summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/fn_trace.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/armadillo/include/armadillo_bits/fn_trace.hpp')
-rw-r--r--src/armadillo/include/armadillo_bits/fn_trace.hpp663
1 files changed, 663 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/fn_trace.hpp b/src/armadillo/include/armadillo_bits/fn_trace.hpp
new file mode 100644
index 0000000..8a15bac
--- /dev/null
+++ b/src/armadillo/include/armadillo_bits/fn_trace.hpp
@@ -0,0 +1,663 @@
+// SPDX-License-Identifier: Apache-2.0
+//
+// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
+// Copyright 2008-2016 National ICT Australia (NICTA)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// ------------------------------------------------------------------------
+
+
+//! \addtogroup fn_trace
+//! @{
+
+
+template<typename T1>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const Base<typename T1::elem_type, T1>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const Proxy<T1> P(X.get_ref());
+
+ const uword N = (std::min)(P.get_n_rows(), P.get_n_cols());
+
+ eT val1 = eT(0);
+ eT val2 = eT(0);
+
+ uword i,j;
+ for(i=0, j=1; j<N; i+=2, j+=2)
+ {
+ val1 += P.at(i,i);
+ val2 += P.at(j,j);
+ }
+
+ if(i < N)
+ {
+ val1 += P.at(i,i);
+ }
+
+ return val1 + val2;
+ }
+
+
+
+template<typename T1>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const Op<T1, op_diagmat>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const diagmat_proxy<T1> A(X.m);
+
+ const uword N = (std::min)(A.n_rows, A.n_cols);
+
+ eT val = eT(0);
+
+ for(uword i=0; i<N; ++i)
+ {
+ val += A[i];
+ }
+
+ return val;
+ }
+
+
+
+//! speedup for trace(A*B); non-complex elements
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename enable_if2< is_cx<typename T1::elem_type>::no, typename T1::elem_type>::result
+trace(const Glue<T1, T2, glue_times>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const partial_unwrap<T1> tmp1(X.A);
+ const partial_unwrap<T2> tmp2(X.B);
+
+ const typename partial_unwrap<T1>::stored_type& A = tmp1.M;
+ const typename partial_unwrap<T2>::stored_type& B = tmp2.M;
+
+ const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
+ const eT alpha = use_alpha ? (tmp1.get_val() * tmp2.get_val()) : eT(0);
+
+ arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
+
+ if( (A.n_elem == 0) || (B.n_elem == 0) ) { return eT(0); }
+
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ const uword B_n_rows = B.n_rows;
+ const uword B_n_cols = B.n_cols;
+
+ eT acc = eT(0);
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ const uword N = (std::min)(A_n_rows, B_n_cols);
+
+ eT acc1 = eT(0);
+ eT acc2 = eT(0);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_cols = B_n_rows
+
+ uword j;
+
+ for(j=1; j < A_n_cols; j+=2)
+ {
+ const uword i = (j-1);
+
+ const eT tmp_i = B_colptr[i];
+ const eT tmp_j = B_colptr[j];
+
+ acc1 += A.at(k, i) * tmp_i;
+ acc2 += A.at(k, j) * tmp_j;
+ }
+
+ const uword i = (j-1);
+
+ if(i < A_n_cols)
+ {
+ acc1 += A.at(k, i) * B_colptr[i];
+ }
+ }
+
+ acc = (acc1 + acc2);
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ const uword N = (std::min)(A_n_cols, B_n_cols);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* A_colptr = A.colptr(k);
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_rows = B_n_rows
+ acc += op_dot::direct_dot(A_n_rows, A_colptr, B_colptr);
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ const uword N = (std::min)(A_n_rows, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ // condition: A_n_cols = B_n_cols
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ acc += A.at(k,i) * B.at(k,i);
+ }
+ }
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true ) && (partial_unwrap<T2>::do_trans == true ) )
+ {
+ const uword N = (std::min)(A_n_cols, B_n_rows);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* A_colptr = A.colptr(k);
+
+ // condition: A_n_rows = B_n_cols
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ acc += A_colptr[i] * B.at(k,i);
+ }
+ }
+ }
+
+ return (use_alpha) ? (alpha * acc) : acc;
+ }
+
+
+
+//! speedup for trace(A*B); complex elements
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename enable_if2< is_cx<typename T1::elem_type>::yes, typename T1::elem_type>::result
+trace(const Glue<T1, T2, glue_times>& X)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::pod_type T;
+ typedef typename T1::elem_type eT;
+
+ const partial_unwrap<T1> tmp1(X.A);
+ const partial_unwrap<T2> tmp2(X.B);
+
+ const typename partial_unwrap<T1>::stored_type& A = tmp1.M;
+ const typename partial_unwrap<T2>::stored_type& B = tmp2.M;
+
+ const bool use_alpha = partial_unwrap<T1>::do_times || partial_unwrap<T2>::do_times;
