diff options
Diffstat (limited to 'src/EigenUnsupported/MatrixFunctions')
-rw-r--r-- | src/EigenUnsupported/MatrixFunctions | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/src/EigenUnsupported/MatrixFunctions b/src/EigenUnsupported/MatrixFunctions new file mode 100644 index 0000000..20c23d1 --- /dev/null +++ b/src/EigenUnsupported/MatrixFunctions @@ -0,0 +1,504 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk> +// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_FUNCTIONS +#define EIGEN_MATRIX_FUNCTIONS + +#include <cfloat> +#include <list> + +#include "../../Eigen/Core" +#include "../../Eigen/LU" +#include "../../Eigen/Eigenvalues" + +/** + * \defgroup MatrixFunctions_Module Matrix functions module + * \brief This module aims to provide various methods for the computation of + * matrix functions. + * + * To use this module, add + * \code + * #include <unsupported/Eigen/MatrixFunctions> + * \endcode + * at the start of your source file. + * + * This module defines the following MatrixBase methods. + * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine + * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine + * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential + * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm + * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power + * - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions + * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine + * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine + * - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root + * + * These methods are the main entry points to this module. + * + * %Matrix functions are defined as follows. Suppose that \f$ f \f$ + * is an entire function (that is, a function on the complex plane + * that is everywhere complex differentiable). Then its Taylor + * series + * \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f] + * converges to \f$ f(x) \f$. In this case, we can define the matrix + * function by the same series: + * \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f] + * + */ + +#include "../../Eigen/src/Core/util/DisableStupidWarnings.h" + +#include "src/MatrixFunctions/MatrixExponential.h" +#include "src/MatrixFunctions/MatrixFunction.h" +#include "src/MatrixFunctions/MatrixSquareRoot.h" +#include "src/MatrixFunctions/MatrixLogarithm.h" +#include "src/MatrixFunctions/MatrixPower.h" + +#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" + + +/** +\page matrixbaseextra_page +\ingroup MatrixFunctions_Module + +\section matrixbaseextra MatrixBase methods defined in the MatrixFunctions module + +The remainder of the page documents the following MatrixBase methods +which are defined in the MatrixFunctions module. + + + +\subsection matrixbase_cos MatrixBase::cos() + +Compute the matrix cosine. + +\code +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const +\endcode + +\param[in] M a square matrix. +\returns expression representing \f$ \cos(M) \f$. + +This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine. + +The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos(). + +\sa \ref matrixbase_sin "sin()" for an example. + + + +\subsection matrixbase_cosh MatrixBase::cosh() + +Compute the matrix hyberbolic cosine. + +\code +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const +\endcode + +\param[in] M a square matrix. +\returns expression representing \f$ \cosh(M) \f$ + +This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh(). + +\sa \ref matrixbase_sinh "sinh()" for an example. + + + +\subsection matrixbase_exp MatrixBase::exp() + +Compute the matrix exponential. + +\code +const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const +\endcode + +\param[in] M matrix whose exponential is to be computed. +\returns expression representing the matrix exponential of \p M. + +The matrix exponential of \f$ M \f$ is defined by +\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f] +The matrix exponential can be used to solve linear ordinary +differential equations: the solution of \f$ y' = My \f$ with the +initial condition \f$ y(0) = y_0 \f$ is given by +\f$ y(t) = \exp(M) y_0 \f$. + +The matrix exponential is different from applying the exp function to all the entries in the matrix. +Use ArrayBase::exp() if you want to do the