summaryrefslogtreecommitdiffstats
path: root/src/EigenUnsupported/MatrixFunctions
diff options
context:
space:
mode:
Diffstat (limited to 'src/EigenUnsupported/MatrixFunctions')
-rw-r--r--src/EigenUnsupported/MatrixFunctions504
1 files changed, 0 insertions, 504 deletions
diff --git a/src/EigenUnsupported/MatrixFunctions b/src/EigenUnsupported/MatrixFunctions
deleted file mode 100644
index 20c23d1..0000000
--- a/src/EigenUnsupported/MatrixFunctions
+++ /dev/null
@@ -1,504 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTIONS
-#define EIGEN_MATRIX_FUNCTIONS
-
-#include <cfloat>
-#include <list>
-
-#include "../../Eigen/Core"
-#include "../../Eigen/LU"
-#include "../../Eigen/Eigenvalues"
-
-/**
- * \defgroup MatrixFunctions_Module Matrix functions module
- * \brief This module aims to provide various methods for the computation of
- * matrix functions.
- *
- * To use this module, add
- * \code
- * #include <unsupported/Eigen/MatrixFunctions>
- * \endcode
- * at the start of your source file.
- *
- * This module defines the following MatrixBase methods.
- * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
- * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
- * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
- * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm
- * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power
- * - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
- * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
- * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
- * - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
- *
- * These methods are the main entry points to this module.
- *
- * %Matrix functions are defined as follows. Suppose that \f$ f \f$
- * is an entire function (that is, a function on the complex plane
- * that is everywhere complex differentiable). Then its Taylor
- * series
- * \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
- * converges to \f$ f(x) \f$. In this case, we can define the matrix
- * function by the same series:
- * \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
- *
- */
-
-#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
-
-#include "src/MatrixFunctions/MatrixExponential.h"
-#include "src/MatrixFunctions/MatrixFunction.h"
-#include "src/MatrixFunctions/MatrixSquareRoot.h"
-#include "src/MatrixFunctions/MatrixLogarithm.h"
-#include "src/MatrixFunctions/MatrixPower.h"
-
-#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-
-/**
-\page matrixbaseextra_page
-\ingroup MatrixFunctions_Module
-
-\section matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
-
-The remainder of the page documents the following MatrixBase methods
-which are defined in the MatrixFunctions module.
-
-
-
-\subsection matrixbase_cos MatrixBase::cos()
-
-Compute the matrix cosine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \cos(M) \f$.
-
-This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
-
-The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
-
-\sa \ref matrixbase_sin "sin()" for an example.
-
-
-
-\subsection matrixbase_cosh MatrixBase::cosh()
-
-Compute the matrix hyberbolic cosine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \cosh(M) \f$
-
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
-
-\sa \ref matrixbase_sinh "sinh()" for an example.
-
-
-
-\subsection matrixbase_exp MatrixBase::exp()
-
-Compute the matrix exponential.
-
-\code
-const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
-\endcode
-
-\param[in] M matrix whose exponential is to be computed.
-\returns expression representing the matrix exponential of \p M.
-
-The matrix exponential of \f$ M \f$ is defined by
-\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
-The matrix exponential can be used to solve linear ordinary
-differential equations: the solution of \f$ y' = My \f$ with the
-initial condition \f$ y(0) = y_0 \f$ is given by
-\f$ y(t) = \exp(M) y_0 \f$.
-
-The matrix exponential is different from applying the exp function to all the entries in the matrix.
-Use ArrayBase::exp() if you want to do the latter.
-
-The cost of the computation is approximately \f$ 20 n^3 \f$ for
-matrices of size \f$ n \f$. The number 20 depends weakly on the
-norm of the matrix.
-
-The matrix exponential is computed using the scaling-and-squaring
-method combined with Pad&eacute; approximation. The matrix is first
-rescaled, then the exponential of the reduced matrix is computed
-approximant, and then the rescaling is undone by repeated
-squaring. The degree of the Pad&eacute; approximant is chosen such
-that the approximation error is less than the round-off
-error. However, errors may accumulate during the squaring phase.
-
-Details of the algorithm can be found in: Nicholas J. Higham, "The
-scaling and squaring method for the matrix exponential revisited,"
-<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
-2005.
-
-Example: The following program checks that
-\f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis.
-
-\include MatrixExponential.cpp
-Output: \verbinclude MatrixExponential.out
-
-\note \p M has to be a matrix of \c float, \c double, `long double`
-\c complex<float>, \c complex<double>, or `complex<long double>` .
-
-
-\subsection matrixbase_log MatrixBase::log()
-
-Compute the matrix logarithm.
-
-\code
-const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
-\endcode
-
-\param[in] M invertible matrix whose logarithm is to be computed.
-\returns expression representing the matrix logarithm root of \p M.
-
-The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that
-\f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for
-the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
-multiple solutions; this function returns a matrix whose eigenvalues
-have imaginary part in the interval \f$ (-\pi,\pi] \f$.