+ const eT alpha = use_alpha ? (tmp1.get_val() * tmp2.get_val()) : eT(0);
+
+ arma_debug_assert_trans_mul_size< partial_unwrap<T1>::do_trans, partial_unwrap<T2>::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
+
+ if( (A.n_elem == 0) || (B.n_elem == 0) ) { return eT(0); }
+
+ const uword A_n_rows = A.n_rows;
+ const uword A_n_cols = A.n_cols;
+
+ const uword B_n_rows = B.n_rows;
+ const uword B_n_cols = B.n_cols;
+
+ eT acc = eT(0);
+
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ const uword N = (std::min)(A_n_rows, B_n_cols);
+
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_cols = B_n_rows
+
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ // acc += A.at(k, i) * B_colptr[i];
+
+ const std::complex<T>& xx = A.at(k, i);
+ const std::complex<T>& yy = B_colptr[i];
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = yy.imag();
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+ }
+
+ acc = std::complex<T>(acc_real, acc_imag);
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == false) )
+ {
+ const uword N = (std::min)(A_n_cols, B_n_cols);
+
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* A_colptr = A.colptr(k);
+ const eT* B_colptr = B.colptr(k);
+
+ // condition: A_n_rows = B_n_rows
+
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ // acc += std::conj(A_colptr[i]) * B_colptr[i];
+
+ const std::complex<T>& xx = A_colptr[i];
+ const std::complex<T>& yy = B_colptr[i];
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = yy.imag();
+
+ // take into account the complex conjugate of xx
+
+ acc_real += (a*c) + (b*d);
+ acc_imag += (a*d) - (b*c);
+ }
+ }
+
+ acc = std::complex<T>(acc_real, acc_imag);
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == false) && (partial_unwrap<T2>::do_trans == true) )
+ {
+ const uword N = (std::min)(A_n_rows, B_n_rows);
+
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ for(uword k=0; k < N; ++k)
+ {
+ // condition: A_n_cols = B_n_cols
+ for(uword i=0; i < A_n_cols; ++i)
+ {
+ // acc += A.at(k,i) * std::conj(B.at(k,i));
+
+ const std::complex<T>& xx = A.at(k, i);
+ const std::complex<T>& yy = B.at(k, i);
+
+ const T a = xx.real();
+ const T b = xx.imag();
+
+ const T c = yy.real();
+ const T d = -yy.imag(); // take the conjugate
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+ }
+
+ acc = std::complex<T>(acc_real, acc_imag);
+ }
+ else
+ if( (partial_unwrap<T1>::do_trans == true) && (partial_unwrap<T2>::do_trans == true) )
+ {
+ const uword N = (std::min)(A_n_cols, B_n_rows);
+
+ T acc_real = T(0);
+ T acc_imag = T(0);
+
+ for(uword k=0; k < N; ++k)
+ {
+ const eT* A_colptr = A.colptr(k);
+
+ // condition: A_n_rows = B_n_cols
+ for(uword i=0; i < A_n_rows; ++i)
+ {
+ // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i));
+
+ const std::complex<T>& xx = A_colptr[i];
+ const std::complex<T>& yy = B.at(k, i);
+
+ const T a = xx.real();
+ const T b = -xx.imag(); // take the conjugate
+
+ const T c = yy.real();
+ const T d = -yy.imag(); // take the conjugate
+
+ acc_real += (a*c) - (b*d);
+ acc_imag += (a*d) + (b*c);
+ }
+ }
+
+ acc = std::complex<T>(acc_real, acc_imag);
+ }
+
+ return (use_alpha) ? eT(alpha * acc) : eT(acc);
+ }
+
+
+
+//! trace of sparse object; generic version
+template<typename T1>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const SpBase<typename T1::elem_type,T1>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const SpProxy<T1> P(expr.get_ref());
+
+ const uword N = (std::min)(P.get_n_rows(), P.get_n_cols());
+
+ eT acc = eT(0);
+
+ if( (is_SpMat<typename SpProxy<T1>::stored_type>::value) && (P.get_n_nonzero() >= 5*N) )
+ {
+ const unwrap_spmat<typename SpProxy<T1>::stored_type> U(P.Q);
+
+ const SpMat<eT>& X = U.M;
+
+ for(uword i=0; i < N; ++i)
+ {
+ acc += X.at(i,i); // use binary search
+ }
+ }
+ else
+ {
+ typename SpProxy<T1>::const_iterator_type it = P.begin();
+
+ const uword P_n_nz = P.get_n_nonzero();
+
+ for(uword i=0; i < P_n_nz; ++i)
+ {
+ if(it.row() == it.col()) { acc += (*it); }
+
+ ++it;
+ }
+ }
+
+ return acc;
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A + B)
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const SpGlue<T1, T2, spglue_plus>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ const unwrap_spmat<T1> UA(expr.A);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ arma_debug_assert_same_size(UA.M.n_rows, UA.M.n_cols, UB.M.n_rows, UB.M.n_cols, "addition");
+
+ return (trace(UA.M) + trace(UB.M));
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A - B)
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const SpGlue<T1, T2, spglue_minus>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ const unwrap_spmat<T1> UA(expr.A);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ arma_debug_assert_same_size(UA.M.n_rows, UA.M.n_cols, UB.M.n_rows, UB.M.n_cols, "subtraction");
