diff options
Diffstat (limited to 'src/armadillo/include/armadillo_bits/fn_sprandn.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/fn_sprandn.hpp | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/fn_sprandn.hpp b/src/armadillo/include/armadillo_bits/fn_sprandn.hpp new file mode 100644 index 0000000..1798224 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/fn_sprandn.hpp @@ -0,0 +1,127 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup fn_sprandn +//! @{ + + + +//! Generate a sparse matrix with a randomly selected subset of the elements +//! set to random values from a Gaussian distribution with zero mean and unit variance +template<typename obj_type> +arma_warn_unused +inline +obj_type +sprandn + ( + const uword n_rows, + const uword n_cols, + const double density, + const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = nullptr + ) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + if(is_SpCol<obj_type>::value) + { + arma_debug_check( (n_cols != 1), "sprandn(): incompatible size" ); + } + else + if(is_SpRow<obj_type>::value) + { + arma_debug_check( (n_rows != 1), "sprandn(): incompatible size" ); + } + + obj_type out; + + out.sprandn(n_rows, n_cols, density); + + return out; + } + + + +template<typename obj_type> +arma_warn_unused +inline +obj_type +sprandn(const SizeMat& s, const double density, const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = nullptr) + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + return sprandn<obj_type>(s.n_rows, s.n_cols, density); + } + + + +arma_warn_unused +inline +sp_mat +sprandn(const uword n_rows, const uword n_cols, const double density) + { + arma_extra_debug_sigprint(); + + sp_mat out; + + out.sprandn(n_rows, n_cols, density); + + return out; + } + + + +arma_warn_unused +inline +sp_mat +sprandn(const SizeMat& s, const double density) + { + arma_extra_debug_sigprint(); + + sp_mat out; + + out.sprandn(s.n_rows, s.n_cols, density); + + return out; + } + + + +//! Generate a sparse matrix with the non-zero values in the same locations as in the given sparse matrix X, +//! with the non-zero values set to random values from a Gaussian distribution with zero mean and unit variance +template<typename T1> +arma_warn_unused +inline +SpMat<typename T1::elem_type> +sprandn(const SpBase<typename T1::elem_type, T1>& X) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + SpMat<eT> out( X.get_ref() ); + + arma_rng::randn<eT>::fill( access::rwp(out.values), out.n_nonzero ); + + return out; + } + + + +//! @} |