-
-The matrix logarithm is different from applying the log function to all the entries in the matrix.
-Use ArrayBase::log() if you want to do the latter.
-
-In the real case, the matrix \f$ M \f$ should be invertible and
-it should have no eigenvalues which are real and negative (pairs of
-complex conjugate eigenvalues are allowed). In the complex case, it
-only needs to be invertible.
-
-This function computes the matrix logarithm using the Schur-Parlett
-algorithm as implemented by MatrixBase::matrixFunction(). The
-logarithm of an atomic block is computed by MatrixLogarithmAtomic,
-which uses direct computation for 1-by-1 and 2-by-2 blocks and an
-inverse scaling-and-squaring algorithm for bigger blocks, with the
-square roots computed by MatrixBase::sqrt().
-
-Details of the algorithm can be found in Section 11.6.2 of:
-Nicholas J. Higham,
-<em>Functions of Matrices: Theory and Computation</em>,
-SIAM 2008. ISBN 978-0-898716-46-7.
-
-Example: The following program checks that
-\f[ \log \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right] = \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis. This is the inverse of the example used in the
-documentation of \ref matrixbase_exp "exp()".
-
-\include MatrixLogarithm.cpp
-Output: \verbinclude MatrixLogarithm.out
-
-\note \p M has to be a matrix of \c float, \c double, `long
-double`, \c complex<float>, \c complex<double>, or `complex<long double>`.
-
-\sa MatrixBase::exp(), MatrixBase::matrixFunction(),
- class MatrixLogarithmAtomic, MatrixBase::sqrt().
-
-
-\subsection matrixbase_pow MatrixBase::pow()
-
-Compute the matrix raised to arbitrary real power.
-
-\code
-const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
-\endcode
-
-\param[in] M base of the matrix power, should be a square matrix.
-\param[in] p exponent of the matrix power.
-
-The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
-where exp denotes the matrix exponential, and log denotes the matrix
-logarithm. This is different from raising all the entries in the matrix
-to the p-th power. Use ArrayBase::pow() if you want to do the latter.
-
-If \p p is complex, the scalar type of \p M should be the type of \p
-p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
-Therefore, the matrix \f$ M \f$ should meet the conditions to be an
-argument of matrix logarithm.
-
-If \p p is real, it is casted into the real scalar type of \p M. Then
-this function computes the matrix power using the Schur-Pad&eacute;
-algorithm as implemented by class MatrixPower. The exponent is split
-into integral part and fractional part, where the fractional part is
-in the interval \f$ (-1, 1) \f$. The main diagonal and the first
-super-diagonal is directly computed.
-
-If \p M is singular with a semisimple zero eigenvalue and \p p is
-positive, the Schur factor \f$ T \f$ is reordered with Givens
-rotations, i.e.
-
-\f[ T = \left[ \begin{array}{cc}
- T_1 & T_2 \\
- 0 & 0
- \end{array} \right] \f]
-
-where \f$ T_1 \f$ is invertible. Then \f$ T^p \f$ is given by
-
-\f[ T^p = \left[ \begin{array}{cc}
- T_1^p & T_1^{-1} T_1^p T_2 \\
- 0 & 0
- \end{array}. \right] \f]
-
-\warning Fractional power of a matrix with a non-semisimple zero
-eigenvalue is not well-defined. We introduce an assertion failure
-against inaccurate result, e.g. \code
-#include <unsupported/Eigen/MatrixFunctions>
-#include <iostream>
-
-int main()
-{
- Eigen::Matrix4d A;
- A << 0, 0, 2, 3,
- 0, 0, 4, 5,
- 0, 0, 6, 7,
- 0, 0, 8, 9;
- std::cout << A.pow(0.37) << std::endl;
-
- // The 1 makes eigenvalue 0 non-semisimple.
- A.coeffRef(0, 1) = 1;
-
- // This fails if EIGEN_NO_DEBUG is undefined.
- std::cout << A.pow(0.37) << std::endl;
-
- return 0;
-}
-\endcode
-
-Details of the algorithm can be found in: Nicholas J. Higham and
-Lijing Lin, "A Schur-Pad&eacute; algorithm for fractional powers of a
-matrix," <em>SIAM J. %Matrix Anal. Applic.</em>,
-<b>32(3)</b>:1056&ndash;1078, 2011.
-
-Example: The following program checks that
-\f[ \left[ \begin{array}{ccc}
- \cos1 & -\sin1 & 0 \\
- \sin1 & \cos1 & 0 \\
- 0 & 0 & 1
- \end{array} \right]^{\frac14\pi} = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to \f$ \frac14\pi \f$ rotations of 1 radian around
-the z-axis.
-
-\include MatrixPower.cpp
-Output: \verbinclude MatrixPower.out
-
-MatrixBase::pow() is user-friendly. However, there are some
-circumstances under which you should use class MatrixPower directly.