+
+ return (trace(UA.M) - trace(UB.M));
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A % B)
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const SpGlue<T1, T2, spglue_schur>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const unwrap_spmat<T1> UA(expr.A);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ const SpMat<eT>& A = UA.M;
+ const SpMat<eT>& B = UB.M;
+
+ arma_debug_assert_same_size(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "element-wise multiplication");
+
+ const uword N = (std::min)(A.n_rows, A.n_cols);
+
+ eT acc = eT(0);
+
+ for(uword i=0; i<N; ++i)
+ {
+ acc += A.at(i,i) * B.at(i,i);
+ }
+
+ return acc;
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A*B)
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename T1::elem_type
+trace(const SpGlue<T1, T2, spglue_times>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ // better-than-nothing implementation
+
+ const unwrap_spmat<T1> UA(expr.A);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ const SpMat<eT>& A = UA.M;
+ const SpMat<eT>& B = UB.M;
+
+ arma_debug_assert_mul_size(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
+
+ if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); }
+
+ const uword N = (std::min)(A.n_rows, B.n_cols);
+
+ eT acc = eT(0);
+
+ // TODO: the threshold may need tuning for complex matrices
+ if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) )
+ {
+ for(uword k=0; k < N; ++k)
+ {
+ typename SpMat<eT>::const_col_iterator B_it = B.begin_col_no_sync(k);
+ typename SpMat<eT>::const_col_iterator B_it_end = B.end_col_no_sync(k);
+
+ while(B_it != B_it_end)
+ {
+ const eT B_val = (*B_it);
+ const uword i = B_it.row();
+
+ acc += A.at(k,i) * B_val;
+
+ ++B_it;
+ }
+ }
+ }
+ else
+ {
+ const SpMat<eT> AB = A * B;
+
+ acc = trace(AB);
+ }
+
+ return acc;
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A.t()*B); non-complex elements
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename enable_if2< is_cx<typename T1::elem_type>::no, typename T1::elem_type>::result
+trace(const SpGlue<SpOp<T1, spop_htrans>, T2, spglue_times>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const unwrap_spmat<T1> UA(expr.A.m);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ const SpMat<eT>& A = UA.M;
+ const SpMat<eT>& B = UB.M;
+
+ // NOTE: deliberately swapped A.n_rows and A.n_cols to take into account the requested transpose operation
+ arma_debug_assert_mul_size(A.n_cols, A.n_rows, B.n_rows, B.n_cols, "matrix multiplication");
+
+ if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); }
+
+ const uword N = (std::min)(A.n_cols, B.n_cols);
+
+ eT acc = eT(0);
+
+ if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) )
+ {
+ for(uword k=0; k < N; ++k)
+ {
+ typename SpMat<eT>::const_col_iterator B_it = B.begin_col_no_sync(k);
+ typename SpMat<eT>::const_col_iterator B_it_end = B.end_col_no_sync(k);
+
+ while(B_it != B_it_end)
+ {
+ const eT B_val = (*B_it);
+ const uword i = B_it.row();
+
+ acc += A.at(i,k) * B_val;
+
+ ++B_it;
+ }
+ }
+ }
+ else
+ {
+ const SpMat<eT> AtB = A.t() * B;
+
+ acc = trace(AtB);
+ }
+
+ return acc;
+ }
+
+
+
+//! trace of sparse object; speedup for trace(A.t()*B); complex elements
+template<typename T1, typename T2>
+arma_warn_unused
+inline
+typename enable_if2< is_cx<typename T1::elem_type>::yes, typename T1::elem_type>::result
+trace(const SpGlue<SpOp<T1, spop_htrans>, T2, spglue_times>& expr)
+ {
+ arma_extra_debug_sigprint();
+
+ typedef typename T1::elem_type eT;
+
+ const unwrap_spmat<T1> UA(expr.A.m);
+ const unwrap_spmat<T2> UB(expr.B);
+
+ const SpMat<eT>& A = UA.M;
+ const SpMat<eT>& B = UB.M;
+
+ // NOTE: deliberately swapped A.n_rows and A.n_cols to take into account the requested transpose operation
+ arma_debug_assert_mul_size(A.n_cols, A.n_rows, B.n_rows, B.n_cols, "matrix multiplication");
+
+ if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); }
+
+ const uword N = (std::min)(A.n_cols, B.n_cols);
+
+ eT acc = eT(0);
+
+ // TODO: the threshold may need tuning for complex matrices
+ if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) )
+ {
+ for(uword k=0; k < N; ++k)
+ {
+ typename SpMat<eT>::const_col_iterator B_it = B.begin_col_no_sync(k);
+ typename SpMat<eT>::const_col_iterator B_it_end = B.end_col_no_sync(k);
+
+ while(B_it != B_it_end)
+ {
+ const eT B_val = (*B_it);
+ const uword i = B_it.row();
+
+ acc += std::conj(A.at(i,k)) * B_val;
+
+ ++B_it;
+ }
+ }
+ }
+ else
+ {
+ const SpMat<eT> AtB = A.t() * B;
+
+ acc = trace(AtB);
+ }
+
+ return acc;
+ }
+
+
+
+//! @}