_t> result(lhs.high + rhs.high, lhs.low + rhs.low); + if (result.low < rhs.low) { + result.high += 1; + } + return result; +} + +template <typename HL, typename LL, typename HR, typename LR> +EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE +TensorUInt128<uint64_t, uint64_t> operator - (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + TensorUInt128<uint64_t, uint64_t> result(lhs.high - rhs.high, lhs.low - rhs.low); + if (result.low > lhs.low) { + result.high -= 1; + } + return result; +} + + +template <typename HL, typename LL, typename HR, typename LR> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + // Split each 128-bit integer into 4 32-bit integers, and then do the + // multiplications by hand as follow: + // lhs a b c d + // rhs e f g h + // ----------- + // ah bh ch dh + // bg cg dg + // cf df + // de + // The result is stored in 2 64bit integers, high and low. + + const uint64_t LOW = 0x00000000FFFFFFFFLL; + const uint64_t HIGH = 0xFFFFFFFF00000000LL; + + uint64_t d = lhs.low & LOW; + uint64_t c = (lhs.low & HIGH) >> 32LL; + uint64_t b = lhs.high & LOW; + uint64_t a = (lhs.high & HIGH) >> 32LL; + + uint64_t h = rhs.low & LOW; + uint64_t g = (rhs.low & HIGH) >> 32LL; + uint64_t f = rhs.high & LOW; + uint64_t e = (rhs.high & HIGH) >> 32LL; + + // Compute the low 32 bits of low + uint64_t acc = d * h; + uint64_t low = acc & LOW; + // Compute the high 32 bits of low. Add a carry every time we wrap around + acc >>= 32LL; + uint64_t carry = 0; + uint64_t acc2 = acc + c * h; + if (acc2 < acc) { + carry++; + } + acc = acc2 + d * g; + if (acc < acc2) { + carry++; + } + low |= (acc << 32LL); + + // Carry forward the high bits of acc to initiate the computation of the + // low 32 bits of high + acc2 = (acc >> 32LL) | (carry << 32LL); + carry = 0; + + acc = acc2 + b * h; + if (acc < acc2) { + carry++; + } + acc2 = acc + c * g; + if (acc2 < acc) { + carry++; + } + acc = acc2 + d * f; + if (acc < acc2) { + carry++; + } + uint64_t high = acc & LOW; + + // Start to compute the high 32 bits of high. + acc2 = (acc >> 32LL) | (carry << 32LL); + + acc = acc2 + a * h; + acc2 = acc + b * g; + acc = acc2 + c * f; + acc2 = acc + d * e; + high |= (acc2 << 32LL); + + return TensorUInt128<uint64_t, uint64_t>(high, low); +} + +template <typename HL, typename LL, typename HR, typename LR> +static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +TensorUInt128<uint64_t, uint64_t> operator / (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs) +{ + if (rhs == TensorUInt128<static_val<0>, static_val<1> >(1)) { + return TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low); + } else if (lhs < rhs) { + return TensorUInt128<uint64_t, uint64_t>(0); + } else { + // calculate the biggest power of 2 times rhs that's less than or equal to lhs + TensorUInt128<uint64_t, uint64_t> power2(1); + TensorUInt128<uint64_t, uint64_t> d(rhs); + TensorUInt128<uint64_t, uint64_t> tmp(lhs - d); + while (lhs >= d) { + tmp = tmp - d; + d = d + d; + power2 = power2 + power2; + } + + tmp = TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low); + TensorUInt128<uint64_t, uint64_t> result(0); + while (power2 != TensorUInt128<static_val<0>, static_val<0> >(0)) { + if (tmp >= d) { + tmp = tmp - d; + result = result + power2; + } + // Shift right + power2 = TensorUInt128<uint64_t, uint64_t>(power2.high >> 1, (power2.low >> 1) | (power2.high << 63)); + d = TensorUInt128<uint64_t, uint64_t>(d.high >> 1, (d.low >> 1) | (d.high << 63)); + } + + return result; + } +} + + +} // namespace internal +} // namespace Eigen + + +#endif // EIGEN_CXX11_TENSOR_TENSOR_UINT128_H diff --git a/src/EigenUnsupported/CXX11/src/Tensor/TensorVolumePatch.h b/src/EigenUnsupported/CXX11/src/Tensor/TensorVolumePatch.h new file mode 100644 index 0000000..0beb9ff --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/Tensor/TensorVolumePatch.h @@ -0,0 +1,629 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H +#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H + +namespace Eigen { + +/** \class TensorVolumePatch + * \ingroup CXX11_Tensor_Module + * + * \brief Patch extraction specialized for processing of volumetric data. + * This assumes that the input has a least 4 dimensions ordered as follows: + * - channels + * - planes + * - rows + * - columns + * - (optional) additional dimensions such as time or batch size. + * Calling the volume patch code with patch_planes, patch_rows, and patch_cols + * is equivalent to calling the regular patch extraction code with parameters + * d, patch_planes, patch_rows, patch_cols, and 1 for all the additional + * dimensions. + */ +namespace internal { + +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> +struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType> +{ + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions + 1; + static const int Layout = XprTraits::Layout; + typedef typename XprTraits::PointerType PointerType; + +}; + +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> +struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense> +{ + typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type; +}; + +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> +struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type> +{ + typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type; +}; + +} // end namespace internal + +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> +class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors> +{ + public: + typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested; + typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, + DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, + DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, + DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, + PaddingType padding_type, Scalar padding_value) + : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols), + m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides), + m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), + m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), + m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0), + m_padding_type(padding_type), m_padding_value(padding_value) {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols, + DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, + DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, + DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, + DenseIndex padding_top_z, DenseIndex padding_bottom_z, + DenseIndex padding_top, DenseIndex padding_bottom, + DenseIndex padding_left, DenseIndex padding_right, + Scalar padding_value) + : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols), + m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides), + m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), + m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), + m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom), + m_padding_left(padding_left), m_padding_right(padding_right), + m_padding_type(PADDING_VALID), m_padding_value(padding_value) {} + + EIGEN_DEVICE_FUNC + DenseIndex patch_planes() const { return m_patch_planes; } + EIGEN_DEVICE_FUNC + DenseIndex patch_rows() const { return m_patch_rows; } + EIGEN_DEVICE_FUNC + DenseIndex patch_cols() const { return m_patch_cols; } + EIGEN_DEVICE_FUNC + DenseIndex plane_strides() const { return m_plane_strides; } + EIGEN_DEVICE_FUNC + DenseIndex row_strides() const { return m_row_strides; } + EIGEN_DEVICE_FUNC + DenseIndex col_strides() const { return m_col_strides; } + EIGEN_DEVICE_FUNC + DenseIndex in_plane_strides() const { return m_in_plane_strides; } + EIGEN_DEVICE_FUNC + DenseIndex in_row_strides() const { return m_in_row_strides; } + EIGEN_DEVICE_FUNC + DenseIndex in_col_strides() const { return m_in_col_strides; } + EIGEN_DEVICE_FUNC + DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; } + EIGEN_DEVICE_FUNC + DenseIndex row_inflate_strides() const { return m_row_inflate_strides; } + EIGEN_DEVICE_FUNC + DenseIndex col_inflate_strides() const { return m_col_inflate_strides; } + EIGEN_DEVICE_FUNC + bool padding_explicit() const { return m_padding_explicit; } + EIGEN_DEVICE_FUNC + DenseIndex padding_top_z() const { return m_padding_top_z; } + EIGEN_DEVICE_FUNC + DenseIndex padding_bottom_z() const { return m_padding_bottom_z; } + EIGEN_DEVICE_FUNC + DenseIndex padding_top() const { return m_padding_top; } + EIGEN_DEVICE_FUNC + DenseIndex padding_bottom() const { return m_padding_bottom; } + EIGEN_DEVICE_FUNC + DenseIndex padding_left() const { return m_padding_left; } + EIGEN_DEVICE_FUNC + DenseIndex padding_right() const { return m_padding_right; } + EIGEN_DEVICE_FUNC + PaddingType padding_type() const { return m_padding_type; } + EIGEN_DEVICE_FUNC + Scalar padding_value() const { return m_padding_value; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all<typename XprType::Nested>::type& + expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const DenseIndex m_patch_planes; + const DenseIndex m_patch_rows; + const DenseIndex m_patch_cols; + const DenseIndex m_plane_strides; + const DenseIndex m_row_strides; + const DenseIndex m_col_strides; + const DenseIndex m_in_plane_strides; + const DenseIndex m_in_row_strides; + const DenseIndex m_in_col_strides; + const DenseIndex m_plane_inflate_strides; + const DenseIndex m_row_inflate_strides; + const DenseIndex m_col_inflate_strides; + const bool m_padding_explicit; + const DenseIndex m_padding_top_z; + const DenseIndex m_padding_bottom_z; + const DenseIndex m_padding_top; + const DenseIndex m_padding_bottom; + const DenseIndex m_padding_left; + const DenseIndex m_padding_right; + const PaddingType m_padding_type; + const Scalar m_padding_value; +}; + + +// Eval as rvalue +template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device> +struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device> +{ + typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType; + typedef typename XprType::Index Index; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumDims = NumInputDims + 1; + typedef DSizes<Index, NumDims> Dimensions; + typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = PacketType<CoeffReturnType, Device>::size; + typedef StorageMemory<CoeffReturnType, Device> Storage; + typedef typename Storage::Type EvaluatorPointerType; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + BlockAccess = false, + PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// + typedef internal::TensorBlockNotImplemented TensorBlock; + //===--------------------------------------------------------------------===// + + EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : + m_impl(op.expression(), device) + { + EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE); + + m_paddingValue = op.padding_value(); + + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + + // Cache a few variables. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_inputDepth = input_dims[0]; + m_inputPlanes = input_dims[1]; + m_inputRows = input_dims[2]; + m_inputCols = input_dims[3]; + } else { + m_inputDepth = input_dims[NumInputDims-1]; + m_inputPlanes = input_dims[NumInputDims-2]; + m_inputRows = input_dims[NumInputDims-3]; + m_inputCols = input_dims[NumInputDims-4]; + } + + m_plane_strides = op.plane_strides(); + m_row_strides = op.row_strides(); + m_col_strides = op.col_strides(); + + // Input strides and effective input/patch size + m_in_plane_strides = op.in_plane_strides(); + m_in_row_strides = op.in_row_strides(); + m_in_col_strides = op.in_col_strides(); + m_plane_inflate_strides = op.plane_inflate_strides(); + m_row_inflate_strides = op.row_inflate_strides(); + m_col_inflate_strides = op.col_inflate_strides(); + + // The "effective" spatial size after inflating data with zeros. + m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1; + m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1; + m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1; + m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1); + m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1); + m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1); + + if (op.padding_explicit()) { + m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides)); + m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); + m_planePaddingTop = op.padding_top_z(); + m_rowPaddingTop = op.padding_top(); + m_colPaddingLeft = op.padding_left(); + } else { + // Computing padding from the type + switch (op.padding_type()) { + case PADDING_VALID: + m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides)); + m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides)); + m_planePaddingTop = 0; + m_rowPaddingTop = 0; + m_colPaddingLeft = 0; + break; + case PADDING_SAME: { + m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides)); + m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides)); + m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides)); + const Index dz = (m_outputPlanes - 1) * m_plane_strides + m_patch_planes_eff - m_input_planes_eff; + const Index dy = (m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff; + const Index dx = (m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff; + m_planePaddingTop = dz / 2; + m_rowPaddingTop = dy / 2; + m_colPaddingLeft = dx / 2; + break; + } + default: + eigen_assert(false && "unexpected padding"); + } + } + eigen_assert(m_outputRows > 0); + eigen_assert(m_outputCols > 0); + eigen_assert(m_outputPlanes > 0); + + // Dimensions for result of extraction. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + // ColMajor + // 0: depth + // 1: patch_planes + // 2: patch_rows + // 3: patch_cols + // 4: number of patches + // 5 and beyond: anything else (such as batch). + m_dimensions[0] = input_dims[0]; + m_dimensions[1] = op.patch_planes(); + m_dimensions[2] = op.patch_rows(); + m_dimensions[3] = op.patch_cols(); + m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols; + for (int i = 5; i < NumDims; ++i) { + m_dimensions[i] = input_dims[i-1]; + } + } else { + // RowMajor + // NumDims-1: depth + // NumDims-2: patch_planes + // NumDims-3: patch_rows + // NumDims-4: patch_cols + // NumDims-5: number of patches + // NumDims-6 and beyond: anything else (such as batch). + m_dimensions[NumDims-1] = input_dims[NumInputDims-1]; + m_dimensions[NumDims-2] = op.patch_planes(); + m_dimensions[NumDims-3] = op.patch_rows(); + m_dimensions[NumDims-4] = op.patch_cols(); + m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols; + for (int i = NumDims-6; i >= 0; --i) { + m_dimensions[i] = input_dims[i]; + } + } + + // Strides for the output tensor. + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_rowStride = m_dimensions[1]; + m_colStride = m_dimensions[2] * m_rowStride; + m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0]; + m_otherStride = m_patchStride * m_dimensions[4]; + } else { + m_rowStride = m_dimensions[NumDims-2]; + m_colStride = m_dimensions[NumDims-3] * m_rowStride; + m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1]; + m_otherStride = m_patchStride * m_dimensions[NumDims-5]; + } + + // Strides for navigating through the input tensor. + m_planeInputStride = m_inputDepth; + m_rowInputStride = m_inputDepth * m_inputPlanes; + m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes; + m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes; + + m_outputPlanesRows = m_outputPlanes * m_outputRows; + + // Fast representations of different variables. + m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride); + + m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride); + m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride); + m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride); + m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides); + m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides); + m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides); + m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff); + m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes); + m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows); + + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]); + } else { + m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]); + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Patch index corresponding to the passed in index. + const Index patchIndex = index / m_fastPatchStride; + + // Spatial offset within the patch. This has to be translated into 3D + // coordinates within the patch. + const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth; + + // Batch, etc. + const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride; + const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; + + // Calculate column index in the input original tensor. + const Index colIndex = patch3DIndex / m_fastOutputPlanesRows; + const Index colOffset = patchOffset / m_fastColStride; + const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft; + const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0); + if (inputCol < 0 || inputCol >= m_input_cols_eff || + ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { + return Scalar(m_paddingValue); + } + + // Calculate row index in the original input tensor. + const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes; + const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride; + const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop; + const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0); + if (inputRow < 0 || inputRow >= m_input_rows_eff || + ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { + return Scalar(m_paddingValue); + } + + // Calculate plane index in the original input tensor. + const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex)); + const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride; + const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop; + const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0); + if (inputPlane < 0 || inputPlane >= m_input_planes_eff || + ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) { + return Scalar(m_paddingValue); + } + + const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; + const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; + + const Index inputIndex = depth + + origInputRow * m_rowInputStride + + origInputCol * m_colInputStride + + origInputPlane * m_planeInputStride + + otherIndex * m_otherInputStride; + + return m_impl.coeff(inputIndex); + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); + + if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 || + m_in_plane_strides != 1 || m_plane_inflate_strides != 1) { + return packetWithPossibleZero(index); + } + + const Index indices[2] = {index, index + PacketSize - 1}; + const Index patchIndex = indices[0] / m_fastPatchStride; + if (patchIndex != indices[1] / m_fastPatchStride) { + return packetWithPossibleZero(index); + } + const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride; + eigen_assert(otherIndex == indices[1] / m_fastOtherStride); + + // Find the offset of the element wrt the location of the first