diff options
Diffstat (limited to 'src/armadillo/include/armadillo_bits/gmm_full_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/gmm_full_meat.hpp | 2739 |
1 files changed, 2739 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/gmm_full_meat.hpp b/src/armadillo/include/armadillo_bits/gmm_full_meat.hpp new file mode 100644 index 0000000..5bbcce0 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/gmm_full_meat.hpp @@ -0,0 +1,2739 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup gmm_full +//! @{ + + +namespace gmm_priv +{ + + +template<typename eT> +inline +gmm_full<eT>::~gmm_full() + { + arma_extra_debug_sigprint_this(this); + + arma_type_check(( (is_same_type<eT,float>::value == false) && (is_same_type<eT,double>::value == false) )); + } + + + +template<typename eT> +inline +gmm_full<eT>::gmm_full() + { + arma_extra_debug_sigprint_this(this); + } + + + +template<typename eT> +inline +gmm_full<eT>::gmm_full(const gmm_full<eT>& x) + { + arma_extra_debug_sigprint_this(this); + + init(x); + } + + + +template<typename eT> +inline +gmm_full<eT>& +gmm_full<eT>::operator=(const gmm_full<eT>& x) + { + arma_extra_debug_sigprint(); + + init(x); + + return *this; + } + + + +template<typename eT> +inline +gmm_full<eT>::gmm_full(const gmm_diag<eT>& x) + { + arma_extra_debug_sigprint_this(this); + + init(x); + } + + + +template<typename eT> +inline +gmm_full<eT>& +gmm_full<eT>::operator=(const gmm_diag<eT>& x) + { + arma_extra_debug_sigprint(); + + init(x); + + return *this; + } + + + +template<typename eT> +inline +gmm_full<eT>::gmm_full(const uword in_n_dims, const uword in_n_gaus) + { + arma_extra_debug_sigprint_this(this); + + init(in_n_dims, in_n_gaus); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::reset() + { + arma_extra_debug_sigprint(); + + init(0, 0); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::reset(const uword in_n_dims, const uword in_n_gaus) + { + arma_extra_debug_sigprint(); + + init(in_n_dims, in_n_gaus); + } + + + +template<typename eT> +template<typename T1, typename T2, typename T3> +inline +void +gmm_full<eT>::set_params(const Base<eT,T1>& in_means_expr, const BaseCube<eT,T2>& in_fcovs_expr, const Base<eT,T3>& in_hefts_expr) + { + arma_extra_debug_sigprint(); + + const unwrap <T1> tmp1(in_means_expr.get_ref()); + const unwrap_cube<T2> tmp2(in_fcovs_expr.get_ref()); + const unwrap <T3> tmp3(in_hefts_expr.get_ref()); + + const Mat <eT>& in_means = tmp1.M; + const Cube<eT>& in_fcovs = tmp2.M; + const Mat <eT>& in_hefts = tmp3.M; + + arma_debug_check + ( + (in_means.n_cols != in_fcovs.n_slices) || (in_means.n_rows != in_fcovs.n_rows) || (in_fcovs.n_rows != in_fcovs.n_cols) || (in_hefts.n_cols != in_means.n_cols) || (in_hefts.n_rows != 1), + "gmm_full::set_params(): given parameters have inconsistent and/or wrong sizes" + ); + + arma_debug_check( (in_means.internal_has_nonfinite()), "gmm_full::set_params(): given means have non-finite values" ); + arma_debug_check( (in_fcovs.internal_has_nonfinite()), "gmm_full::set_params(): given fcovs have non-finite values" ); + arma_debug_check( (in_hefts.internal_has_nonfinite()), "gmm_full::set_params(): given hefts have non-finite values" ); + + for(uword g=0; g < in_fcovs.n_slices; ++g) + { + arma_debug_check( (any(diagvec(in_fcovs.slice(g)) <= eT(0))), "gmm_full::set_params(): given fcovs have negative or zero values on diagonals" ); + } + + arma_debug_check( (any(vectorise(in_hefts) < eT(0))), "gmm_full::set_params(): given hefts have negative values" ); + + const eT s = accu(in_hefts); + + arma_debug_check( ((s < (eT(1) - eT(0.001))) || (s > (eT(1) + eT(0.001)))), "gmm_full::set_params(): sum of