latter. + +The cost of the computation is approximately \f$ 20 n^3 \f$ for +matrices of size \f$ n \f$. The number 20 depends weakly on the +norm of the matrix. + +The matrix exponential is computed using the scaling-and-squaring +method combined with Padé approximation. The matrix is first +rescaled, then the exponential of the reduced matrix is computed +approximant, and then the rescaling is undone by repeated +squaring. The degree of the Padé approximant is chosen such +that the approximation error is less than the round-off +error. However, errors may accumulate during the squaring phase. + +Details of the algorithm can be found in: Nicholas J. Higham, "The +scaling and squaring method for the matrix exponential revisited," +<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193, +2005. + +Example: The following program checks that +\f[ \exp \left[ \begin{array}{ccc} + 0 & \frac14\pi & 0 \\ + -\frac14\pi & 0 & 0 \\ + 0 & 0 & 0 + \end{array} \right] = \left[ \begin{array}{ccc} + \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\ + \frac12\sqrt2 & \frac12\sqrt2 & 0 \\ + 0 & 0 & 1 + \end{array} \right]. \f] +This corresponds to a rotation of \f$ \frac14\pi \f$ radians around +the z-axis. + +\include MatrixExponential.cpp +Output: \verbinclude MatrixExponential.out + +\note \p M has to be a matrix of \c float, \c double, `long double` +\c complex<float>, \c complex<double>, or `complex<long double>` . + + +\subsection matrixbase_log MatrixBase::log() + +Compute the matrix logarithm. + +\code +const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const +\endcode + +\param[in] M invertible matrix whose logarithm is to be computed. +\returns expression representing the matrix logarithm root of \p M. + +The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that +\f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for +the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have +multiple solutions; this function returns a matrix whose eigenvalues +have imaginary part in the interval \f$ (-\pi,\pi] \f$. + +The matrix logarithm is different from applying the log function to all the entries in the matrix. +Use ArrayBase::log() if you want to do the latter. + +In the real case, the matrix \f$ M \f$ should be invertible and +it should have no eigenvalues which are real and negative (pairs of +complex conjugate eigenvalues are allowed). In the complex case, it +only needs to be invertible. + +This function computes the matrix logarithm using the Schur-Parlett +algorithm as implemented by MatrixBase::matrixFunction(). The +logarithm of an atomic block is computed by MatrixLogarithmAtomic, +which uses direct computation for 1-by-1 and 2-by-2 blocks and an +inverse scaling-and-squaring algorithm for bigger blocks, with the +square roots computed by MatrixBase::sqrt(). + +Details of the algorithm can be found in Section 11.6.2 of: +Nicholas J. Higham, +<em>Functions of Matrices: Theory and Computation</em>, +SIAM 2008. ISBN 978-0-898716-46-7. + +Example: The following program checks that +\f[ \log \left[ \begin{array}{ccc} + \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\ + \frac12\sqrt2 & \frac12\sqrt2 & 0 \\ + 0 & 0 & 1 + \end{array} \right] = \left[ \begin{array}{ccc} + 0 & \frac14\pi & 0 \\ + -\frac14\pi & 0 & 0 \\ + 0 & 0 & 0 + \end{array} \right]. \f] +This corresponds to a rotation of \f$ \frac14\pi \f$ radians around +the z-axis. This is the inverse of the example used in the +documentation of \ref matrixbase_exp "exp()". + +\include MatrixLogarithm.cpp +Output: \verbinclude MatrixLogarithm.out + +\note \p M has to be a matrix of \c float, \c double, `long +double`, \c complex<float>, \c complex<double>, or `complex<long double>`. + +\sa MatrixBase::exp(), MatrixBase::matrixFunction(), + class MatrixLogarithmAtomic, MatrixBase::sqrt(). + + +\subsection matrixbase_pow MatrixBase::pow() + +Compute the matrix raised to arbitrary real power. + +\code +const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const +\endcode + +\param[in] M base of the matrix power, should be a square matrix. +\param[in] p exponent of the matrix power. + +The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$, +where exp denotes the matrix exponential, and log denotes the matrix +logarithm. This is different from raising all the