element. + const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth, + (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth}; + + const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; + eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); + + const Index colIndex = patch3DIndex / m_fastOutputPlanesRows; + const Index colOffsets[2] = { + patchOffsets[0] / m_fastColStride, + patchOffsets[1] / m_fastColStride}; + + // Calculate col indices in the original input tensor. + const Index inputCols[2] = { + colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft, + colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; + if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { + return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); + } + + if (inputCols[0] != inputCols[1]) { + return packetWithPossibleZero(index); + } + + const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes; + const Index rowOffsets[2] = { + (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride, + (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride}; + eigen_assert(rowOffsets[0] <= rowOffsets[1]); + // Calculate col indices in the original input tensor. + const Index inputRows[2] = { + rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop, + rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; + + if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { + return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); + } + + if (inputRows[0] != inputRows[1]) { + return packetWithPossibleZero(index); + } + + const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex)); + const Index planeOffsets[2] = { + patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride, + patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride}; + eigen_assert(planeOffsets[0] <= planeOffsets[1]); + const Index inputPlanes[2] = { + planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop, + planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop}; + + if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) { + return internal::pset1<PacketReturnType>(Scalar(m_paddingValue)); + } + + if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) { + // no padding + const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1; + const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; + const Index inputIndex = depth + + inputRows[0] * m_rowInputStride + + inputCols[0] * m_colInputStride + + m_planeInputStride * inputPlanes[0] + + otherIndex * m_otherInputStride; + return m_impl.template packet<Unaligned>(inputIndex); + } + + return packetWithPossibleZero(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost + costPerCoeff(bool vectorized) const { + const double compute_cost = + 10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() + + 8 * TensorOpCost::AddCost<Index>(); + return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); + } + + EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } + + const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index planePaddingTop() const { return m_planePaddingTop; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputPlanes() const { return m_outputPlanes; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userPlaneStride() const { return m_plane_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInPlaneStride() const { return m_in_plane_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index planeInflateStride() const { return m_plane_inflate_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; } + +#ifdef EIGEN_USE_SYCL + // binding placeholder accessors to a command group handler for SYCL + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { + m_impl.bind(cgh); + } +#endif + protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const + { + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + EIGEN_UNROLL_LOOP + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload<PacketReturnType>(values); + return rslt; + } + + Dimensions m_dimensions; + + // Parameters passed to the constructor. + Index m_plane_strides; + Index m_row_strides; + Index m_col_strides; + + Index m_outputPlanes; + Index m_outputRows; + Index m_outputCols; + + Index m_planePaddingTop; + Index m_rowPaddingTop; + Index m_colPaddingLeft; + + Index m_in_plane_strides; + Index m_in_row_strides; + Index m_in_col_strides; + + Index m_plane_inflate_strides; + Index m_row_inflate_strides; + Index m_col_inflate_strides; + + // Cached input size. + Index m_inputDepth; + Index m_inputPlanes; + Index m_inputRows; + Index m_inputCols; + + // Other cached variables. + Index m_outputPlanesRows; + + // Effective input/patch post-inflation size. + Index m_input_planes_eff; + Index m_input_rows_eff; + Index m_input_cols_eff; + Index m_patch_planes_eff; + Index m_patch_rows_eff; + Index m_patch_cols_eff; + + // Strides for the output tensor. + Index m_otherStride; + Index m_patchStride; + Index m_rowStride; + Index m_colStride; + + // Strides for the input tensor. + Index m_planeInputStride; + Index m_rowInputStride; + Index m_colInputStride; + Index m_otherInputStride; + + internal::TensorIntDivisor<Index> m_fastOtherStride; + internal::TensorIntDivisor<Index> m_fastPatchStride; + internal::TensorIntDivisor<Index> m_fastColStride; + internal::TensorIntDivisor<Index> m_fastRowStride; + internal::TensorIntDivisor<Index> m_fastInputPlaneStride; + internal::TensorIntDivisor<Index> m_fastInputRowStride; + internal::TensorIntDivisor<Index> m_fastInputColStride; + internal::TensorIntDivisor<Index> m_fastInputColsEff; + internal::TensorIntDivisor<Index> m_fastOutputPlanesRows; + internal::TensorIntDivisor<Index> m_fastOutputPlanes; + internal::TensorIntDivisor<Index> m_fastOutputDepth; + + Scalar m_paddingValue; + + TensorEvaluator<ArgType, Device> m_impl; + + +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H diff --git a/src/EigenUnsupported/CXX11/src/TensorSymmetry/DynamicSymmetry.h b/src/EigenUnsupported/CXX11/src/TensorSymmetry/DynamicSymmetry.h new file mode 100644 index 0000000..bc4f202 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/TensorSymmetry/DynamicSymmetry.h @@ -0,0 +1,293 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H +#define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H + +namespace Eigen { + +class DynamicSGroup +{ + public: + inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { m_elements.push_back(ge(Generator(0, 0, 0))); } + inline DynamicSGroup(const DynamicSGroup& o) : m_numIndices(o.m_numIndices), m_elements(o.m_elements), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { } + inline DynamicSGroup(DynamicSGroup&& o) : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { std::swap(m_elements, o.m_elements); } + inline DynamicSGroup& operator=(const DynamicSGroup& o) { m_numIndices = o.m_numIndices; m_elements = o.m_elements; m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } + inline DynamicSGroup& operator=(DynamicSGroup&& o) { m_numIndices = o.m_numIndices; std::swap(m_elements, o.m_elements); m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } + + void add(int one, int two, int flags = 0); + + template<typename Gen_> + inline void add(Gen_) { add(Gen_::One, Gen_::Two, Gen_::Flags); } + inline void addSymmetry(int one, int two) { add(one, two, 0); } + inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); } + inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); } + inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); } + + template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> + inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const + { + eigen_assert(N >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); + for (std::size_t i = 0; i < size(); i++) + initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, initial, std::forward<Args>(args)...); + return initial; + } + + template<typename Op, typename RV, typename Index, typename... Args> + inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const + { + eigen_assert(idx.size() >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); + for (std::size_t i = 0; i < size(); i++) + initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...); + return initial; + } + + inline int globalFlags() const { return m_globalFlags; } + inline std::size_t size() const { return m_elements.size(); } + + template<typename Tensor_, typename... IndexTypes> + inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const + { + static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); + return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); + } + + template<typename Tensor_> + inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const + { + return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices); + } + private: + struct GroupElement { + std::vector<int> representation; + int flags; + bool isId() const + { + for (std::size_t i = 0; i < representation.size(); i++) + if (i != (size_t)representation[i]) + return false; + return true; + } + }; + struct Generator { + int one; + int two; + int flags; + constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {} + }; + + std::size_t m_numIndices; + std::vector<GroupElement> m_elements; + std::vector<Generator> m_generators; + int m_globalFlags; + + template<typename Index, std::size_t N, int... n> + inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, internal::numeric_list<int, n...>) const + { + return std::array<Index, N>{{ idx[n >= m_numIndices ? n : m_elements[which].representation[n]]... }}; + } + + template<typename Index> + inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const + { + std::vector<Index> result; + result.reserve(idx.size()); + for (auto k : m_elements[which].representation) + result.push_back(idx[k]); + for (std::size_t i = m_numIndices; i < idx.size(); i++) + result.push_back(idx[i]); + return result; + } + + inline GroupElement ge(Generator const& g) const + { + GroupElement result; + result.representation.reserve(m_numIndices); + result.flags = g.flags; + for (std::size_t k = 0; k < m_numIndices; k++) { + if (k == (std::size_t)g.one) + result.representation.push_back(g.two); + else if (k == (std::size_t)g.two) + result.representation.push_back(g.one); + else + result.representation.push_back(int(k)); + } + return result; + } + + GroupElement mul(GroupElement, GroupElement) const; + inline GroupElement mul(Generator g1, GroupElement g2) const + { + return mul(ge(g1), g2); + } + + inline GroupElement mul(GroupElement g1, Generator g2) const + { + return mul(g1, ge(g2)); + } + + inline GroupElement mul(Generator g1, Generator g2) const + { + return mul(ge(g1), ge(g2)); + } + + inline int findElement(GroupElement e) const + { + for (auto ee : m_elements) { + if (ee.representation == e.representation) + return ee.flags ^ e.flags; + } + return -1; + } + + void updateGlobalFlags(int flagDiffOfSameGenerator); +}; + +// dynamic symmetry group that auto-adds the template parameters in the constructor +template<typename... Gen> +class DynamicSGroupFromTemplateArgs : public DynamicSGroup +{ + public: + inline DynamicSGroupFromTemplateArgs() : DynamicSGroup() + { + add_all(internal::type_list<Gen...>()); + } + inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) { } + inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) { } + inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { DynamicSGroup::operator=(o); return *this; } + inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { DynamicSGroup::operator=(o); return *this; } + + private: + template<typename Gen1, typename... GenNext> + inline void add_all(internal::type_list<Gen1, GenNext...>) + { + add(Gen1()); + add_all(internal::type_list<GenNext...>()); + } + + inline void add_all(internal::type_list<>) + { + } +}; + +inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const +{ + eigen_internal_assert(g1.representation.size() == m_numIndices); + eigen_internal_assert(g2.representation.size() == m_numIndices); + + GroupElement result; + result.representation.reserve(m_numIndices); + for (std::size_t i = 0; i < m_numIndices; i++) { + int v = g2.representation[g1.representation[i]]; + eigen_assert(v >= 0); + result.representation.push_back(v); + } + result.flags = g1.flags ^ g2.flags; + return result; +} + +inline void DynamicSGroup::add(int one, int two, int flags) +{ + eigen_assert(one >= 0); + eigen_assert(two >= 0); + eigen_assert(one != two); + + if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) { + std::size_t newNumIndices = (one > two) ? one : two + 1; + for (auto& gelem : m_elements) { + gelem.representation.reserve(newNumIndices); + for (std::size_t i = m_numIndices; i < newNumIndices; i++) + gelem.representation.push_back(i); + } + m_numIndices = newNumIndices; + } + + Generator g{one, two, flags}; + GroupElement e = ge(g); + + /* special case for first generator */ + if (m_elements.size() == 1) { + while (!e.isId()) { + m_elements.push_back(e); + e = mul(e, g); + } + + if (e.flags > 0) + updateGlobalFlags(e.flags); + + // only add in case we didn't have identity + if (m_elements.size() > 1) + m_generators.push_back(g); + return; + } + + int p = findElement(e); + if (p >= 0) { + updateGlobalFlags(p); + return; + } + + std::size_t coset_order = m_elements.size(); + m_elements.push_back(e); + for (std::size_t i = 1; i < coset_order; i++) + m_elements.push_back(mul(m_elements[i], e)); + m_generators.push_back(g); + + std::size_t coset_rep = coset_order; + do { + for (auto g : m_generators) { + e = mul(m_elements[coset_rep], g); + p = findElement(e); + if (p < 0) { + // element not yet in group + m_elements.push_back(e); + for (std::size_t i = 1; i < coset_order; i++) + m_elements.push_back(mul(m_elements[i], e)); + } else if (p > 0) { + updateGlobalFlags(p); + } + } + coset_rep += coset_order; + } while (coset_rep < m_elements.size()); +} + +inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator) +{ + switch (flagDiffOfSameGenerator) { + case 0: + default: + // nothing happened + break; + case NegationFlag: + // every element is it's own negative => whole tensor is zero + m_globalFlags |= GlobalZeroFlag; + break; + case ConjugationFlag: + // every element is it's own conjugate => whole tensor is real + m_globalFlags |= GlobalRealFlag; + break; + case (NegationFlag | ConjugationFlag): + // every element is it's own negative conjugate => whole tensor is imaginary + m_globalFlags |= GlobalImagFlag; + break; + /* NOTE: + * since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator + * causes the tensor to be real and the next one to be imaginary, this will + * trivially give the correct result + */ + } +} + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/src/TensorSymmetry/StaticSymmetry.h b/src/EigenUnsupported/CXX11/src/TensorSymmetry/StaticSymmetry.h new file mode 100644 index 0000000..942293b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/TensorSymmetry/StaticSymmetry.h @@ -0,0 +1,236 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H +#define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H + +namespace Eigen { + +namespace internal { + +template<typename list> struct tensor_static_symgroup_permutate; + +template<int... nn> +struct tensor_static_symgroup_permutate<numeric_list<int, nn...>> +{ + constexpr static std::size_t N = sizeof...(nn); + + template<typename T> + constexpr static inline std::array<T, N> run(const std::array<T, N>& indices) + { + return {{indices[nn]...}}; + } +}; + +template<typename indices_, int flags_> +struct tensor_static_symgroup_element +{ + typedef indices_ indices; + constexpr static int flags = flags_; +}; + +template<typename Gen, int N> +struct tensor_static_symgroup_element_ctor +{ + typedef tensor_static_symgroup_element< + typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type, + Gen::Flags + > type; +}; + +template<int N> +struct tensor_static_symgroup_identity_ctor +{ + typedef tensor_static_symgroup_element< + typename gen_numeric_list<int, N>::type, + 0 + > type; +}; + +template<typename iib> +struct tensor_static_symgroup_multiply_helper +{ + template<int... iia> + constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) { + return numeric_list<int, get<iia, iib>::value...>(); + } +}; + +template<typename A, typename B> +struct tensor_static_symgroup_multiply +{ + private: + typedef typename A::indices iia; + typedef typename B::indices iib; + constexpr static int ffa = A::flags; + constexpr static int ffb = B::flags; + + public: + static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices."); + + typedef tensor_static_symgroup_element< + decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())), + ffa ^ ffb + > type; +}; + +template<typename A, typename B> +struct tensor_static_symgroup_equality +{ + typedef typename A::indices iia; + typedef typename B::indices iib; + constexpr static int ffa = A::flags; + constexpr static int ffb = B::flags; + static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices."); + + constexpr static bool value = is_same<iia, iib>::value; + + private: + /* this should be zero if they are identical, or else the tensor + * will be forced to be pure real, pure imaginary or even pure zero + */ + constexpr static int flags_cmp_ = ffa ^ ffb; + + /* either they are not equal, then we don't care whether the flags + * match, or they are equal, and then we have to check + */ + constexpr static bool is_zero = value && flags_cmp_ == NegationFlag; + constexpr static bool is_real = value && flags_cmp_ == ConjugationFlag; + constexpr static bool is_imag = value && flags_cmp_ == (NegationFlag | ConjugationFlag); + + public: + constexpr static int global_flags = + (is_real ? GlobalRealFlag : 0) | + (is_imag ? GlobalImagFlag : 0) | + (is_zero ? GlobalZeroFlag : 0); +}; + +template<std::size_t NumIndices, typename... Gen> +struct tensor_static_symgroup +{ + typedef StaticSGroup<Gen...> type; + constexpr static std::size_t size = type::static_size; +}; + +template<typename Index, std::size_t N, int... ii, int... jj> +constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>) +{ + return {{ idx[ii]..., idx[jj]... }}; +} + +template<typename Index, int... ii> +static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>) +{ + std::vector<Index> result{{ idx[ii]... }}; + std::size_t target_size = idx.size(); + for (std::size_t i = result.size(); i < target_size; i++) + result.push_back(idx[i]); + return result; +} + +template<typename T> struct tensor_static_symgroup_do_apply; + +template<typename first, typename... next> +struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>> +{ + template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> + static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args) + { + static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices."); + typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices; + initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...); + return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); + } + + template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> + static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args) + { + eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); + initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...); + return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); + } +}; + +template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)> +struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>> +{ + template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> + static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...) + { + // do nothing + return initial; + } + + template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> + static inline RV run(const std::vector<Index>&, RV initial, Args&&...) + { + // do nothing + return initial; + } +}; + +} // end namespace internal + +template<typename... Gen> +class StaticSGroup +{ + constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; + typedef internal::group_theory::enumerate_group_elements< + internal::tensor_static_symgroup_multiply, + internal::tensor_static_symgroup_equality, + typename internal::tensor_static_symgroup_identity_ctor<NumIndices>::type, + internal::type_list<typename internal::tensor_static_symgroup_element_ctor<Gen, NumIndices>::type...