given hefts is not 1" ); + + access::rw(means) = in_means; + access::rw(fcovs) = in_fcovs; + access::rw(hefts) = in_hefts; + + init_constants(); + } + + + +template<typename eT> +template<typename T1> +inline +void +gmm_full<eT>::set_means(const Base<eT,T1>& in_means_expr) + { + arma_extra_debug_sigprint(); + + const unwrap<T1> tmp(in_means_expr.get_ref()); + + const Mat<eT>& in_means = tmp.M; + + arma_debug_check( (arma::size(in_means) != arma::size(means)), "gmm_full::set_means(): given means have incompatible size" ); + arma_debug_check( (in_means.internal_has_nonfinite()), "gmm_full::set_means(): given means have non-finite values" ); + + access::rw(means) = in_means; + } + + + +template<typename eT> +template<typename T1> +inline +void +gmm_full<eT>::set_fcovs(const BaseCube<eT,T1>& in_fcovs_expr) + { + arma_extra_debug_sigprint(); + + const unwrap_cube<T1> tmp(in_fcovs_expr.get_ref()); + + const Cube<eT>& in_fcovs = tmp.M; + + arma_debug_check( (arma::size(in_fcovs) != arma::size(fcovs)), "gmm_full::set_fcovs(): given fcovs have incompatible size" ); + arma_debug_check( (in_fcovs.internal_has_nonfinite()), "gmm_full::set_fcovs(): given fcovs have non-finite values" ); + + for(uword i=0; i < in_fcovs.n_slices; ++i) + { + arma_debug_check( (any(diagvec(in_fcovs.slice(i)) <= eT(0))), "gmm_full::set_fcovs(): given fcovs have negative or zero values on diagonals" ); + } + + access::rw(fcovs) = in_fcovs; + + init_constants(); + } + + + +template<typename eT> +template<typename T1> +inline +void +gmm_full<eT>::set_hefts(const Base<eT,T1>& in_hefts_expr) + { + arma_extra_debug_sigprint(); + + const unwrap<T1> tmp(in_hefts_expr.get_ref()); + + const Mat<eT>& in_hefts = tmp.M; + + arma_debug_check( (arma::size(in_hefts) != arma::size(hefts)), "gmm_full::set_hefts(): given hefts have incompatible size" ); + arma_debug_check( (in_hefts.internal_has_nonfinite()), "gmm_full::set_hefts(): given hefts have non-finite values" ); + arma_debug_check( (any(vectorise(in_hefts) < eT(0))), "gmm_full::set_hefts(): given hefts have negative values" ); + + const eT s = accu(in_hefts); + + arma_debug_check( ((s < (eT(1) - eT(0.001))) || (s > (eT(1) + eT(0.001)))), "gmm_full::set_hefts(): sum of given hefts is not 1" ); + + // make sure all hefts are positive and non-zero + + const eT* in_hefts_mem = in_hefts.memptr(); + eT* hefts_mem = access::rw(hefts).memptr(); + + for(uword i=0; i < hefts.n_elem; ++i) + { + hefts_mem[i] = (std::max)( in_hefts_mem[i], std::numeric_limits<eT>::min() ); + } + + access::rw(hefts) /= accu(hefts); + + log_hefts = log(hefts); + } + + + +template<typename eT> +inline +uword +gmm_full<eT>::n_dims() const + { + return means.n_rows; + } + + + +template<typename eT> +inline +uword +gmm_full<eT>::n_gaus() const + { + return means.n_cols; + } + + + +template<typename eT> +inline +bool +gmm_full<eT>::load(const std::string name) + { + arma_extra_debug_sigprint(); + + field< Mat<eT> > storage; + + bool status = storage.load(name, arma_binary); + + if( (status == false) || (storage.n_elem < 2) ) + { + reset(); + arma_debug_warn_level(3, "gmm_full::load(): problem with loading or incompatible format"); + return false; + } + + uword count = 0; + + const Mat<eT>& storage_means = storage(count); ++count; + const Mat<eT>& storage_hefts = storage(count); ++count; + + const uword N_dims = storage_means.n_rows; + const uword N_gaus = storage_means.n_cols; + + if( (storage.n_elem != (N_gaus + 2)) || (storage_hefts.n_rows != 1) || (storage_hefts.n_cols != N_gaus) ) + { + reset(); + arma_debug_warn_level(3, "gmm_full::load(): incompatible format"); + return