-MatrixPower can save the result of Schur decomposition, so it's
-better for computing various powers for the same matrix.
-
-Example:
-\include MatrixPower_optimal.cpp
-Output: \verbinclude MatrixPower_optimal.out
-
-\note \p M has to be a matrix of \c float, \c double, `long
-double`, \c complex<float>, \c complex<double>, or
-\c complex<long double> .
-
-\sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower.
-
-
-\subsection matrixbase_matrixfunction MatrixBase::matrixFunction()
-
-Compute a matrix function.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
-\endcode
-
-\param[in] M argument of matrix function, should be a square matrix.
-\param[in] f an entire function; \c f(x,n) should compute the n-th
-derivative of f at x.
-\returns expression representing \p f applied to \p M.
-
-Suppose that \p M is a matrix whose entries have type \c Scalar.
-Then, the second argument, \p f, should be a function with prototype
-\code
-ComplexScalar f(ComplexScalar, int)
-\endcode
-where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
-real (e.g., \c float or \c double) and \c ComplexScalar =
-\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
-should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
-
-This routine uses the algorithm described in:
-Philip Davies and Nicholas J. Higham,
-"A Schur-Parlett algorithm for computing matrix functions",
-<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464&ndash;485, 2003.
-
-The actual work is done by the MatrixFunction class.
-
-Example: The following program checks that
-\f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis. This is the same example as used in the documentation
-of \ref matrixbase_exp "exp()".
-
-\include MatrixFunction.cpp
-Output: \verbinclude MatrixFunction.out
-
-Note that the function \c expfn is defined for complex numbers
-\c x, even though the matrix \c A is over the reals. Instead of
-\c expfn, we could also have used StdStemFunctions::exp:
-\code
-A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
-\endcode
-
-
-
-\subsection matrixbase_sin MatrixBase::sin()
-
-Compute the matrix sine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \sin(M) \f$.
-
-This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
-
-The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
-
-Example: \include MatrixSine.cpp
-Output: \verbinclude MatrixSine.out
-
-
-
-\subsection matrixbase_sinh MatrixBase::sinh()
-
-Compute the matrix hyperbolic sine.
-
-\code
-MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \sinh(M) \f$
-
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
-
-Example: \include MatrixSinh.cpp
-Output: \verbinclude MatrixSinh.out
-
-
-\subsection matrixbase_sqrt MatrixBase::sqrt()
-
-Compute the matrix square root.
-
-\code
-const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
-\endcode
-
-\param[in] M invertible matrix whose square root is to be computed.
-\returns expression representing the matrix square root of \p M.
-
-The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
-whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
-\f$ S^2 = M \f$. This is different from taking the square root of all
-the entries in the matrix; use ArrayBase::sqrt() if you want to do the
-latter.
-
-In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
-it should have no eigenvalues which are real and negative (pairs of
-complex conjugate eigenvalues are allowed). In that case, the matrix
-has a square root which is also real, and this is the square root
-computed by this function.
-
-The matrix square root is computed by first reducing the matrix to
-quasi-triangular form with the real Schur decomposition. The square
-root of the quasi-triangular matrix can then be computed directly. The
-cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
-decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
-(though the computation time in practice is likely more than this
-indicates).
-
-Details of the algorithm can be found in: Nicholas J. Highan,
-"Computing real square roots of a real matrix", <em>Linear Algebra
-Appl.</em>, 88/89:405&ndash;430, 1987.
-
-If the matrix is <b>positive-definite symmetric</b>, then the square
-root is also positive-definite symmetric. In this case, it is best to
-use SelfAdjointEigenSolver::operatorSqrt() to compute it.
-
-In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
-this is a restriction of the algorithm. The square root computed by
-this algorithm is the one whose eigenvalues have an argument in the
-interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
-cut.
-
-The computation is the same as in the real case, except that the
-complex Schur decomposition is used to reduce the matrix to a
-triangular matrix. The theoretical cost is the same. Details are in:
-&Aring;ke Bj&ouml;rck and Sven Hammarling, "A Schur method for the
-square root of a matrix", <em>Linear Algebra Appl.</em>,
-52/53:127&ndash;140, 1983.
-
-Example: The following program checks that the square root of
-\f[ \left[ \begin{array}{cc}
- \cos(\frac13\pi) & -\sin(\frac13\pi) \\
- \sin(\frac13\pi) & \cos(\frac13\pi)
- \end{array} \right], \f]
-corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
-\f[ \left[ \begin{array}{cc}
- \cos(\frac16\pi) & -\sin(\frac16\pi) \\
- \sin(\frac16\pi) & \cos(\frac16\pi)
- \end{array} \right]. \f]
-
-\include MatrixSquareRoot.cpp
-Output: \verbinclude MatrixSquareRoot.out
-
-\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
- SelfAdjointEigenSolver::operatorSqrt().
-
-*/
-
-#endif // EIGEN_MATRIX_FUNCTIONS
-