> + > group_elements; + typedef typename group_elements::type ge; + public: + constexpr inline StaticSGroup() {} + constexpr inline StaticSGroup(const StaticSGroup<Gen...>&) {} + constexpr inline StaticSGroup(StaticSGroup<Gen...>&&) {} + + template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> + static inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) + { + return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); + } + + template<typename Op, typename RV, typename Index, typename... Args> + static inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) + { + eigen_assert(idx.size() == NumIndices); + return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...); + } + + constexpr static std::size_t static_size = ge::count; + + constexpr static inline std::size_t size() { + return ge::count; + } + constexpr static inline int globalFlags() { return group_elements::global_flags; } + + template<typename Tensor_, typename... IndexTypes> + inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const + { + static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); + return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); + } + + template<typename Tensor_> + inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const + { + return internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>>(tensor, *this, indices); + } +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/src/TensorSymmetry/Symmetry.h b/src/EigenUnsupported/CXX11/src/TensorSymmetry/Symmetry.h new file mode 100644 index 0000000..879d6cd --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/TensorSymmetry/Symmetry.h @@ -0,0 +1,338 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H +#define EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H + +namespace Eigen { + +enum { + NegationFlag = 0x01, + ConjugationFlag = 0x02 +}; + +enum { + GlobalRealFlag = 0x01, + GlobalImagFlag = 0x02, + GlobalZeroFlag = 0x03 +}; + +namespace internal { + +template<std::size_t NumIndices, typename... Sym> struct tensor_symmetry_pre_analysis; +template<std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup; +template<bool instantiate, std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup_if; +template<typename Tensor_> struct tensor_symmetry_calculate_flags; +template<typename Tensor_> struct tensor_symmetry_assign_value; +template<typename... Sym> struct tensor_symmetry_num_indices; + +} // end namespace internal + +template<int One_, int Two_> +struct Symmetry +{ + static_assert(One_ != Two_, "Symmetries must cover distinct indices."); + constexpr static int One = One_; + constexpr static int Two = Two_; + constexpr static int Flags = 0; +}; + +template<int One_, int Two_> +struct AntiSymmetry +{ + static_assert(One_ != Two_, "Symmetries must cover distinct indices."); + constexpr static int One = One_; + constexpr static int Two = Two_; + constexpr static int Flags = NegationFlag; +}; + +template<int One_, int Two_> +struct Hermiticity +{ + static_assert(One_ != Two_, "Symmetries must cover distinct indices."); + constexpr static int One = One_; + constexpr static int Two = Two_; + constexpr static int Flags = ConjugationFlag; +}; + +template<int One_, int Two_> +struct AntiHermiticity +{ + static_assert(One_ != Two_, "Symmetries must cover distinct indices."); + constexpr static int One = One_; + constexpr static int Two = Two_; + constexpr static int Flags = ConjugationFlag | NegationFlag; +}; + +/** \class DynamicSGroup + * \ingroup TensorSymmetry_Module + * + * \brief Dynamic symmetry group + * + * The %DynamicSGroup class represents a symmetry group that need not be known at + * compile time. It is useful if one wants to support arbitrary run-time defineable + * symmetries for tensors, but it is also instantiated if a symmetry group is defined + * at compile time that would be either too large for the compiler to reasonably + * generate (using templates to calculate this at compile time is very inefficient) + * or that the compiler could generate the group but that it wouldn't make sense to + * unroll the loop for setting coefficients anymore. + */ +class DynamicSGroup; + +/** \internal + * + * \class DynamicSGroupFromTemplateArgs + * \ingroup TensorSymmetry_Module + * + * \brief Dynamic symmetry group, initialized from template arguments + * + * This class is a child class of DynamicSGroup. It uses the template arguments + * specified to initialize itself. + */ +template<typename... Gen> +class DynamicSGroupFromTemplateArgs; + +/** \class StaticSGroup + * \ingroup TensorSymmetry_Module + * + * \brief Static symmetry group + * + * This class represents a symmetry group that is known and resolved completely + * at compile time. Ideally, no run-time penalty is incurred compared to the + * manual unrolling of the symmetry. + * + * <b><i>CAUTION:</i></b> + * + * Do not use this class directly for large symmetry groups. The compiler + * may run into a limit, or segfault or in the very least will take a very, + * very, very long time to compile the code. Use the SGroup class instead + * if you want a static group. That class contains logic that will + * automatically select the DynamicSGroup class instead if the symmetry + * group becomes too large. (In that case, unrolling may not even be + * beneficial.) + */ +template<typename... Gen> +class StaticSGroup; + +/** \class SGroup + * \ingroup TensorSymmetry_Module + * + * \brief Symmetry group, initialized from template arguments + * + * This class represents a symmetry group whose generators are already + * known at compile time. It may or may not be resolved at compile time, + * depending on the estimated size of the group. + * + * \sa StaticSGroup + * \sa DynamicSGroup + */ +template<typename... Gen> +class SGroup : public internal::tensor_symmetry_pre_analysis<internal::tensor_symmetry_num_indices<Gen...>::value, Gen...>::root_type +{ + public: + constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; + typedef typename internal::tensor_symmetry_pre_analysis<NumIndices, Gen...>::root_type Base; + + // make standard constructors + assignment operators public + inline SGroup() : Base() { } + inline SGroup(const SGroup<Gen...>& other) : Base(other) { } + inline SGroup(SGroup<Gen...>&& other) : Base(other) { } + inline SGroup<Gen...>& operator=(const SGroup<Gen...>& other) { Base::operator=(other); return *this; } + inline SGroup<Gen...>& operator=(SGroup<Gen...>&& other) { Base::operator=(other); return *this; } + + // all else is defined in the base class +}; + +namespace internal { + +template<typename... Sym> struct tensor_symmetry_num_indices +{ + constexpr static std::size_t value = 1; +}; + +template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> +{ +private: + constexpr static std::size_t One = static_cast<std::size_t>(One_); + constexpr static std::size_t Two = static_cast<std::size_t>(Two_); + constexpr static std::size_t Three = tensor_symmetry_num_indices<Sym...>::value; + + // don't use std::max, since it's not constexpr until C++14... + constexpr static std::size_t maxOneTwoPlusOne = ((One > Two) ? One : Two) + 1; +public: + constexpr static std::size_t value = (maxOneTwoPlusOne > Three) ? maxOneTwoPlusOne : Three; +}; + +template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiSymmetry<One_, Two_>, Sym...> + : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; +template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Hermiticity<One_, Two_>, Sym...> + : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; +template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiHermiticity<One_, Two_>, Sym...> + : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; + +/** \internal + * + * \class tensor_symmetry_pre_analysis + * \ingroup TensorSymmetry_Module + * + * \brief Pre-select whether to use a static or dynamic symmetry group + * + * When a symmetry group could in principle be determined at compile time, + * this template implements the logic whether to actually do that or whether + * to rather defer that to runtime. + * + * The logic is as follows: + * <dl> + * <dt><b>No generators (trivial symmetry):</b></dt> + * <dd>Use a trivial static group. Ideally, this has no performance impact + * compared to not using symmetry at all. In practice, this might not + * be the case.</dd> + * <dt><b>More than 4 generators:</b></dt> + * <dd>Calculate the group at run time, it is likely far too large for the + * compiler to be able to properly generate it in a realistic time.</dd> + * <dt><b>Up to and including 4 generators:</b></dt> + * <dd>Actually enumerate all group elements, but then check how many there + * are. If there are more than 16, it is unlikely that unrolling the + * loop (as is done in the static compile-time case) is sensible, so + * use a dynamic group instead. If there are at most 16 elements, actually + * use that static group. Note that the largest group with 4 generators + * still compiles with reasonable resources.</dd> + * </dl> + * + * Note: Example compile time performance with g++-4.6 on an Intenl Core i5-3470 + * with 16 GiB RAM (all generators non-redundant and the subgroups don't + * factorize): + * + * # Generators -O0 -ggdb -O2 + * ------------------------------------------------------------------- + * 1 0.5 s / 250 MiB 0.45s / 230 MiB + * 2 0.5 s / 260 MiB 0.5 s / 250 MiB + * 3 0.65s / 310 MiB 0.62s / 310 MiB + * 4 2.2 s / 860 MiB 1.7 s / 770 MiB + * 5 130 s / 13000 MiB 120 s / 11000 MiB + * + * It is clear that everything is still very efficient up to 4 generators, then + * the memory and CPU requirements become unreasonable. Thus we only instantiate + * the template group theory logic if the number of generators supplied is 4 or + * lower, otherwise this will be forced to be done during runtime, where the + * algorithm is reasonably fast. + */ +template<std::size_t NumIndices> +struct tensor_symmetry_pre_analysis<NumIndices> +{ + typedef StaticSGroup<> root_type; +}; + +template<std::size_t NumIndices, typename Gen_, typename... Gens_> +struct tensor_symmetry_pre_analysis<NumIndices, Gen_, Gens_...> +{ + constexpr static std::size_t max_static_generators = 4; + constexpr static std::size_t max_static_elements = 16; + typedef tensor_static_symgroup_if<(sizeof...(Gens_) + 1 <= max_static_generators), NumIndices, Gen_, Gens_...> helper; + constexpr static std::size_t possible_size = helper::size; + + typedef typename conditional< + possible_size == 0 || possible_size >= max_static_elements, + DynamicSGroupFromTemplateArgs<Gen_, Gens_...>, + typename helper::type + >::type root_type; +}; + +template<bool instantiate, std::size_t NumIndices, typename... Gens> +struct tensor_static_symgroup_if +{ + constexpr static std::size_t size = 0; + typedef void type; +}; + +template<std::size_t NumIndices, typename... Gens> +struct tensor_static_symgroup_if<true, NumIndices, Gens...> : tensor_static_symgroup<NumIndices, Gens...> {}; + +template<typename Tensor_> +struct tensor_symmetry_assign_value +{ + typedef typename Tensor_::Index Index; + typedef typename Tensor_::Scalar Scalar; + constexpr static std::size_t NumIndices = Tensor_::NumIndices; + + static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transformation_flags, int dummy, Tensor_& tensor, const Scalar& value_) + { + Scalar value(value_); + if (transformation_flags & ConjugationFlag) + value = numext::conj(value); + if (transformation_flags & NegationFlag) + value = -value; + tensor.coeffRef(transformed_indices) = value; + return dummy; + } +}; + +template<typename Tensor_> +struct tensor_symmetry_calculate_flags +{ + typedef typename Tensor_::Index Index; + constexpr static std::size_t NumIndices = Tensor_::NumIndices; + + static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transform_flags, int current_flags, const std::array<Index, NumIndices>& orig_indices) + { + if (transformed_indices == orig_indices) { + if (transform_flags & (ConjugationFlag | NegationFlag)) + return current_flags | GlobalImagFlag; // anti-hermitian diagonal + else if (transform_flags & ConjugationFlag) + return current_flags | GlobalRealFlag; // hermitian diagonal + else if (transform_flags & NegationFlag) + return current_flags | GlobalZeroFlag; // anti-symmetric diagonal + } + return current_flags; + } +}; + +template<typename Tensor_, typename Symmetry_, int Flags = 0> +class tensor_symmetry_value_setter +{ + public: + typedef typename Tensor_::Index Index; + typedef typename Tensor_::Scalar Scalar; + constexpr static std::size_t NumIndices = Tensor_::NumIndices; + + inline tensor_symmetry_value_setter(Tensor_& tensor, Symmetry_ const& symmetry, std::array<Index, NumIndices> const& indices) + : m_tensor(tensor), m_symmetry(symmetry), m_indices(indices) { } + + inline tensor_symmetry_value_setter<Tensor_, Symmetry_, Flags>& operator=(Scalar const& value) + { + doAssign(value); + return *this; + } + private: + Tensor_& m_tensor; + Symmetry_ m_symmetry; + std::array<Index, NumIndices> m_indices; + + inline void doAssign(Scalar const& value) + { + #ifdef EIGEN_TENSOR_SYMMETRY_CHECK_VALUES + int value_flags = m_symmetry.template apply<internal::tensor_symmetry_calculate_flags<Tensor_>, int>(m_indices, m_symmetry.globalFlags(), m_indices); + if (value_flags & GlobalRealFlag) + eigen_assert(numext::imag(value) == 0); + if (value_flags & GlobalImagFlag) + eigen_assert(numext::real(value) == 0); + #endif + m_symmetry.template apply<internal::tensor_symmetry_assign_value<Tensor_>, int>(m_indices, 0, m_tensor, value); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h b/src/EigenUnsupported/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h new file mode 100644 index 0000000..54bf9db --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h @@ -0,0 +1,669 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H +#define EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H + +namespace Eigen { + +namespace internal { + +namespace group_theory { + +/** \internal + * \file CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h + * This file contains C++ templates that implement group theory algorithms. + * + * The algorithms allow for a compile-time analysis of finite groups. + * + * Currently only Dimino's algorithm is implemented, which returns a list + * of all elements in a group given a set of (possibly redundant) generators. + * (One could also do that with the so-called orbital algorithm, but that + * is much more expensive and usually has no advantages.) + */ + +/********************************************************************** + * "Ok kid, here is where it gets complicated." + * - Amelia Pond in the "Doctor Who" episode + * "The Big Bang" + * + * Dimino's algorithm + * ================== + * + * The following is Dimino's algorithm in sequential form: + * + * Input: identity element, list of generators, equality check, + * multiplication operation + * Output: list of group elements + * + * 1. add identity element + * 2. remove identities from list of generators + * 3. add all powers of first generator that aren't the + * identity element + * 4. go through all remaining generators: + * a. if generator is already in the list of elements + * -> do nothing + * b. otherwise + * i. remember current # of elements + * (i.e. the size of the current subgroup) + * ii. add all current elements (which includes + * the identity) each multiplied from right + * with the current generator to the group + * iii. add all remaining cosets that are generated + * by products of the new generator with itself + * and all other generators seen so far + * + * In functional form, this is implemented as a long set of recursive + * templates that have a complicated relationship. + * + * The main interface for Dimino's algorithm is the template + * enumerate_group_elements. All lists are implemented as variadic + * type_list<typename...> and numeric_list<typename = int, int...> + * templates. + * + * 'Calling' templates is usually done via typedefs. + * + * This algorithm is an extended version of the basic version. The + * extension consists in the fact that each group element has a set + * of flags associated with it. Multiplication of two group elements + * with each other results in a group element whose flags are the + * XOR of the flags of the previous elements. Each time the algorithm + * notices that a group element it just calculated is already in the + * list of current elements, the flags of both will be compared and + * added to the so-called 'global flags' of the group. + * + * The rationale behind this extension is that this allows not only + * for the description of symmetries between tensor indices, but + * also allows for the description of hermiticity, antisymmetry and + * antihermiticity. Negation and conjugation each are specific bit + * in the flags value and if two different ways to reach a group + * element lead to two different flags, this poses a constraint on + * the allowed values of the resulting tensor. For example, if a + * group element is reach both with and without the conjugation + * flags, it is clear that the resulting tensor has to be real. + * + * Note that this flag mechanism is quite generic and may have other + * uses beyond tensor properties. + * + * IMPORTANT: + * This algorithm assumes the group to be finite. If you try to + * run it with a group that's infinite, the algorithm will only + * terminate once you hit a compiler limit (max template depth). + * Also note that trying to use this implementation to create a + * very large group will probably either make you hit the same + * limit, cause the compiler to segfault or at the very least + * take a *really* long time (hours, days, weeks - sic!) to + * compile. It is not recommended to plug in more than 4 + * generators, unless they are independent of each other. + */ + +/** \internal + * + * \class strip_identities + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Cleanse a list of group elements of the identity element + * + * This template is used to make a first pass through all initial + * generators of Dimino's algorithm and remove the identity + * elements. + * + * \sa enumerate_group_elements + */ +template<template<typename, typename> class Equality, typename id, typename L> struct strip_identities; + +template< + template<typename, typename> class Equality, + typename id, + typename t, + typename... ts +> +struct strip_identities<Equality, id, type_list<t, ts...