false; + } + + reset(N_dims, N_gaus); + + access::rw(means) = storage_means; + access::rw(hefts) = storage_hefts; + + for(uword g=0; g < N_gaus; ++g) + { + const Mat<eT>& storage_fcov = storage(count); ++count; + + if( (storage_fcov.n_rows != N_dims) || (storage_fcov.n_cols != N_dims) ) + { + reset(); + arma_debug_warn_level(3, "gmm_full::load(): incompatible format"); + return false; + } + + access::rw(fcovs).slice(g) = storage_fcov; + } + + init_constants(); + + return true; + } + + + +template<typename eT> +inline +bool +gmm_full<eT>::save(const std::string name) const + { + arma_extra_debug_sigprint(); + + const uword N_gaus = means.n_cols; + + field< Mat<eT> > storage(2 + N_gaus); + + uword count = 0; + + storage(count) = means; ++count; + storage(count) = hefts; ++count; + + for(uword g=0; g < N_gaus; ++g) + { + storage(count) = fcovs.slice(g); ++count; + } + + const bool status = storage.save(name, arma_binary); + + return status; + } + + + +template<typename eT> +inline +Col<eT> +gmm_full<eT>::generate() const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + Col<eT> out( (N_gaus > 0) ? N_dims : uword(0), arma_nozeros_indicator() ); + Col<eT> tmp( (N_gaus > 0) ? N_dims : uword(0), fill::randn ); + + if(N_gaus > 0) + { + const double val = randu<double>(); + + double csum = double(0); + uword gaus_id = 0; + + for(uword j=0; j < N_gaus; ++j) + { + csum += hefts[j]; + + if(val <= csum) { gaus_id = j; break; } + } + + out = chol_fcovs.slice(gaus_id) * tmp; + out += means.col(gaus_id); + } + + return out; + } + + + +template<typename eT> +inline +Mat<eT> +gmm_full<eT>::generate(const uword N_vec) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + Mat<eT> out( ( (N_gaus > 0) ? N_dims : uword(0) ), N_vec, arma_nozeros_indicator() ); + Mat<eT> tmp( ( (N_gaus > 0) ? N_dims : uword(0) ), N_vec, fill::randn ); + + if(N_gaus > 0) + { + const eT* hefts_mem = hefts.memptr(); + + for(uword i=0; i < N_vec; ++i) + { + const double val = randu<double>(); + + double csum = double(0); + uword gaus_id = 0; + + for(uword j=0; j < N_gaus; ++j) + { + csum += hefts_mem[j]; + + if(val <= csum) { gaus_id = j; break; } + } + + Col<eT> out_vec(out.colptr(i), N_dims, false, true); + Col<eT> tmp_vec(tmp.colptr(i), N_dims, false, true); + + out_vec = chol_fcovs.slice(gaus_id) * tmp_vec; + out_vec += means.col(gaus_id); + } + } + + return out; + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::log_p(const T1& expr, const gmm_empty_arg& junk1, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == true))>::result* junk2) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk1); + arma_ignore(junk2); + + const uword N_dims = means.n_rows; + + const quasi_unwrap<T1> U(expr); + + arma_debug_check( (U.M.n_rows != N_dims), "gmm_full::log_p(): incompatible dimensions" ); + + return internal_scalar_log_p( U.M.memptr() ); + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::log_p(const T1& expr, const uword gaus_id, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == true))>::result* junk2) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk2); + + const uword N_dims = means.n_rows; + + const quasi_unwrap<T1> U(expr); + + arma_debug_check( (U.M.n_rows != N_dims), "gmm_full::log_p(): incompatible dimensions" ); + arma_debug_check( (gaus_id >= means.n_cols), "gmm_full::log_p(): specified gaussian is out of range" ); + + return internal_scalar_log_p( U.M.memptr(), gaus_id ); + } + + + +template<typename eT> +template<typename T1> +inline +Row<eT> +gmm_full<eT>::log_p(const T1& expr, const gmm_empty_arg& junk1, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == false))>::result* junk2) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk1); + arma_ignore(junk2); + + const