entries in the matrix +to the p-th power. Use ArrayBase::pow() if you want to do the latter. + +If \p p is complex, the scalar type of \p M should be the type of \p +p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$. +Therefore, the matrix \f$ M \f$ should meet the conditions to be an +argument of matrix logarithm. + +If \p p is real, it is casted into the real scalar type of \p M. Then +this function computes the matrix power using the Schur-Padé +algorithm as implemented by class MatrixPower. The exponent is split +into integral part and fractional part, where the fractional part is +in the interval \f$ (-1, 1) \f$. The main diagonal and the first +super-diagonal is directly computed. + +If \p M is singular with a semisimple zero eigenvalue and \p p is +positive, the Schur factor \f$ T \f$ is reordered with Givens +rotations, i.e. + +\f[ T = \left[ \begin{array}{cc} + T_1 & T_2 \\ + 0 & 0 + \end{array} \right] \f] + +where \f$ T_1 \f$ is invertible. Then \f$ T^p \f$ is given by + +\f[ T^p = \left[ \begin{array}{cc} + T_1^p & T_1^{-1} T_1^p T_2 \\ + 0 & 0 + \end{array}. \right] \f] + +\warning Fractional power of a matrix with a non-semisimple zero +eigenvalue is not well-defined. We introduce an assertion failure +against inaccurate result, e.g. \code +#include <unsupported/Eigen/MatrixFunctions> +#include <iostream> + +int main() +{ + Eigen::Matrix4d A; + A << 0, 0, 2, 3, + 0, 0, 4, 5, + 0, 0, 6, 7, + 0, 0, 8, 9; + std::cout << A.pow(0.37) << std::endl; + + // The 1 makes eigenvalue 0 non-semisimple. + A.coeffRef(0, 1) = 1; + + // This fails if EIGEN_NO_DEBUG is undefined. + std::cout << A.pow(0.37) << std::endl; + + return 0; +} +\endcode + +Details of the algorithm can be found in: Nicholas J. Higham and +Lijing Lin, "A Schur-Padé algorithm for fractional powers of a +matrix," <em>SIAM J. %Matrix Anal. Applic.</em>, +<b>32(3)</b>:1056–1078, 2011. + +Example: The following program checks that +\f[ \left[ \begin{array}{ccc} + \cos1 & -\sin1 & 0 \\ + \sin1 & \cos1 & 0 \\ + 0 & 0 & 1 + \end{array} \right]^{\frac14\pi} = \left[ \begin{array}{ccc} + \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\ + \frac12\sqrt2 & \frac12\sqrt2 & 0 \\ + 0 & 0 & 1 + \end{array} \right]. \f] +This corresponds to \f$ \frac14\pi \f$ rotations of 1 radian around +the z-axis. + +\include MatrixPower.cpp +Output: \verbinclude MatrixPower.out + +MatrixBase::pow() is user-friendly. However, there are some +circumstances under which you should use class MatrixPower directly. +MatrixPower can save the result of Schur decomposition, so it's +better for computing various powers for the same matrix. + +Example: +\include MatrixPower_optimal.cpp +Output: \verbinclude MatrixPower_optimal.out + +\note \p M has to be a matrix of \c float, \c double, `long +double`, \c complex<float>, \c complex<double>, or +\c complex<long double> . + +\sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower. + + +\subsection matrixbase_matrixfunction MatrixBase::matrixFunction() + +Compute a matrix function. + +\code +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const +\endcode + +\param[in] M argument of matrix function, should be a square matrix. +\param[in] f an entire function; \c f(x,n) should compute the n-th +derivative of f at x. +\returns expression representing \p f applied to \p M. + +Suppose that \p M is a matrix whose entries have type \c Scalar. +Then, the second argument, \p f, should be a function with prototype +\code +ComplexScalar f(ComplexScalar, int) +\endcode +where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is +real (e.g., \c float or \c double) and \c ComplexScalar = +\c Scalar if \c Scalar is complex. The return value of \c f(x,n) +should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x. + +This routine uses the algorithm described in: +Philip Davies and Nicholas J. Higham, +"A Schur-Parlett algorithm for computing matrix functions", +<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003. + +The actual work is done by the MatrixFunction class. + +Example: The following program checks that +\f[ \exp \left[ \begin{array}{ccc} + 0 & \frac14\pi & 0 \\ + -\frac14\pi & 0 & 0 \\ + 0 & 0 & 0 + \end{array} \right] = \left[ \begin{array}{ccc} + \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\ + \frac12\sqrt2 & \frac12\sqrt2 & 0 \\ + 0 & 0 & 1 + \end{array} \right]. \f] +This corresponds to a rotation of \f$ \frac14\pi \f$ radians around +the z-axis. This is the same example as used in the documentation +of \ref matrixbase_exp "exp()". + +\include MatrixFunction.cpp +Output: \verbinclude MatrixFunction.out + +Note that the function \c expfn is defined for complex numbers +\c x, even though the matrix \c A is over the reals. Instead of +\c expfn, we could also have used StdStemFunctions::exp: +\code +A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B); +\endcode + + + +\subsection matrixbase_sin MatrixBase::sin() + +Compute the matrix sine. + +\code +const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const +\endcode + +\param[in] M a square matrix. +\returns expression representing \f$ \sin(M) \f$. + +This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine. + +The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin(). + +Example: \include MatrixSine.cpp +Output: \verbinclude MatrixSine.out + + + +\subsection matrixbase_sinh MatrixBase::sinh() + +Compute the matrix hyperbolic sine. + +\code +MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const +\endcode + +\param[in] M a square matrix. +\returns expression representing \f$ \sinh(M) \f$ + +This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh(). + +Example: \include MatrixSinh.cpp +Output: \verbinclude MatrixSinh.out + + +\subsection matrixbase_sqrt MatrixBase::sqrt() + +Compute the matrix square root. + +\code +const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const +\endcode + +\param[in] M invertible matrix whose square root is to be computed. +\returns expression representing the matrix square root of \p M. + +The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$ +whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then +\f$ S^2 = M \f$. This is different from taking the square root of all +the entries in the matrix; use ArrayBase::sqrt() if you want to do the +latter. + +In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and +it should have no eigenvalues which are real and negative (pairs of +complex conjugate eigenvalues are allowed). In that case, the matrix +has a square root which is also real, and this is the square root +computed by this function. + +The matrix square root is computed by first reducing the matrix to +quasi-triangular form with the real Schur decomposition. The square +root of the quasi-triangular matrix can then be computed directly. The +cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur +decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder +(though the computation time in practice is likely more than this +indicates). + +Details of the algorithm can be found in: Nicholas J. Highan, +"Computing real square roots of a real matrix", <em>Linear Algebra +Appl.</em>, 88/89:405–430, 1987. + +If the matrix is <b>positive-definite symmetric</b>, then the square +root is also positive-definite symmetric. In this case, it is best to +use SelfAdjointEigenSolver::operatorSqrt() to compute it. + +In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible; +this is a restriction of the algorithm. The square root computed by +this algorithm is the one whose eigenvalues have an argument in the +interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch +cut. + +The computation is the same as in the real case, except that the +complex Schur decomposition is used to reduce the matrix to a +triangular matrix. The theoretical cost is the same. Details are in: +Åke Björck and Sven Hammarling, "A Schur method for the +square root of a matrix", <em>Linear Algebra Appl.</em>, +52/53:127–140, 1983. + +Example: The following program checks that the square root of +\f[ \left[ \begin{array}{cc} + \cos(\frac13\pi) & -\sin(\frac13\pi) \\ + \sin(\frac13\pi) & \cos(\frac13\pi) + \end{array} \right], \f] +corresponding to a rotation over 60 degrees, is a rotation over 30 degrees: +\f[ \left[ \begin{array}{cc} + \cos(\frac16\pi) & -\sin(\frac16\pi) \\ + \sin(\frac16\pi) & \cos(\frac16\pi) + \end{array} \right]. \f] + +\include MatrixSquareRoot.cpp +Output: \verbinclude MatrixSquareRoot.out + +\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot, + SelfAdjointEigenSolver::operatorSqrt(). + +*/ + +#endif // EIGEN_MATRIX_FUNCTIONS + |