>> +{ + typedef typename conditional< + Equality<id, t>::value, + typename strip_identities<Equality, id, type_list<ts...>>::type, + typename concat<type_list<t>, typename strip_identities<Equality, id, type_list<ts...>>::type>::type + >::type type; + constexpr static int global_flags = Equality<id, t>::global_flags | strip_identities<Equality, id, type_list<ts...>>::global_flags; +}; + +template< + template<typename, typename> class Equality, + typename id + EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, ts) +> +struct strip_identities<Equality, id, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(ts)>> +{ + typedef type_list<> type; + constexpr static int global_flags = 0; +}; + +/** \internal + * + * \class dimino_first_step_elements_helper + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Recursive template that adds powers of the first generator to the list of group elements + * + * This template calls itself recursively to add powers of the first + * generator to the list of group elements. It stops if it reaches + * the identity element again. + * + * \sa enumerate_group_elements, dimino_first_step_elements + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename g, + typename current_element, + typename elements, + bool dont_add_current_element // = false +> +struct dimino_first_step_elements_helper +#ifndef EIGEN_PARSED_BY_DOXYGEN + : // recursive inheritance is too difficult for Doxygen + public dimino_first_step_elements_helper< + Multiply, + Equality, + id, + g, + typename Multiply<current_element, g>::type, + typename concat<elements, type_list<current_element>>::type, + Equality<typename Multiply<current_element, g>::type, id>::value + > {}; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename g, + typename current_element, + typename elements +> +struct dimino_first_step_elements_helper<Multiply, Equality, id, g, current_element, elements, true> +#endif // EIGEN_PARSED_BY_DOXYGEN +{ + typedef elements type; + constexpr static int global_flags = Equality<current_element, id>::global_flags; +}; + +/** \internal + * + * \class dimino_first_step_elements + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Add all powers of the first generator to the list of group elements + * + * This template takes the first non-identity generator and generates the initial + * list of elements which consists of all powers of that generator. For a group + * with just one generated, it would be enumerated after this. + * + * \sa enumerate_group_elements + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename generators +> +struct dimino_first_step_elements +{ + typedef typename get<0, generators>::type first_generator; + typedef typename skip<1, generators>::type next_generators; + typedef type_list<first_generator> generators_done; + + typedef dimino_first_step_elements_helper< + Multiply, + Equality, + id, + first_generator, + first_generator, + type_list<id>, + false + > helper; + typedef typename helper::type type; + constexpr static int global_flags = helper::global_flags; +}; + +/** \internal + * + * \class dimino_get_coset_elements + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Generate all elements of a specific coset + * + * This template generates all the elements of a specific coset by + * multiplying all elements in the given subgroup with the new + * coset representative. Note that the first element of the + * subgroup is always the identity element, so the first element of + * the result of this template is going to be the coset + * representative itself. + * + * Note that this template accepts an additional boolean parameter + * that specifies whether to actually generate the coset (true) or + * just return an empty list (false). + * + * \sa enumerate_group_elements, dimino_add_cosets_for_rep + */ +template< + template<typename, typename> class Multiply, + typename sub_group_elements, + typename new_coset_rep, + bool generate_coset // = true +> +struct dimino_get_coset_elements +{ + typedef typename apply_op_from_right<Multiply, new_coset_rep, sub_group_elements>::type type; +}; + +template< + template<typename, typename> class Multiply, + typename sub_group_elements, + typename new_coset_rep +> +struct dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, false> +{ + typedef type_list<> type; +}; + +/** \internal + * + * \class dimino_add_cosets_for_rep + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Recursive template for adding coset spaces + * + * This template multiplies the coset representative with a generator + * from the list of previous generators. If the new element is not in + * the group already, it adds the corresponding coset. Finally it + * proceeds to call itself with the next generator from the list. + * + * \sa enumerate_group_elements, dimino_add_all_coset_spaces + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename sub_group_elements, + typename elements, + typename generators, + typename rep_element, + int sub_group_size +> +struct dimino_add_cosets_for_rep; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename sub_group_elements, + typename elements, + typename g, + typename... gs, + typename rep_element, + int sub_group_size +> +struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<g, gs...>, rep_element, sub_group_size> +{ + typedef typename Multiply<rep_element, g>::type new_coset_rep; + typedef contained_in_list_gf<Equality, new_coset_rep, elements> _cil; + constexpr static bool add_coset = !_cil::value; + + typedef typename dimino_get_coset_elements< + Multiply, + sub_group_elements, + new_coset_rep, + add_coset + >::type coset_elements; + + typedef dimino_add_cosets_for_rep< + Multiply, + Equality, + id, + sub_group_elements, + typename concat<elements, coset_elements>::type, + type_list<gs...>, + rep_element, + sub_group_size + > _helper; + + typedef typename _helper::type type; + constexpr static int global_flags = _cil::global_flags | _helper::global_flags; + + /* Note that we don't have to update global flags here, since + * we will only add these elements if they are not part of + * the group already. But that only happens if the coset rep + * is not already in the group, so the check for the coset rep + * will catch this. + */ +}; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename sub_group_elements, + typename elements + EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), + typename rep_element, + int sub_group_size +> +struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, rep_element, sub_group_size> +{ + typedef elements type; + constexpr static int global_flags = 0; +}; + +/** \internal + * + * \class dimino_add_all_coset_spaces + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Recursive template for adding all coset spaces for a new generator + * + * This template tries to go through the list of generators (with + * the help of the dimino_add_cosets_for_rep template) as long as + * it still finds elements that are not part of the group and add + * the corresponding cosets. + * + * \sa enumerate_group_elements, dimino_add_cosets_for_rep + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename sub_group_elements, + typename elements, + typename generators, + int sub_group_size, + int rep_pos, + bool stop_condition // = false +> +struct dimino_add_all_coset_spaces +{ + typedef typename get<rep_pos, elements>::type rep_element; + typedef dimino_add_cosets_for_rep< + Multiply, + Equality, + id, + sub_group_elements, + elements, + generators, + rep_element, + sub_group_elements::count + > _ac4r; + typedef typename _ac4r::type new_elements; + + constexpr static int new_rep_pos = rep_pos + sub_group_elements::count; + constexpr static bool new_stop_condition = new_rep_pos >= new_elements::count; + + typedef dimino_add_all_coset_spaces< + Multiply, + Equality, + id, + sub_group_elements, + new_elements, + generators, + sub_group_size, + new_rep_pos, + new_stop_condition + > _helper; + + typedef typename _helper::type type; + constexpr static int global_flags = _helper::global_flags | _ac4r::global_flags; +}; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename sub_group_elements, + typename elements, + typename generators, + int sub_group_size, + int rep_pos +> +struct dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, elements, generators, sub_group_size, rep_pos, true> +{ + typedef elements type; + constexpr static int global_flags = 0; +}; + +/** \internal + * + * \class dimino_add_generator + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Enlarge the group by adding a new generator. + * + * It accepts a boolean parameter that determines if the generator is redundant, + * i.e. was already seen in the group. In that case, it reduces to a no-op. + * + * \sa enumerate_group_elements, dimino_add_all_coset_spaces + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename elements, + typename generators_done, + typename current_generator, + bool redundant // = false +> +struct dimino_add_generator +{ + /* this template is only called if the generator is not redundant + * => all elements of the group multiplied with the new generator + * are going to be new elements of the most trivial coset space + */ + typedef typename apply_op_from_right<Multiply, current_generator, elements>::type multiplied_elements; + typedef typename concat<elements, multiplied_elements>::type new_elements; + + constexpr static int rep_pos = elements::count; + + typedef dimino_add_all_coset_spaces< + Multiply, + Equality, + id, + elements, // elements of previous subgroup + new_elements, + typename concat<generators_done, type_list<current_generator>>::type, + elements::count, // size of previous subgroup + rep_pos, + false // don't stop (because rep_pos >= new_elements::count is always false at this point) + > _helper; + typedef typename _helper::type type; + constexpr static int global_flags = _helper::global_flags; +}; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename elements, + typename generators_done, + typename current_generator +> +struct dimino_add_generator<Multiply, Equality, id, elements, generators_done, current_generator, true> +{ + // redundant case + typedef elements type; + constexpr static int global_flags = 0; +}; + +/** \internal + * + * \class dimino_add_remaining_generators + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Recursive template that adds all remaining generators to a group + * + * Loop through the list of generators that remain and successively + * add them to the group. + * + * \sa enumerate_group_elements, dimino_add_generator + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename generators_done, + typename remaining_generators, + typename elements +> +struct dimino_add_remaining_generators +{ + typedef typename get<0, remaining_generators>::type first_generator; + typedef typename skip<1, remaining_generators>::type next_generators; + + typedef contained_in_list_gf<Equality, first_generator, elements> _cil; + + typedef dimino_add_generator< + Multiply, + Equality, + id, + elements, + generators_done, + first_generator, + _cil::value + > _helper; + + typedef typename _helper::type new_elements; + + typedef dimino_add_remaining_generators< + Multiply, + Equality, + id, + typename concat<generators_done, type_list<first_generator>>::type, + next_generators, + new_elements + > _next_iter; + + typedef typename _next_iter::type type; + constexpr static int global_flags = + _cil::global_flags | + _helper::global_flags | + _next_iter::global_flags; +}; + +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename generators_done, + typename elements +> +struct dimino_add_remaining_generators<Multiply, Equality, id, generators_done, type_list<>, elements> +{ + typedef elements type; + constexpr static int global_flags = 0; +}; + +/** \internal + * + * \class enumerate_group_elements_noid + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Helper template that implements group element enumeration + * + * This is a helper template that implements the actual enumeration + * of group elements. This has been split so that the list of + * generators can be cleansed of the identity element before + * performing the actual operation. + * + * \sa enumerate_group_elements + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename generators, + int initial_global_flags = 0 +> +struct enumerate_group_elements_noid +{ + typedef dimino_first_step_elements<Multiply, Equality, id, generators> first_step; + typedef typename first_step::type first_step_elements; + + typedef dimino_add_remaining_generators< + Multiply, + Equality, + id, + typename first_step::generators_done, + typename first_step::next_generators, // remaining_generators + typename first_step::type // first_step elements + > _helper; + + typedef typename _helper::type type; + constexpr static int global_flags = + initial_global_flags | + first_step::global_flags | + _helper::global_flags; +}; + +// in case when no generators are specified +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + int initial_global_flags +> +struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initial_global_flags> +{ + typedef type_list<id> type; + constexpr static int global_flags = initial_global_flags; +}; + +/** \internal + * + * \class enumerate_group_elements + * \ingroup CXX11_TensorSymmetry_Module + * + * \brief Enumerate all elements in a finite group + * + * This template enumerates all elements in a finite group. It accepts + * the following template parameters: + * + * \tparam Multiply The multiplication operation that multiplies two group elements + * with each other. + * \tparam Equality The equality check operation that checks if two group elements + * are equal to another. + * \tparam id The identity element + * \tparam _generators A list of (possibly redundant) generators of the group + */ +template< + template<typename, typename> class Multiply, + template<typename, typename> class Equality, + typename id, + typename _generators +> +struct enumerate_group_elements + : public enumerate_group_elements_noid< + Multiply, + Equality, + id, + typename strip_identities<Equality, id, _generators>::type, + strip_identities<Equality, id, _generators>::global_flags + > +{ +}; + +} // end namespace group_theory + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/Barrier.h b/src/EigenUnsupported/CXX11/src/ThreadPool/Barrier.h new file mode 100644 index 0000000..e4c59dc --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/Barrier.h @@ -0,0 +1,67 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2018 Rasmus Munk Larsen <rmlarsen@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// Barrier is an object that allows one or more threads to wait until +// Notify has been called a specified number of times. + +#ifndef EIGEN_CXX11_THREADPOOL_BARRIER_H +#define EIGEN_CXX11_THREADPOOL_BARRIER_H + +namespace Eigen { + +class Barrier { + public: + Barrier(unsigned int count) : state_(count << 1), notified_(false) { + eigen_plain_assert(((count << 1) >> 1) == count); + } + ~Barrier() { eigen_plain_assert((state_ >> 1) == 0); } + + void Notify() { + unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2; + if (v != 1) { + // Clear the lowest bit (waiter flag) and check that the original state + // value was not zero. If it was zero, it means that notify was called + // more times than the original count. + eigen_plain_assert(((v + 2) & ~1) != 0); + return; // either count has not dropped to 0, or waiter is not waiting + } + std::unique_lock<std::mutex> l(mu_); + eigen_plain_assert(!notified_); + notified_ = true; + cv_.notify_all(); + } + + void Wait() { + unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel); + if ((v >> 1) == 0) return; + std::unique_lock<std::mutex> l(mu_); + while (!notified_) { + cv_.wait(l); + } + } + + private: + std::mutex mu_; + std::condition_variable cv_; + std::atomic<unsigned int> state_; // low bit is waiter flag + bool notified_; +}; + +// Notification is an object that allows a user to to wait for another +// thread to signal a notification that an event has occurred. +// +// Multiple threads can wait on the same Notification object, +// but only one caller must call Notify() on the object. +struct Notification : Barrier { + Notification() : Barrier(1){}; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_BARRIER_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/EventCount.h b/src/EigenUnsupported/CXX11/src/ThreadPool/EventCount.h new file mode 100644 index 0000000..4549aa0 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/EventCount.h @@ -0,0 +1,249 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_ +#define EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_ + +namespace Eigen { + +// EventCount allows to wait for arbitrary predicates in non-blocking +// algorithms. Think of condition variable, but wait predicate does not need to +// be protected by a mutex. Usage: +// Waiting thread does: +// +// if (predicate) +// return act(); +// EventCount::Waiter& w = waiters[my_index]; +// ec.Prewait(&w); +// if (predicate) { +// ec.CancelWait(&w); +// return act(); +// } +// ec.CommitWait(&w); +// +// Notifying thread does: +// +// predicate = true; +// ec.Notify(true); +// +// Notify is cheap if there are no waiting threads. Prewait/CommitWait are not +// cheap, but they are executed only if the preceding predicate check has +// failed. +// +// Algorithm outline: +// There are two main variables: predicate (managed by user) and state_. +// Operation closely resembles Dekker mutual algorithm: +// https://en.wikipedia.org/wiki/Dekker%27s_algorithm +// Waiting thread sets state_ then checks predicate, Notifying thread sets +// predicate then checks state_. Due to seq_cst fences in between these +// operations it is guaranteed than either waiter will see predicate change +// and won't block, or notifying thread will see state_ change and will unblock +// the waiter, or both. But it can't happen that both threads don't see each +// other changes, which would lead to deadlock. +class EventCount { + public: + class Waiter; + + EventCount(MaxSizeVector<Waiter>& waiters) + : state_(kStackMask), waiters_(waiters) { + eigen_plain_assert(waiters.size() < (1 << kWaiterBits) - 1); + } + + ~EventCount() { + // Ensure there are no waiters. + eigen_plain_assert(state_.load() == kStackMask); + } + + // Prewait prepares for waiting. + // After calling Prewait, the thread must re-check the wait predicate + // and then call either CancelWait or CommitWait. + void Prewait() { + uint64_t state = state_.load(std::memory_order_relaxed); + for (;;) { + CheckState(state); + uint64_t newstate = state + kWaiterInc; + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_seq_cst)) + return; + } + } + + // CommitWait commits waiting after Prewait. + void CommitWait(Waiter* w) { + eigen_plain_assert((w->epoch & ~kEpochMask) == 0); + w->state = Waiter::kNotSignaled; + const uint64_t me = (w - &waiters_[0]) | w->epoch; + uint64_t state = state_.load(std::memory_order_seq_cst); + for (;;) { + CheckState(state, true); + uint64_t newstate; + if ((state & kSignalMask) != 0) { + // Consume the signal and return immidiately. + newstate = state - kWaiterInc - kSignalInc; + } else { + // Remove this thread from pre-wait counter and add to the waiter stack. + newstate = ((state & kWaiterMask) - kWaiterInc) | me; + w->next.store(state & (kStackMask | kEpochMask), + std::memory_order_relaxed); + } + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) { + if ((state & kSignalMask) == 0) { + w->epoch += kEpochInc; + Park(w); + } + return; + } + } + } + + // CancelWait cancels effects of the previous Prewait call. + void CancelWait() { + uint64_t state = state_.load(std::memory_order_relaxed); + for (;;) { + CheckState(state, true); + uint64_t newstate = state - kWaiterInc; + // We don't know if the thread was also notified or not, + // so we should not consume a signal unconditionaly. + // Only if number of waiters is equal to number of signals, + // we know that the thread was notified and we must take away the signal. + if (((state & kWaiterMask) >> kWaiterShift) == + ((state & kSignalMask) >> kSignalShift)) + newstate -= kSignalInc; + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) + return; + } + } + + // Notify wakes one or all waiting threads. + // Must be called after changing the associated wait predicate. + void Notify(bool notifyAll) { + std::atomic_thread_fence(std::memory_order_seq_cst); + uint64_t state = state_.load(std::memory_order_acquire); + for (;;) { + CheckState(state); + const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; + const uint64_t signals = (state & kSignalMask) >> kSignalShift; + // Easy case: no waiters. + if ((state & kStackMask) == kStackMask && waiters == signals) return; + uint64_t newstate; + if (notifyAll) { + // Empty wait stack and set signal to number of pre-wait threads. + newstate = + (state & kWaiterMask) | (waiters << kSignalShift) | kStackMask; + } else if (signals < waiters) { + // There is a thread in pre-wait state, unblock it. + newstate = state + kSignalInc; + } else { + // Pop a waiter from list and unpark it. + Waiter* w = &waiters_[state & kStackMask]; + uint64_t next = w->next.load(std::memory_order_relaxed); + newstate = (state & (kWaiterMask | kSignalMask)) | next; + } + CheckState(newstate); + if (state_.compare_exchange_weak(state, newstate, + std::memory_order_acq_rel)) { + if (!notifyAll && (signals < waiters)) + return; // unblocked pre-wait thread + if ((state & kStackMask) == kStackMask) return; + Waiter* w = &waiters_[state & kStackMask]; + if (!notifyAll) w->next.store(kStackMask, std::memory_order_relaxed); + Unpark(w); + return; + } + } + } + + class Waiter { + friend class EventCount; + // Align to 128 byte boundary to prevent false sharing with other Waiter + // objects in the same vector. + EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic<uint64_t> next; + std::mutex mu; + std::condition_variable cv; + uint64_t epoch = 0; + unsigned state = kNotSignaled; + enum { + kNotSignaled, + kWaiting, + kSignaled, + }; + }; + + private: + // State_ layout: + // - low kWaiterBits is a stack of waiters committed wait + // (indexes in waiters_ array are used as stack elements, + // kStackMask means empty stack). + // - next kWaiterBits is count of waiters in prewait state. + // - next kWaiterBits is count of pending signals. + // - remaining bits are ABA counter for the stack. + // (stored in Waiter node and incremented on push). + static const uint64_t kWaiterBits = 14; + static const uint64_t kStackMask = (1ull << kWaiterBits) - 1; + static const uint64_t kWaiterShift = kWaiterBits; + static const uint64_t kWaiterMask = ((1ull << kWaiterBits) - 1) + << kWaiterShift; + static const uint64_t kWaiterInc = 1ull << kWaiterShift; + static const uint64_t kSignalShift = 2 * kWaiterBits; + static const uint64_t kSignalMask = ((1ull << kWaiterBits) - 1) + << kSignalShift; + static const uint64_t kSignalInc = 1ull << kSignalShift; + static const uint64_t kEpochShift = 3 * kWaiterBits; + static const uint64_t kEpochBits = 64 - kEpochShift; + static const uint64_t kEpochMask = ((1ull << kEpochBits) - 1) << kEpochShift; + static const uint64_t kEpochInc = 1ull << kEpochShift; + std::atomic<uint64_t> state_; + MaxSizeVector<Waiter>& waiters_; + + static void CheckState(uint64_t state, bool waiter = false) { + static_assert(kEpochBits >= 20, "not enough bits to prevent ABA problem"); + const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; + const uint64_t signals = (state & kSignalMask) >> kSignalShift; + eigen_plain_assert(waiters >= signals); + eigen_plain_assert(waiters < (1 << kWaiterBits) - 1); + eigen_plain_assert(!waiter || waiters > 0); + (void)waiters; + (void)signals; + } + + void Park(Waiter* w) { + std::unique_lock<std::mutex> lock(w->mu); + while (w->state != Waiter::kSignaled) { + w->state = Waiter::kWaiting; + w->cv.wait(lock); + } + } + + void Unpark(Waiter* w) { + for (Waiter* next; w; w = next) { + uint64_t wnext = w->next.load(std::memory_order_relaxed) & kStackMask; + next = wnext == kStackMask ? nullptr : &waiters_[wnext]; + unsigned state; + { + std::unique_lock<std::mutex> lock(w->mu); + state = w->state; + w->state = Waiter::kSignaled; + } + // Avoid notifying if it wasn't waiting. + if (state == Waiter::kWaiting) w->cv.notify_one(); + } + } + + EventCount(const EventCount&) = delete; + void operator=(const EventCount&) = delete; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_ diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/NonBlockingThreadPool.h b/src/EigenUnsupported/CXX11/src/ThreadPool/NonBlockingThreadPool.h new file mode 100644 index 0000000..23a2b54 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/NonBlockingThreadPool.h @@ -0,0 +1,486 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H +#define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H + +namespace Eigen { + +template <typename Environment> +class ThreadPoolTempl : public Eigen::ThreadPoolInterface { + public: + typedef typename Environment::Task Task; + typedef RunQueue<Task, 1024> Queue; + + ThreadPoolTempl(int num_threads, Environment env = Environment()) + : ThreadPoolTempl(num_threads, true, env) {} + + ThreadPoolTempl(int num_threads, bool allow_spinning, + Environment env = Environment()) + : env_(env), + num_threads_(num_threads), + allow_spinning_(allow_spinning), + thread_data_(num_threads), + all_coprimes_(num_threads), + waiters_(num_threads), + global_steal_partition_(EncodePartition(0, num_threads_)), + blocked_(0), + spinning_(0), + done_(false), + cancelled_(false), + ec_(waiters_) { + waiters_.resize(num_threads_); + // Calculate coprimes of all numbers [1, num_threads]. + // Coprimes are used for random walks over all threads in Steal + // and NonEmptyQueueIndex. Iteration is based on the fact that if we take + // a random starting thread index t and calculate num_threads - 1 subsequent + // indices as (t + coprime) % num_threads, we will cover all threads without + // repetitions (effectively getting a presudo-random permutation of thread + // indices). + eigen_plain_assert(num_threads_ < kMaxThreads); + for (int i = 1; i <= num_threads_; ++i) { + all_coprimes_.emplace_back(i); + ComputeCoprimes(i, &all_coprimes_.back()); + } +#ifndef EIGEN_THREAD_LOCAL + init_barrier_.reset(new Barrier(num_threads_)); +#endif + thread_data_.resize(num_threads_); + for (int i = 0; i < num_threads_; i++) { + SetStealPartition(i, EncodePartition(0, num_threads_)); + thread_data_[i].thread.reset( + env_.CreateThread([this, i]() { WorkerLoop(i); })); + } +#ifndef EIGEN_THREAD_LOCAL + // Wait for workers to initialize per_thread_map_. Otherwise we might race + // with them in Schedule or CurrentThreadId. + init_barrier_->Wait(); +#endif + } + + ~ThreadPoolTempl() { + done_ = true; + + // Now if all threads block without work, they will start exiting. + // But note that threads can continue to work arbitrary long, + // block, submit new work, unblock and otherwise live full life. + if (!cancelled_) { + ec_.Notify(true); + } else { + // Since we were cancelled, there might be entries in the queues. + // Empty them to prevent their destructor from asserting. + for (size_t i = 0; i < thread_data_.size(); i++) { + thread_data_[i].queue.Flush(); + } + } + // Join threads explicitly (by destroying) to avoid destruction order within + // this class. + for (size_t i = 0; i < thread_data_.size(); ++i) + thread_data_[i].thread.reset(); + } + + void SetStealPartitions(const std::vector<std::pair<unsigned, unsigned>>& partitions) { + eigen_plain_assert(partitions.size() == static_cast<std::size_t>(num_threads_)); + + // Pass this information to each thread queue. + for (int i = 0; i < num_threads_; i++) { + const auto& pair = partitions[i]; + unsigned start = pair.first, end = pair.second; + AssertBounds(start, end); + unsigned val = EncodePartition(start, end); + SetStealPartition(i, val); + } + } + + void Schedule(std::function<void()> fn) EIGEN_OVERRIDE { + ScheduleWithHint(std::move(fn), 0, num_threads_); + } + + void ScheduleWithHint(std::function<void()> fn, int start, + int limit) override { + Task t = env_.CreateTask(std::move(fn)); + PerThread* pt = GetPerThread(); + if (pt->pool == this) { + // Worker thread of this pool, push onto the thread's queue. + Queue& q = thread_data_[pt->thread_id].queue; + t = q.PushFront(std::move(t)); + } else { + // A free-standing thread (or worker of another pool), push onto a random + // queue. + eigen_plain_assert(start < limit); + eigen_plain_assert(limit <= num_threads_); + int num_queues = limit - start; + int rnd = Rand(&pt->rand) % num_queues; + eigen_plain_assert(start + rnd < limit); + Queue& q = thread_data_[start + rnd].queue; + t = q.PushBack(std::move(t)); + } + // Note: below we touch this after making w available to worker threads. + // Strictly speaking, this can lead to a racy-use-after-free. Consider that + // Schedule is called from a thread that is neither main thread nor a worker + // thread of this pool. Then, execution of w directly or indirectly + // completes overall computations, which in turn leads to destruction of + // this. We expect that such scenario is prevented by program, that is, + // this is kept alive while any threads can potentially be in Schedule. + if (!t.f) { + ec_.Notify(false); + } else { + env_.ExecuteTask(t); // Push failed, execute directly. + } + } + + void Cancel() EIGEN_OVERRIDE { + cancelled_ = true; + done_ = true; + + // Let each thread know it's been cancelled. +#ifdef EIGEN_THREAD_ENV_SUPPORTS_CANCELLATION + for (size_t i = 0; i < thread_data_.size(); i++) { + thread_data_[i].thread->OnCancel(); + } +#endif + + // Wake up the threads without work to let them exit on their own. + ec_.Notify(true); + } + + int NumThreads() const EIGEN_FINAL { return num_threads_; } + + int CurrentThreadId() const EIGEN_FINAL { + const PerThread* pt = const_cast<ThreadPoolTempl*>(this)->GetPerThread(); + if (pt->pool == this) { + return pt->thread_id; + } else { + return -1; + } + } + + private: + // Create a single atomic<int> that encodes start and limit information for + // each thread. + // We expect num_threads_ < 65536, so we can store them in a single + // std::atomic<unsigned>. + // Exposed publicly as static functions so that external callers can reuse + // this encode/decode logic for maintaining their own thread-safe copies of + // scheduling and steal domain(s). + static const int kMaxPartitionBits = 16; + static const int kMaxThreads = 1 << kMaxPartitionBits; + + inline unsigned EncodePartition(unsigned start, unsigned limit) { + return (start << kMaxPartitionBits) | limit; + } + + inline void DecodePartition(unsigned val, unsigned* start, unsigned* limit) { + *limit = val & (kMaxThreads - 1); + val >>= kMaxPartitionBits; + *start = val; + } + + void AssertBounds(int start, int end) { + eigen_plain_assert(start >= 0); + eigen_plain_assert(start < end); // non-zero sized partition + eigen_plain_assert(end <= num_threads_); + } + + inline void SetStealPartition(size_t i, unsigned val) { + thread_data_[i].steal_partition.store(val, std::memory_order_relaxed); + } + + inline unsigned GetStealPartition(int i) { + return thread_data_[i].steal_partition.load(std::memory_order_relaxed); + } + + void ComputeCoprimes(int N, MaxSizeVector<unsigned>* coprimes) { + for (int i = 1; i <= N; i++) { + unsigned a = i; + unsigned b = N; + // If GCD(a, b) == 1, then a and b are coprimes. + while (b != 0) { + unsigned tmp = a; + a = b; + b = tmp % b; + } + if (a == 1) { + coprimes->push_back(i); + } + } + } + + typedef typename Environment::EnvThread Thread; + + struct PerThread { + constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) {} + ThreadPoolTempl* pool; // Parent pool, or null for normal threads. + uint64_t rand; // Random generator state. + int thread_id; // Worker thread index in pool. +#ifndef EIGEN_THREAD_LOCAL + // Prevent false sharing. + char pad_[128]; +#endif + }; + + struct ThreadData { + constexpr ThreadData() : thread(), steal_partition(0), queue() {} + std::unique_ptr<Thread> thread; + std::atomic<unsigned> steal_partition; + Queue queue; + }; + + Environment env_; + const int num_threads_; + const bool allow_spinning_; + MaxSizeVector<ThreadData> thread_data_; + MaxSizeVector<MaxSizeVector<unsigned>> all_coprimes_; + MaxSizeVector<EventCount::Waiter> waiters_; + unsigned global_steal_partition_; + std::atomic<unsigned> blocked_; + std::atomic<bool> spinning_; + std::atomic<bool> done_; + std::atomic<bool> cancelled_; + EventCount ec_; +#ifndef EIGEN_THREAD_LOCAL + std::unique_ptr<Barrier> init_barrier_; + std::mutex per_thread_map_mutex_; // Protects per_thread_map_. + std::unordered_map<uint64_t, std::unique_ptr<PerThread>> per_thread_map_; +#endif + + // Main worker thread loop. + void WorkerLoop(int thread_id) { +#ifndef EIGEN_THREAD_LOCAL + std::unique_ptr<PerThread> new_pt(new PerThread()); + per_thread_map_mutex_.lock(); + bool insertOK = per_thread_map_.emplace(GlobalThreadIdHash(), std::move(new_pt)).second; + eigen_plain_assert(insertOK); + EIGEN_UNUSED_VARIABLE(insertOK); + per_thread_map_mutex_.unlock(); + init_barrier_->Notify(); + init_barrier_->Wait(); +#endif + PerThread* pt = GetPerThread(); + pt->pool = this; + pt->rand = GlobalThreadIdHash(); + pt->thread_id = thread_id; + Queue& q = thread_data_[thread_id].queue; + EventCount::Waiter* waiter = &waiters_[thread_id]; + // TODO(dvyukov,rmlarsen): The time spent in NonEmptyQueueIndex() is + // proportional to num_threads_ and we assume that new work is scheduled at + // a constant rate, so we set spin_count to 5000 / num_threads_. The + // constant was picked based on a fair dice roll, tune it. + const int spin_count = + allow_spinning_ && num_threads_ > 0 ? 5000 / num_threads_ : 0; + if (num_threads_ == 1) { + // For num_threads_ == 1 there is no point in going through the expensive + // steal loop. Moreover, since NonEmptyQueueIndex() calls PopBack() on the + // victim queues it might reverse the order in which ops are executed + // compared to the order in which they are scheduled, which tends to be + // counter-productive for the types of I/O workloads the single thread + // pools tend to be used for. + while (!cancelled_) { + Task t = q.PopFront(); + for (int i = 0; i < spin_count && !t.f; i++) { + if (!cancelled_.load(std::memory_order_relaxed)) { + t = q.PopFront(); + } + } + if (!t.f) { + if (!WaitForWork(waiter, &t)) { + return; + } + } + if (t.f) { + env_.ExecuteTask(t); + } + } + } else { + while (!cancelled_) { + Task t = q.PopFront(); + if (!t.f) { + t = LocalSteal(); + if (!t.f) { + t = GlobalSteal(); + if (!t.f) { + // Leave one thread spinning. This reduces latency. + if (allow_spinning_ && !spinning_ && !spinning_.exchange(true)) { + for (int i = 0; i < spin_count && !t.f; i++) { + if (!cancelled_.load(std::memory_order_relaxed)) { + t = GlobalSteal(); + } else { + return; + } + } + spinning_ = false; + } + if (!t.f) { + if (!WaitForWork(waiter, &t)) { + return; + } + } + } + } + } + if (t.f) { + env_.ExecuteTask(t); + } + } + } + } + + // Steal tries to steal work from other worker threads in the range [start, + // limit) in best-effort manner. + Task Steal(unsigned start, unsigned limit) { + PerThread* pt = GetPerThread(); + const size_t size = limit - start; + unsigned r = Rand(&pt->rand); + // Reduce r into [0, size) range, this utilizes trick from + // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ + eigen_plain_assert(all_coprimes_[size - 1].size() < (1<<30)); + unsigned victim = ((uint64_t)r * (uint64_t)size) >> 32; + unsigned index = ((uint64_t) all_coprimes_[size - 1].size() * (uint64_t)r) >> 32; + unsigned inc = all_coprimes_[size - 1][index]; + + for (unsigned i = 0; i < size; i++) { + eigen_plain_assert(start + victim < limit); + Task t = thread_data_[start + victim].queue.PopBack(); + if (t.f) { + return t; + } + victim += inc; + if (victim >= size) { + victim -= size; + } + } + return Task(); + } + + // Steals work within threads belonging to the partition. + Task LocalSteal() { + PerThread* pt = GetPerThread(); + unsigned partition = GetStealPartition(pt->thread_id); + // If thread steal partition is the same as global partition, there is no + // need to go through the steal loop twice. + if (global_steal_partition_ == partition) return Task(); + unsigned start, limit; + DecodePartition(partition, &start, &limit); + AssertBounds(start, limit); + + return Steal(start, limit); + } + + // Steals work from any other thread in the pool. + Task GlobalSteal() { + return Steal(0, num_threads_); + } + + + // WaitForWork blocks until new work is available (returns true), or if it is + // time to exit (returns false). Can optionally return a task to execute in t + // (in such case t.f != nullptr on return). + bool WaitForWork(EventCount::Waiter* waiter, Task* t) { + eigen_plain_assert(!t->f); + // We already did best-effort emptiness check in Steal, so prepare for + // blocking. + ec_.Prewait(); + // Now do a reliable emptiness check. + int victim = NonEmptyQueueIndex(); + if (victim != -1) { + ec_.CancelWait(); + if (cancelled_) { + return false; + } else { + *t = thread_data_[victim].queue.PopBack(); + return true; + } + } + // Number of blocked threads is used as termination condition. + // If we are shutting down and all worker threads blocked without work, + // that's we are done. + blocked_++; + // TODO is blocked_ required to be unsigned? + if (done_ && blocked_ == static_cast<unsigned>(num_threads_)) { + ec_.CancelWait(); + // Almost done, but need to re-check queues. + // Consider that all queues are empty and all worker threads are preempted + // right after incrementing blocked_ above. Now a free-standing thread + // submits work and calls destructor (which sets done_). If we don't + // re-check queues, we will exit leaving the work unexecuted. + if (NonEmptyQueueIndex() != -1) { + // Note: we must not pop from queues before we decrement blocked_, + // otherwise the following scenario is possible. Consider that instead + // of checking for emptiness we popped the only element from queues. + // Now other worker threads can start exiting, which is bad if the + // work item submits other work. So we just check emptiness here, + // which ensures that all worker threads exit at the same time. + blocked_--; + return true; + } + // Reached stable termination state. + ec_.Notify(true); + return false; + } + ec_.CommitWait(waiter); + blocked_--; + return true; + } + + int NonEmptyQueueIndex() { + PerThread* pt = GetPerThread(); + // We intentionally design NonEmptyQueueIndex to steal work from + // anywhere in the queue so threads don't block in WaitForWork() forever + // when all threads in their partition go to sleep. Steal is still local. + const size_t size = thread_data_.size(); + unsigned r = Rand(&pt->rand); + unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()]; + unsigned victim = r % size; + for (unsigned i = 0; i < size; i++) { + if (!thread_data_[victim].queue.Empty()) { + return victim; + } + victim += inc; + if (victim >= size) { + victim -= size; + } + } + return -1; + } + + static EIGEN_STRONG_INLINE uint64_t GlobalThreadIdHash() { + return std::hash<std::thread::id>()(std::this_thread::get_id()); + } + + EIGEN_STRONG_INLINE PerThread* GetPerThread() { +#ifndef EIGEN_THREAD_LOCAL + static PerThread dummy; + auto it = per_thread_map_.find(GlobalThreadIdHash()); + if (it == per_thread_map_.end()) { + return &dummy; + } else { + return it->second.get(); + } +#else + EIGEN_THREAD_LOCAL PerThread per_thread_; + PerThread* pt = &per_thread_; + return pt; +#endif + } + + static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) { + uint64_t current = *state; + // Update the internal state + *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL; + // Generate the random output (using the PCG-XSH-RS scheme) + return static_cast<unsigned>((current ^ (current >> 22)) >> + (22 + (current >> 61))); + } +}; + +typedef ThreadPoolTempl<StlThreadEnvironment> ThreadPool; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/RunQueue.h b/src/EigenUnsupported/CXX11/src/ThreadPool/RunQueue.h new file mode 100644 index 0000000..b572ebc --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/RunQueue.h @@ -0,0 +1,236 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_ +#define EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_ + +namespace Eigen { + +// RunQueue is a fixed-size, partially non-blocking deque or Work items. +// Operations on front of the queue must be done by a single thread (owner), +// operations on back of the queue can be done by multiple threads concurrently. +// +// Algorithm outline: +// All remote threads operating on the queue back are serialized by a mutex. +// This ensures that at most two threads access state: owner and one remote +// thread (Size aside). The algorithm ensures that the occupied region of the +// underlying array is logically continuous (can wraparound, but no stray +// occupied elements). Owner operates on one end of this region, remote thread +// operates on the other end. Synchronization between these threads +// (potential consumption of the last element and take up of the last empty +// element) happens by means of state variable in each element. States are: +// empty, busy (in process of insertion of removal) and ready. Threads claim +// elements (empty->busy and ready->busy transitions) by means of a CAS +// operation. The finishing transition (busy->empty and busy->ready) are done +// with plain store as the element is exclusively owned by the current thread. +// +// Note: we could permit only pointers as elements, then we would not need +// separate state variable as null/non-null pointer value would serve as state, +// but that would require malloc/free per operation for large, complex values +// (and this is designed to store std::function<()>). +template <typename Work, unsigned kSize> +class RunQueue { + public: + RunQueue() : front_(0), back_(0) { + // require power-of-two for fast masking + eigen_plain_assert((kSize & (kSize - 1)) == 0); + eigen_plain_assert(kSize > 2); // why would you do this? + eigen_plain_assert(kSize <= (64 << 10)); // leave enough space for counter + for (unsigned i = 0; i < kSize; i++) + array_[i].state.store(kEmpty, std::memory_order_relaxed); + } + + ~RunQueue() { eigen_plain_assert(Size() == 0); } + + // PushFront inserts w at the beginning of the queue. + // If queue is full returns w, otherwise returns default-constructed Work. + Work PushFront(Work w) { + unsigned front = front_.load(std::memory_order_relaxed); + Elem* e = &array_[front & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kEmpty || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return w; + front_.store(front + 1 + (kSize << 1), std::memory_order_relaxed); + e->w = std::move(w); + e->state.store(kReady, std::memory_order_release); + return Work(); + } + + // PopFront removes and returns the first element in the queue. + // If the queue was empty returns default-constructed Work. + Work PopFront() { + unsigned front = front_.load(std::memory_order_relaxed); + Elem* e = &array_[(front - 1) & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kReady || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return Work(); + Work w = std::move(e->w); + e->state.store(kEmpty, std::memory_order_release); + front = ((front - 1) & kMask2) | (front & ~kMask2); + front_.store(front, std::memory_order_relaxed); + return w; + } + + // PushBack adds w at the end of the queue. + // If queue is full returns w, otherwise returns default-constructed Work. + Work PushBack(Work w) { + std::unique_lock<std::mutex> lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + Elem* e = &array_[(back - 1) & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kEmpty || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return w; + back = ((back - 1) & kMask2) | (back & ~kMask2); + back_.store(back, std::memory_order_relaxed); + e->w = std::move(w); + e->state.store(kReady, std::memory_order_release); + return Work(); + } + + // PopBack removes and returns the last elements in the queue. + Work PopBack() { + if (Empty()) return Work(); + std::unique_lock<std::mutex> lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + Elem* e = &array_[back & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (s != kReady || + !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire)) + return Work(); + Work w = std::move(e->w); + e->state.store(kEmpty, std::memory_order_release); + back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed); + return w; + } + + // PopBackHalf removes and returns half last elements in the queue. + // Returns number of elements removed. + unsigned PopBackHalf(std::vector<Work>* result) { + if (Empty()) return 0; + std::unique_lock<std::mutex> lock(mutex_); + unsigned back = back_.load(std::memory_order_relaxed); + unsigned size = Size(); + unsigned mid = back; + if (size > 1) mid = back + (size - 1) / 2; + unsigned n = 0; + unsigned start = 0; + for (; static_cast<int>(mid - back) >= 0; mid--) { + Elem* e = &array_[mid & kMask]; + uint8_t s = e->state.load(std::memory_order_relaxed); + if (n == 0) { + if (s != kReady || !e->state.compare_exchange_strong( + s, kBusy, std::memory_order_acquire)) + continue; + start = mid; + } else { + // Note: no need to store temporal kBusy, we exclusively own these + // elements. + eigen_plain_assert(s == kReady); + } + result->push_back(std::move(e->w)); + e->state.store(kEmpty, std::memory_order_release); + n++; + } + if (n != 0) + back_.store(start + 1 + (kSize << 1), std::memory_order_relaxed); + return n; + } + + // Size returns current queue size. + // Can be called by any thread at any time. + unsigned Size() const { return SizeOrNotEmpty<true>(); } + + // Empty tests whether container is empty. + // Can be called by any thread at any time. + bool Empty() const { return SizeOrNotEmpty<false>() == 0; } + + // Delete all the elements from the queue. + void Flush() { + while (!Empty()) { + PopFront(); + } + } + + private: + static const unsigned kMask = kSize - 1; + static const unsigned kMask2 = (kSize << 1) - 1; + struct Elem { + std::atomic<uint8_t> state; + Work w; + }; + enum { + kEmpty, + kBusy, + kReady, + }; + std::mutex mutex_; + // Low log(kSize) + 1 bits in front_ and back_ contain rolling index of + // front/back, respectively. The remaining bits contain modification counters + // that are incremented on Push operations. This allows us to (1) distinguish + // between empty and full conditions (if we would use log(kSize) bits for + // position, these conditions would be indistinguishable); (2) obtain + // consistent snapshot of front_/back_ for Size operation using the + // modification counters. + std::atomic<unsigned> front_; + std::atomic<unsigned> back_; + Elem array_[kSize]; + + // SizeOrNotEmpty returns current queue size; if NeedSizeEstimate is false, + // only whether the size is 0 is guaranteed to be correct. + // Can be called by any thread at any time. + template<bool NeedSizeEstimate> + unsigned SizeOrNotEmpty() const { + // Emptiness plays critical role in thread pool blocking. So we go to great + // effort to not produce false positives (claim non-empty queue as empty). + unsigned front = front_.load(std::memory_order_acquire); + for (;;) { + // Capture a consistent snapshot of front/tail. + unsigned back = back_.load(std::memory_order_acquire); + unsigned front1 = front_.load(std::memory_order_relaxed); + if (front != front1) { + front = front1; + std::atomic_thread_fence(std::memory_order_acquire); + continue; + } + if (NeedSizeEstimate) { + return CalculateSize(front, back); + } else { + // This value will be 0 if the queue is empty, and undefined otherwise. + unsigned maybe_zero = ((front ^ back) & kMask2); + // Queue size estimate must agree with maybe zero check on the queue + // empty/non-empty state. + eigen_assert((CalculateSize(front, back) == 0) == (maybe_zero == 0)); + return maybe_zero; + } + } + } + + EIGEN_ALWAYS_INLINE + unsigned CalculateSize(unsigned front, unsigned back) const { + int size = (front & kMask2) - (back & kMask2); + // Fix overflow. + if (size < 0) size += 2 * kSize; + // Order of modification in push/pop is crafted to make the queue look + // larger than it is during concurrent modifications. E.g. push can + // increment size before the corresponding pop has decremented it. + // So the computed size can be up to kSize + 1, fix it. + if (size > static_cast<int>(kSize)) size = kSize; + return static_cast<unsigned>(size); + } + + RunQueue(const RunQueue&) = delete; + void operator=(const RunQueue&) = delete; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_ diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadCancel.h b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadCancel.h new file mode 100644 index 0000000..a05685f --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadCancel.h @@ -0,0 +1,23 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H +#define EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H + +// Try to come up with a portable way to cancel a thread +#if EIGEN_OS_GNULINUX + #define EIGEN_THREAD_CANCEL(t) \ + pthread_cancel(t.native_handle()); + #define EIGEN_SUPPORTS_THREAD_CANCELLATION 1 +#else +#define EIGEN_THREAD_CANCEL(t) +#endif + + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_CANCEL_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadEnvironment.h b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadEnvironment.h new file mode 100644 index 0000000..d94a064 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadEnvironment.h @@ -0,0 +1,40 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H +#define EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H + +namespace Eigen { + +struct StlThreadEnvironment { + struct Task { + std::function<void()> f; + }; + + // EnvThread constructor must start the thread, + // destructor must join the thread. + class EnvThread { + public: + EnvThread(std::function<void()> f) : thr_(std::move(f)) {} + ~EnvThread() { thr_.join(); } + // This function is called when the threadpool is cancelled. + void OnCancel() { } + + private: + std::thread thr_; + }; + + EnvThread* CreateThread(std::function<void()> f) { return new EnvThread(std::move(f)); } + Task CreateTask(std::function<void()> f) { return Task{std::move(f)}; } + void ExecuteTask(const Task& t) { t.f(); } +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadLocal.h b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadLocal.h new file mode 100644 index 0000000..4e68474 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadLocal.h @@ -0,0 +1,301 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H +#define EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H + +#ifdef EIGEN_AVOID_THREAD_LOCAL + +#ifdef EIGEN_THREAD_LOCAL +#undef EIGEN_THREAD_LOCAL +#endif + +#else + +#if EIGEN_MAX_CPP_VER >= 11 && \ + ((EIGEN_COMP_GNUC && EIGEN_GNUC_AT_LEAST(4, 8)) || \ + __has_feature(cxx_thread_local) || \ + (EIGEN_COMP_MSVC >= 1900) ) +#define EIGEN_THREAD_LOCAL static thread_local +#endif + +// Disable TLS for Apple and Android builds with older toolchains. +#if defined(__APPLE__) +// Included for TARGET_OS_IPHONE, __IPHONE_OS_VERSION_MIN_REQUIRED, +// __IPHONE_8_0. +#include <Availability.h> +#include <TargetConditionals.h> +#endif +// Checks whether C++11's `thread_local` storage duration specifier is +// supported. +#if defined(__apple_build_version__) && \ + ((__apple_build_version__ < 8000042) || \ + (TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_9_0)) +// Notes: Xcode's clang did not support `thread_local` until version +// 8, and even then not for all iOS < 9.0. +#undef EIGEN_THREAD_LOCAL + +#elif defined(__ANDROID__) && EIGEN_COMP_CLANG +// There are platforms for which TLS should not be used even though the compiler +// makes it seem like it's supported (Android NDK < r12b for example). +// This is primarily because of linker problems and toolchain misconfiguration: +// TLS isn't supported until NDK r12b per +// https://developer.android.com/ndk/downloads/revision_history.html +// Since NDK r16, `__NDK_MAJOR__` and `__NDK_MINOR__` are defined in +// <android/ndk-version.h>. For NDK < r16, users should define these macros, +// e.g. `-D__NDK_MAJOR__=11 -D__NKD_MINOR__=0` for NDK r11. +#if __has_include(<android/ndk-version.h>) +#include <android/ndk-version.h> +#endif // __has_include(<android/ndk-version.h>) +#if defined(__ANDROID__) && defined(__clang__) && defined(__NDK_MAJOR__) && \ + defined(__NDK_MINOR__) && \ + ((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1))) +#undef EIGEN_THREAD_LOCAL +#endif +#endif // defined(__ANDROID__) && defined(__clang__) + +#endif // EIGEN_AVOID_THREAD_LOCAL + +namespace Eigen { + +namespace internal { +template <typename T> +struct ThreadLocalNoOpInitialize { + void operator()(T&) const {} +}; + +template <typename T> +struct ThreadLocalNoOpRelease { + void operator()(T&) const {} +}; + +} // namespace internal + +// Thread local container for elements of type T, that does not use thread local +// storage. As long as the number of unique threads accessing this storage +// is smaller than `capacity_`, it is lock-free and wait-free. Otherwise it will +// use a mutex for synchronization. +// +// Type `T` has to be default constructible, and by default each thread will get +// a default constructed value. It is possible to specify custom `initialize` +// callable, that will be called lazily from each thread accessing this object, +// and will be passed a default initialized object of type `T`. Also it's +// possible to pass a custom `release` callable, that will be invoked before +// calling ~T(). +// +// Example: +// +// struct Counter { +// int value = 0; +// } +// +// Eigen::ThreadLocal<Counter> counter(10); +// +// // Each thread will have access to it's own counter object. +// Counter& cnt = counter.local(); +// cnt++; +// +// WARNING: Eigen::ThreadLocal uses the OS-specific value returned by +// std::this_thread::get_id() to identify threads. This value is not guaranteed +// to be unique except for the life of the thread. A newly created thread may +// get an OS-specific ID equal to that of an already destroyed thread. +// +// Somewhat similar to TBB thread local storage, with similar restrictions: +// https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/enumerable_thread_specific_cls.html +// +template <typename T, + typename Initialize = internal::ThreadLocalNoOpInitialize<T>, + typename Release = internal::ThreadLocalNoOpRelease<T>> +class ThreadLocal { + // We preallocate default constructed elements in MaxSizedVector. + static_assert(std::is_default_constructible<T>::value, + "ThreadLocal data type must be default constructible"); + + public: + explicit ThreadLocal(int capacity) + : ThreadLocal(capacity, internal::ThreadLocalNoOpInitialize<T>(), + internal::ThreadLocalNoOpRelease<T>()) {} + + ThreadLocal(int capacity, Initialize initialize) + : ThreadLocal(capacity, std::move(initialize), + internal::ThreadLocalNoOpRelease<T>()) {} + + ThreadLocal(int capacity, Initialize initialize, Release release) + : initialize_(std::move(initialize)), + release_(std::move(release)), + capacity_(capacity), + data_(capacity_), + ptr_(capacity_), + filled_records_(0) { + eigen_assert(capacity_ >= 0); + data_.resize(capacity_); + for (int i = 0; i < capacity_; ++i) { + ptr_.emplace_back(nullptr); + } + } + + T& local() { + std::thread::id this_thread = std::this_thread::get_id(); + if (capacity_ == 0) return SpilledLocal(this_thread); + + std::size_t h = std::hash<std::thread::id>()(this_thread); + const int start_idx = h % capacity_; + + // NOTE: From the definition of `std::this_thread::get_id()` it is + // guaranteed that we never can have concurrent insertions with the same key + // to our hash-map like data structure. If we didn't find an element during + // the initial traversal, it's guaranteed that no one else could have + // inserted it while we are in this function. This allows to massively + // simplify out lock-free insert-only hash map. + + // Check if we already have an element for `this_thread`. + int idx = start_idx; + while (ptr_[idx].load() != nullptr) { + ThreadIdAndValue& record = *(ptr_[idx].load()); + if (record.thread_id == this_thread) return record.value; + + idx += 1; + if (idx >= capacity_) idx -= capacity_; + if (idx == start_idx) break; + } + + // If we are here, it means that we found an insertion point in lookup + // table at `idx`, or we did a full traversal and table is full. + + // If lock-free storage is full, fallback on mutex. + if (filled_records_.load() >= capacity_) return SpilledLocal(this_thread); + + // We double check that we still have space to insert an element into a lock + // free storage. If old value in `filled_records_` is larger than the + // records capacity, it means that some other thread added an element while + // we were traversing lookup table. + int insertion_index = + filled_records_.fetch_add(1, std::memory_order_relaxed); + if (insertion_index >= capacity_) return SpilledLocal(this_thread); + + // At this point it's guaranteed that we can access to + // data_[insertion_index_] without a data race. + data_[insertion_index].thread_id = this_thread; + initialize_(data_[insertion_index].value); + + // That's the pointer we'll put into the lookup table. + ThreadIdAndValue* inserted = &data_[insertion_index]; + + // We'll use nullptr pointer to ThreadIdAndValue in a compare-and-swap loop. + ThreadIdAndValue* empty = nullptr; + + // Now we have to find an insertion point into the lookup table. We start + // from the `idx` that was identified as an insertion point above, it's + // guaranteed that we will have an empty record somewhere in a lookup table + // (because we created a record in the `data_`). + const int insertion_idx = idx; + + do { + // Always start search from the original insertion candidate. + idx = insertion_idx; + while (ptr_[idx].load() != nullptr) { + idx += 1; + if (idx >= capacity_) idx -= capacity_; + // If we did a full loop, it means that we don't have any free entries + // in the lookup table, and this means that something is terribly wrong. + eigen_assert(idx != insertion_idx); + } + // Atomic CAS of the pointer guarantees that any other thread, that will + // follow this pointer will see all the mutations in the `data_`. + } while (!ptr_[idx].compare_exchange_weak(empty, inserted)); + + return inserted->value; + } + + // WARN: It's not thread safe to call it concurrently with `local()`. + void ForEach(std::function<void(std::thread::id, T&)> f) { + // Reading directly from `data_` is unsafe, because only CAS to the + // record in `ptr_` makes all changes visible to other threads. + for (auto& ptr : ptr_) { + ThreadIdAndValue* record = ptr.load(); + if (record == nullptr) continue; + f(record->thread_id, record->value); + } + + // We did not spill into the map based storage. + if (filled_records_.load(std::memory_order_relaxed) < capacity_) return; + + // Adds a happens before edge from the last call to SpilledLocal(). + std::unique_lock<std::mutex> lock(mu_); + for (auto& kv : per_thread_map_) { + f(kv.first, kv.second); + } + } + + // WARN: It's not thread safe to call it concurrently with `local()`. + ~ThreadLocal() { + // Reading directly from `data_` is unsafe, because only CAS to the record + // in `ptr_` makes all changes visible to other threads. + for (auto& ptr : ptr_) { + ThreadIdAndValue* record = ptr.load(); + if (record == nullptr) continue; + release_(record->value); + } + + // We did not spill into the map based storage. + if (filled_records_.load(std::memory_order_relaxed) < capacity_) return; + + // Adds a happens before edge from the last call to SpilledLocal(). + std::unique_lock<std::mutex> lock(mu_); + for (auto& kv : per_thread_map_) { + release_(kv.second); + } + } + + private: + struct ThreadIdAndValue { + std::thread::id thread_id; + T value; + }; + + // Use unordered map guarded by a mutex when lock free storage is full. + T& SpilledLocal(std::thread::id this_thread) { + std::unique_lock<std::mutex> lock(mu_); + + auto it = per_thread_map_.find(this_thread); + if (it == per_thread_map_.end()) { + auto result = per_thread_map_.emplace(this_thread, T()); + eigen_assert(result.second); + initialize_((*result.first).second); + return (*result.first).second; + } else { + return it->second; + } + } + + Initialize initialize_; + Release release_; + const int capacity_; + + // Storage that backs lock-free lookup table `ptr_`. Records stored in this + // storage contiguously starting from index 0. + MaxSizeVector<ThreadIdAndValue> data_; + + // Atomic pointers to the data stored in `data_`. Used as a lookup table for + // linear probing hash map (https://en.wikipedia.org/wiki/Linear_probing). + MaxSizeVector<std::atomic<ThreadIdAndValue*>> ptr_; + + // Number of records stored in the `data_`. + std::atomic<int> filled_records_; + + // We fallback on per thread map if lock-free storage is full. In practice + // this should never happen, if `capacity_` is a reasonable estimate of the + // number of threads running in a system. + std::mutex mu_; // Protects per_thread_map_. + std::unordered_map<std::thread::id, T> per_thread_map_; +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadPoolInterface.h b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadPoolInterface.h new file mode 100644 index 0000000..25030dc --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadPoolInterface.h @@ -0,0 +1,48 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H +#define EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H + +namespace Eigen { + +// This defines an interface that ThreadPoolDevice can take to use +// custom thread pools underneath. +class ThreadPoolInterface { + public: + // Submits a closure to be run by a thread in the pool. + virtual void Schedule(std::function<void()> fn) = 0; + + // Submits a closure to be run by threads in the range [start, end) in the + // pool. + virtual void ScheduleWithHint(std::function<void()> fn, int /*start*/, + int /*end*/) { + // Just defer to Schedule in case sub-classes aren't interested in + // overriding this functionality. + Schedule(fn); + } + + // If implemented, stop processing the closures that have been enqueued. + // Currently running closures may still be processed. + // If not implemented, does nothing. + virtual void Cancel() {} + + // Returns the number of threads in the pool. + virtual int NumThreads() const = 0; + + // Returns a logical thread index between 0 and NumThreads() - 1 if called + // from one of the threads in the pool. Returns -1 otherwise. + virtual int CurrentThreadId() const = 0; + + virtual ~ThreadPoolInterface() {} +}; + +} // namespace Eigen + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H diff --git a/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadYield.h b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadYield.h new file mode 100644 index 0000000..a859c7b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/ThreadPool/ThreadYield.h @@ -0,0 +1,20 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H +#define EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H + +// Try to come up with a portable way to yield +#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7) +#define EIGEN_THREAD_YIELD() sched_yield() +#else +#define EIGEN_THREAD_YIELD() std::this_thread::yield() +#endif + +#endif // EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H diff --git a/src/EigenUnsupported/CXX11/src/util/CXX11Meta.h b/src/EigenUnsupported/CXX11/src/util/CXX11Meta.h new file mode 100644 index 0000000..149ceaf --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/util/CXX11Meta.h @@ -0,0 +1,537 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11META_H +#define EIGEN_CXX11META_H + +#include <vector> +#include "EmulateArray.h" + +#include "CXX11Workarounds.h" + +namespace Eigen { + +namespace internal { + +/** \internal + * \file CXX11/util/CXX11Meta.h + * This file contains generic metaprogramming classes which are not specifically related to Eigen. + * This file expands upon Core/util/Meta.h and adds support for C++11 specific features. + */ + +template<typename... tt> +struct type_list { constexpr static int count = sizeof...(tt); }; + +template<typename t, typename... tt> +struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; }; + +template<typename T, T... nn> +struct numeric_list { constexpr static std::size_t count = sizeof...(nn); }; + +template<typename T, T n, T... nn> +struct numeric_list<T, n, nn...> { static const std::size_t count = sizeof...(nn) + 1; const static T first_value = n; }; + +#ifndef EIGEN_PARSED_BY_DOXYGEN +/* numeric list constructors + * + * equivalencies: + * constructor result + * typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4> + * typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0> + * typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4> + * typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0> + */ + +template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {}; +template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; + +template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {}; +template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; }; + +template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {}; +template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; }; + +template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {}; +template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; }; + +/* list manipulation: concatenate */ + +template<class a, class b> struct concat; + +template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; }; +template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; }; + +template<typename... p> struct mconcat; +template<typename a> struct mconcat<a> { typedef a type; }; +template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {}; +template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {}; + +/* list manipulation: extract slices */ + +template<int n, typename x> struct take; +template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {}; +template<int n> struct take<n, type_list<>> { typedef type_list<> type; }; +template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; }; +template<> struct take<0, type_list<>> { typedef type_list<> type; }; + +template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {}; +template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; }; +template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; }; +template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; }; + +template<typename T, int n, T... ii> struct h_skip_helper_numeric; +template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {}; +template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; }; +template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; }; +template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; }; + +template<int n, typename... tt> struct h_skip_helper_type; +template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {}; +template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; }; +template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; }; +template<> struct h_skip_helper_type<0> { typedef type_list<> type; }; +#endif //not EIGEN_PARSED_BY_DOXYGEN + +template<int n> +struct h_skip { + template<typename T, T... ii> + constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); } + template<typename... tt> + constexpr static EIGEN_STRONG_INLINE typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); } +}; + +template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; }; + +template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {}; + +/* list manipulation: retrieve single element from list */ + +template<int n, typename x> struct get; + +template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {}; +template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; }; + +template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {}; +template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; }; + +template<std::size_t n, typename T, T a, T... as> constexpr T array_get(const numeric_list<T, a, as...>&) { + return get<(int)n, numeric_list<T, a, as...>>::value; +} + +/* always get type, regardless of dummy; good for parameter pack expansion */ + +template<typename T, T dummy, typename t> struct id_numeric { typedef t type; }; +template<typename dummy, typename t> struct id_type { typedef t type; }; + +/* equality checking, flagged version */ + +template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; }; + +/* apply_op to list */ + +template< + bool from_left, // false + template<typename, typename> class op, + typename additional_param, + typename... values +> +struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; }; +template< + template<typename, typename> class op, + typename additional_param, + typename... values +> +struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; }; + +template< + bool from_left, + template<typename, typename> class op, + typename additional_param +> +struct h_apply_op +{ + template<typename... values> + constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>) + { return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); } +}; + +template< + template<typename, typename> class op, + typename additional_param, + typename a +> +struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; }; + +template< + template<typename, typename> class op, + typename additional_param, + typename a +> +struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; }; + +/* see if an element is in a list */ + +template< + template<typename, typename> class test, + typename check_against, + typename h_list, + bool last_check_positive = false +> +struct contained_in_list; + +template< + template<typename, typename> class test, + typename check_against, + typename h_list +> +struct contained_in_list<test, check_against, h_list, true> +{ + constexpr static bool value = true; +}; + +template< + template<typename, typename> class test, + typename check_against, + typename a, + typename... as +> +struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {}; + +template< + template<typename, typename> class test, + typename check_against + EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty) +> +struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; }; + +/* see if an element is in a list and check for global flags */ + +template< + template<typename, typename> class test, + typename check_against, + typename h_list, + int default_flags = 0, + bool last_check_positive = false, + int last_check_flags = default_flags +> +struct contained_in_list_gf; + +template< + template<typename, typename> class test, + typename check_against, + typename h_list, + int default_flags, + int last_check_flags +> +struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags> +{ + constexpr static bool value = true; + constexpr static int global_flags = last_check_flags; +}; + +template< + template<typename, typename> class test, + typename check_against, + typename a, + typename... as, + int default_flags, + int last_check_flags +> +struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {}; + +template< + template<typename, typename> class test, + typename check_against + EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), + int default_flags, + int last_check_flags +> +struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; }; + +/* generic reductions */ + +template< + typename Reducer, + typename... Ts +> struct reduce; + +template< + typename Reducer +> struct reduce<Reducer> +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE int run() { return Reducer::Identity; } +}; + +template< + typename Reducer, + typename A +> struct reduce<Reducer, A> +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE A run(A a) { return a; } +}; + +template< + typename Reducer, + typename A, + typename... Ts +> struct reduce<Reducer, A, Ts...> +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) { + return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...)); + } +}; + +/* generic binary operations */ + +struct sum_op { + template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a + b) { return a + b; } + static constexpr int Identity = 0; +}; +struct product_op { + template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a * b) { return a * b; } + static constexpr int Identity = 1; +}; + +struct logical_and_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a && b) { return a && b; } }; +struct logical_or_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a || b) { return a || b; } }; + +struct equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a == b) { return a == b; } }; +struct not_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a != b) { return a != b; } }; +struct lesser_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a < b) { return a < b; } }; +struct lesser_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a <= b) { return a <= b; } }; +struct greater_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a > b) { return a > b; } }; +struct greater_equal_op { template<typename A, typename B> constexpr static EIGEN_STRONG_INLINE auto run(A a, B b) -> decltype(a >= b) { return a >= b; } }; + +/* generic unary operations */ + +struct not_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(!a) { return !a; } }; +struct negation_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(-a) { return -a; } }; +struct greater_equal_zero_op { template<typename A> constexpr static EIGEN_STRONG_INLINE auto run(A a) -> decltype(a >= 0) { return a >= 0; } }; + + +/* reductions for lists */ + +// using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it +// together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1 +// does... +template<typename... Ts> +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts) +{ + return reduce<product_op, Ts...>::run(ts...); +} + +template<typename... Ts> +constexpr EIGEN_STRONG_INLINE decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts) +{ + return reduce<sum_op, Ts...>::run(ts...); +} + +/* reverse arrays */ + +template<typename Array, int... n> +constexpr EIGEN_STRONG_INLINE Array h_array_reverse(Array arr, numeric_list<int, n...>) +{ + return {{array_get<sizeof...(n) - n - 1>(arr)...}}; +} + +template<typename T, std::size_t N> +constexpr EIGEN_STRONG_INLINE array<T, N> array_reverse(array<T, N> arr) +{ + return h_array_reverse(arr, typename gen_numeric_list<int, N>::type()); +} + + +/* generic array reductions */ + +// can't reuse standard reduce() interface above because Intel's Compiler +// *really* doesn't like it, so we just reimplement the stuff +// (start from N - 1 and work down to 0 because specialization for +// n == N - 1 also doesn't work in Intel's compiler, so it goes into +// an infinite loop) +template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1> +struct h_array_reduce { + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr))) + { + return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)); + } +}; + +template<typename Reducer, typename T, std::size_t N> +struct h_array_reduce<Reducer, T, N, 0> +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, N>& arr, T) + { + return array_get<0>(arr); + } +}; + +template<typename Reducer, typename T> +struct h_array_reduce<Reducer, T, 0> +{ + EIGEN_DEVICE_FUNC constexpr static EIGEN_STRONG_INLINE T run(const array<T, 0>&, T identity) + { + return identity; + } +}; + +template<typename Reducer, typename T, std::size_t N> +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity)) +{ + return h_array_reduce<Reducer, T, N>::run(arr, identity); +} + +/* standard array reductions */ + +template<typename T, std::size_t N> +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0))) +{ + return array_reduce<sum_op, T, N>(arr, static_cast<T>(0)); +} + +template<typename T, std::size_t N> +EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1))) +{ + return array_reduce<product_op, T, N>(arr, static_cast<T>(1)); +} + +template<typename t> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) { + eigen_assert(a.size() > 0); + t prod = 1; + for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; } + return prod; +} + +/* zip an array */ + +template<typename Op, typename A, typename B, std::size_t N, int... n> +constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>) +{ + return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }}; +} + +template<typename Op, typename A, typename B, std::size_t N> +constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b) +{ + return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type()); +} + +/* zip an array and reduce the result */ + +template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n> +constexpr EIGEN_STRONG_INLINE auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...)) +{ + return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...); +} + +template<typename Reducer, typename Op, typename A, typename B, std::size_t N> +constexpr EIGEN_STRONG_INLINE auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type())) +{ + return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()); +} + +/* apply stuff to an array */ + +template<typename Op, typename A, std::size_t N, int... n> +constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>) +{ + return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }}; +} + +template<typename Op, typename A, std::size_t N> +constexpr EIGEN_STRONG_INLINE array<decltype(Op::run(A())),N> array_apply(array<A, N> a) +{ + return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type()); +} + +/* apply stuff to an array and reduce */ + +template<typename Reducer, typename Op, typename A, std::size_t N, int... n> +constexpr EIGEN_STRONG_INLINE auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...)) +{ + return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...); +} + +template<typename Reducer, typename Op, typename A, std::size_t N> +constexpr EIGEN_STRONG_INLINE auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type())) +{ + return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()); +} + +/* repeat a value n times (and make an array out of it + * usage: + * array<int, 16> = repeat<16>(42); + */ + +template<int n> +struct h_repeat +{ + template<typename t, int... ii> + constexpr static EIGEN_STRONG_INLINE array<t, n> run(t v, numeric_list<int, ii...>) + { + return {{ typename id_numeric<int, ii, t>::type(v)... }}; + } +}; + +template<int n, typename t> +constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); } + +/* instantiate a class by a C-style array */ +template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps> +struct h_instantiate_by_c_array; + +template<class InstType, typename ArrType, std::size_t N, typename... Ps> +struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...> +{ + static InstType run(ArrType* arr, Ps... args) + { + return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]); + } +}; + +template<class InstType, typename ArrType, std::size_t N, typename... Ps> +struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...> +{ + static InstType run(ArrType* arr, Ps... args) + { + return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...); + } +}; + +template<class InstType, typename ArrType, typename... Ps> +struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...> +{ + static InstType run(ArrType* arr, Ps... args) + { + (void)arr; + return InstType(args...); + } +}; + +template<class InstType, typename ArrType, typename... Ps> +struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...> +{ + static InstType run(ArrType* arr, Ps... args) + { + (void)arr; + return InstType(args...); + } +}; + +template<class InstType, typename ArrType, std::size_t N, bool Reverse = false> +InstType instantiate_by_c_array(ArrType* arr) +{ + return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11META_H diff --git a/src/EigenUnsupported/CXX11/src/util/CXX11Workarounds.h b/src/EigenUnsupported/CXX11/src/util/CXX11Workarounds.h new file mode 100644 index 0000000..056736c --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/util/CXX11Workarounds.h @@ -0,0 +1,88 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11WORKAROUNDS_H +#define EIGEN_CXX11WORKAROUNDS_H + +/* COMPATIBILITY CHECKS + * (so users of compilers that are too old get some realistic error messages) + */ +#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER < 1310) +#error Intel Compiler only supports required C++ features since version 13.1. +// note that most stuff in principle works with 13.0 but when combining +// some features, at some point 13.0 will just fail with an internal assertion +#elif defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (__GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 6)) +// G++ < 4.6 by default will continue processing the source files - even if we use #error to make +// it error out. For this reason, we use the pragma to make sure G++ aborts at the first error +// it sees. Unfortunately, that is still not our #error directive, but at least the output is +// short enough the user has a chance to see that the compiler version is not sufficient for +// the funky template mojo we use. +#pragma GCC diagnostic error "-Wfatal-errors" +#error GNU C++ Compiler (g++) only supports required C++ features since version 4.6. +#endif + +/* Check that the compiler at least claims to support C++11. It might not be sufficient + * because the compiler may not implement it correctly, but at least we'll know. + * On the other hand, visual studio still doesn't claim to support C++11 although it's + * compliant enugh for our purpose. + */ +#if (EIGEN_COMP_CXXVER < 11) +#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) +#pragma GCC diagnostic error "-Wfatal-errors" +#endif +#error This library needs at least a C++11 compliant compiler. If you use g++/clang, please enable the -std=c++11 compiler flag. (-std=c++0x on older versions.) +#endif + +namespace Eigen { + +namespace internal { + +/* std::get is only constexpr in C++14, not yet in C++11 + */ + + +template<std::size_t I_, class T> constexpr inline T& array_get(std::vector<T>& a) { return a[I_]; } +template<std::size_t I_, class T> constexpr inline T&& array_get(std::vector<T>&& a) { return a[I_]; } +template<std::size_t I_, class T> constexpr inline T const& array_get(std::vector<T> const& a) { return a[I_]; } + +/* Suppose you have a template of the form + * template<typename T> struct X; + * And you want to specialize it in such a way: + * template<typename S1, typename... SN> struct X<Foo<S1, SN...>> { ::: }; + * template<> struct X<Foo<>> { ::: }; + * This will work in Intel's compiler 13.0, but only to some extent in g++ 4.6, since + * g++ can only match templates called with parameter packs if the number of template + * arguments is not a fixed size (so inside the first specialization, referencing + * X<Foo<Sn...>> will fail in g++). On the other hand, g++ will accept the following: + * template<typename S...> struct X<Foo<S...>> { ::: }: + * as an additional (!) specialization, which will then only match the empty case. + * But Intel's compiler 13.0 won't accept that, it will only accept the empty syntax, + * so we have to create a workaround for this. + */ +#if defined(__GNUC__) && !defined(__INTEL_COMPILER) +#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) mt... n +#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) , EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) +#define EIGEN_TPL_PP_SPEC_HACK_USE(n) n... +#define EIGEN_TPL_PP_SPEC_HACK_USEC(n) , n... +#else +#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) +#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) +#define EIGEN_TPL_PP_SPEC_HACK_USE(n) +#define EIGEN_TPL_PP_SPEC_HACK_USEC(n) +#endif + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CXX11WORKAROUNDS_H + +/* + * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; + */ diff --git a/src/EigenUnsupported/CXX11/src/util/EmulateArray.h b/src/EigenUnsupported/CXX11/src/util/EmulateArray.h new file mode 100644 index 0000000..834b20b --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/util/EmulateArray.h @@ -0,0 +1,261 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EMULATE_ARRAY_H +#define EIGEN_EMULATE_ARRAY_H + + + +// The array class is only available starting with cxx11. Emulate our own here +// if needed. Beware, msvc still doesn't advertise itself as a c++11 compiler! +// Moreover, CUDA doesn't support the STL containers, so we use our own instead. +#if (__cplusplus <= 199711L && EIGEN_COMP_MSVC < 1900) || defined(EIGEN_GPUCC) || defined(EIGEN_AVOID_STL_ARRAY) + +namespace Eigen { +template <typename T, size_t n> class array { + public: + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& operator[] (size_t index) { eigen_internal_assert(index < size()); return values[index]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& operator[] (size_t index) const { eigen_internal_assert(index < size()); return values[index]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& at(size_t index) { eigen_assert(index < size()); return values[index]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& at(size_t index) const { eigen_assert(index < size()); return values[index]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& front() { return values[0]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& front() const { return values[0]; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& back() { return values[n-1]; } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& back() const { return values[n-1]; } + + EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE + static std::size_t size() { return n; } + + T values[n]; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array() { } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v) { + EIGEN_STATIC_ASSERT(n==1, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2) { + EIGEN_STATIC_ASSERT(n==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3) { + EIGEN_STATIC_ASSERT(n==3, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, + const T& v4) { + EIGEN_STATIC_ASSERT(n==4, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5) { + EIGEN_STATIC_ASSERT(n==5, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6) { + EIGEN_STATIC_ASSERT(n==6, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6, const T& v7) { + EIGEN_STATIC_ASSERT(n==7, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + values[6] = v7; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array( + const T& v1, const T& v2, const T& v3, const T& v4, + const T& v5, const T& v6, const T& v7, const T& v8) { + EIGEN_STATIC_ASSERT(n==8, YOU_MADE_A_PROGRAMMING_MISTAKE) + values[0] = v1; + values[1] = v2; + values[2] = v3; + values[3] = v4; + values[4] = v5; + values[5] = v6; + values[6] = v7; + values[7] = v8; + } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array(std::initializer_list<T> l) { + eigen_assert(l.size() == n); + internal::smart_copy(l.begin(), l.end(), values); + } +#endif +}; + + +// Specialize array for zero size +template <typename T> class array<T, 0> { + public: + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& operator[] (size_t) { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& operator[] (size_t) const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& front() { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& front() const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE T& back() { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const T& back() const { + eigen_assert(false && "Can't index a zero size array"); + return dummy; + } + + static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::size_t size() { return 0; } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE array() : dummy() { } + +#if EIGEN_HAS_VARIADIC_TEMPLATES + EIGEN_DEVICE_FUNC array(std::initializer_list<T> l) : dummy() { + EIGEN_UNUSED_VARIABLE(l); + eigen_assert(l.size() == 0); + } +#endif + + private: + T dummy; +}; + +// Comparison operator +// Todo: implement !=, <, <=, >, and >= +template<class T, std::size_t N> +EIGEN_DEVICE_FUNC bool operator==(const array<T,N>& lhs, const array<T,N>& rhs) { + for (std::size_t i = 0; i < N; ++i) { + if (lhs[i] != rhs[i]) { + return false; + } + } + return true; +} + + +namespace internal { +template<std::size_t I_, class T, std::size_t N> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(array<T,N>& a) { + return a[I_]; +} +template<std::size_t I_, class T, std::size_t N> +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const array<T,N>& a) { + return a[I_]; +} + +template<class T, std::size_t N> struct array_size<array<T,N> > { + enum { value = N }; +}; +template<class T, std::size_t N> struct array_size<array<T,N>& > { + enum { value = N }; +}; +template<class T, std::size_t N> struct array_size<const array<T,N> > { + enum { value = N }; +}; +template<class T, std::size_t N> struct array_size<const array<T,N>& > { + enum { value = N }; +}; + +} // end namespace internal +} // end namespace Eigen + +#else + +// The compiler supports c++11, and we're not targeting cuda: use std::array as Eigen::array +#include <array> +namespace Eigen { + +template <typename T, std::size_t N> using array = std::array<T, N>; + +namespace internal { +/* std::get is only constexpr in C++14, not yet in C++11 + * - libstdc++ from version 4.7 onwards has it nevertheless, + * so use that + * - libstdc++ older versions: use _M_instance directly + * - libc++ all versions so far: use __elems_ directly + * - all other libs: use std::get to be portable, but + * this may not be constexpr + */ +#if defined(__GLIBCXX__) && __GLIBCXX__ < 20120322 +#define STD_GET_ARR_HACK a._M_instance[I_] +#elif defined(_LIBCPP_VERSION) +#define STD_GET_ARR_HACK a.__elems_[I_] +#else +#define STD_GET_ARR_HACK std::template get<I_, T, N>(a) +#endif + +template<std::size_t I_, class T, std::size_t N> constexpr inline T& array_get(std::array<T,N>& a) { return (T&) STD_GET_ARR_HACK; } +template<std::size_t I_, class T, std::size_t N> constexpr inline T&& array_get(std::array<T,N>&& a) { return (T&&) STD_GET_ARR_HACK; } +template<std::size_t I_, class T, std::size_t N> constexpr inline T const& array_get(std::array<T,N> const& a) { return (T const&) STD_GET_ARR_HACK; } + +#undef STD_GET_ARR_HACK + +} // end namespace internal +} // end namespace Eigen + +#endif + +#endif // EIGEN_EMULATE_ARRAY_H diff --git a/src/EigenUnsupported/CXX11/src/util/MaxSizeVector.h b/src/EigenUnsupported/CXX11/src/util/MaxSizeVector.h new file mode 100644 index 0000000..277ab14 --- /dev/null +++ b/src/EigenUnsupported/CXX11/src/util/MaxSizeVector.h @@ -0,0 +1,158 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_FIXEDSIZEVECTOR_H +#define EIGEN_FIXEDSIZEVECTOR_H + +namespace Eigen { + +/** \class MaxSizeVector + * \ingroup Core + * + * \brief The MaxSizeVector class. + * + * The %MaxSizeVector provides a subset of std::vector functionality. + * + * The goal is to provide basic std::vector operations when using + * std::vector is not an option (e.g. on GPU or when compiling using + * FMA/AVX, as this can cause either compilation failures or illegal + * instruction failures). + * + * Beware: The constructors are not API compatible with these of + * std::vector. + */ +template <typename T> +class MaxSizeVector { + static const size_t alignment = EIGEN_PLAIN_ENUM_MAX(EIGEN_ALIGNOF(T), sizeof(void*)); + public: + // Construct a new MaxSizeVector, reserve n elements. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit MaxSizeVector(size_t n) + : reserve_(n), size_(0), + data_(static_cast<T*>(internal::handmade_aligned_malloc(n * sizeof(T), alignment))) { + } + + // Construct a new MaxSizeVector, reserve and resize to n. + // Copy the init value to all elements. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + MaxSizeVector(size_t n, const T& init) + : reserve_(n), size_(n), + data_(static_cast<T*>(internal::handmade_aligned_malloc(n * sizeof(T), alignment))) { + size_t i = 0; + EIGEN_TRY + { + for(; i < size_; ++i) { new (&data_[i]) T(init); } + } + EIGEN_CATCH(...) + { + // Construction failed, destruct in reverse order: + for(; (i+1) > 0; --i) { data_[i-1].~T(); } + internal::handmade_aligned_free(data_); + EIGEN_THROW; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + ~MaxSizeVector() { + for (size_t i = size_; i > 0; --i) { + data_[i-1].~T(); + } + internal::handmade_aligned_free(data_); + } + + void resize(size_t n) { + eigen_assert(n <= reserve_); + for (; size_ < n; ++size_) { + new (&data_[size_]) T; + } + for (; size_ > n; --size_) { + data_[size_-1].~T(); + } + eigen_assert(size_ == n); + } + + // Append new elements (up to reserved size). + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void push_back(const T& t) { + eigen_assert(size_ < reserve_); + new (&data_[size_++]) T(t); + } + + // For C++03 compatibility this only takes one argument + template<class X> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void emplace_back(const X& x) { + eigen_assert(size_ < reserve_); + new (&data_[size_++]) T(x); + } + + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T& operator[] (size_t i) const { + eigen_assert(i < size_); + return data_[i]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T& operator[] (size_t i) { + eigen_assert(i < size_); + return data_[i]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T& back() { + eigen_assert(size_ > 0); + return data_[size_ - 1]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T& back() const { + eigen_assert(size_ > 0); + return data_[size_ - 1]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + void pop_back() { + eigen_assert(size_ > 0); + data_[--size_].~T(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + size_t size() const { return size_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + bool empty() const { return size_ == 0; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* data() { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* data() const { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* begin() { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + T* end() { return data_ + size_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* begin() const { return data_; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const T* end() const { return data_ + size_; } + + private: + size_t reserve_; + size_t size_; + T* data_; +}; + +} // namespace Eigen + +#endif // EIGEN_FIXEDSIZEVECTOR_H |