quasi_unwrap<T1> tmp(expr); + + const Mat<eT>& X = tmp.M; + + return internal_vec_log_p(X); + } + + + +template<typename eT> +template<typename T1> +inline +Row<eT> +gmm_full<eT>::log_p(const T1& expr, const uword gaus_id, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == false))>::result* junk2) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk2); + + const quasi_unwrap<T1> tmp(expr); + + const Mat<eT>& X = tmp.M; + + return internal_vec_log_p(X, gaus_id); + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::sum_log_p(const Base<eT,T1>& expr) const + { + arma_extra_debug_sigprint(); + + const quasi_unwrap<T1> tmp(expr.get_ref()); + + const Mat<eT>& X = tmp.M; + + return internal_sum_log_p(X); + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::sum_log_p(const Base<eT,T1>& expr, const uword gaus_id) const + { + arma_extra_debug_sigprint(); + + const quasi_unwrap<T1> tmp(expr.get_ref()); + + const Mat<eT>& X = tmp.M; + + return internal_sum_log_p(X, gaus_id); + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::avg_log_p(const Base<eT,T1>& expr) const + { + arma_extra_debug_sigprint(); + + const quasi_unwrap<T1> tmp(expr.get_ref()); + + const Mat<eT>& X = tmp.M; + + return internal_avg_log_p(X); + } + + + +template<typename eT> +template<typename T1> +inline +eT +gmm_full<eT>::avg_log_p(const Base<eT,T1>& expr, const uword gaus_id) const + { + arma_extra_debug_sigprint(); + + const quasi_unwrap<T1> tmp(expr.get_ref()); + + const Mat<eT>& X = tmp.M; + + return internal_avg_log_p(X, gaus_id); + } + + + +template<typename eT> +template<typename T1> +inline +uword +gmm_full<eT>::assign(const T1& expr, const gmm_dist_mode& dist, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == true))>::result* junk) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + const quasi_unwrap<T1> tmp(expr); + + const Mat<eT>& X = tmp.M; + + return internal_scalar_assign(X, dist); + } + + + +template<typename eT> +template<typename T1> +inline +urowvec +gmm_full<eT>::assign(const T1& expr, const gmm_dist_mode& dist, typename enable_if<((is_arma_type<T1>::value) && (resolves_to_colvector<T1>::value == false))>::result* junk) const + { + arma_extra_debug_sigprint(); + arma_ignore(junk); + + urowvec out; + + const quasi_unwrap<T1> tmp(expr); + + const Mat<eT>& X = tmp.M; + + internal_vec_assign(out, X, dist); + + return out; + } + + + +template<typename eT> +template<typename T1> +inline +urowvec +gmm_full<eT>::raw_hist(const Base<eT,T1>& expr, const gmm_dist_mode& dist_mode) const + { + arma_extra_debug_sigprint(); + + const unwrap<T1> tmp(expr.get_ref()); + const Mat<eT>& X = tmp.M; + + arma_debug_check( (X.n_rows != means.n_rows), "gmm_full::raw_hist(): incompatible dimensions" ); + + arma_debug_check( ((dist_mode != eucl_dist) && (dist_mode != prob_dist)), "gmm_full::raw_hist(): unsupported distance mode" ); + + urowvec hist; + + internal_raw_hist(hist, X, dist_mode); + + return hist; + } + + + +template<typename eT> +template<typename T1> +inline +Row<eT> +gmm_full<eT>::norm_hist(const Base<eT,T1>& expr, const gmm_dist_mode& dist_mode) const + { + arma_extra_debug_sigprint(); + + const unwrap<T1> tmp(expr.get_ref()); + const Mat<eT>& X = tmp.M; + + arma_debug_check( (X.n_rows != means.n_rows), "gmm_full::norm_hist(): incompatible dimensions" ); + + arma_debug_check( ((dist_mode != eucl_dist) && (dist_mode != prob_dist)), "gmm_full::norm_hist(): unsupported distance mode" ); + + urowvec hist; + + internal_raw_hist(hist, X, dist_mode); + + const uword hist_n_elem = hist.n_elem; + const uword* hist_mem = hist.memptr(); + + eT acc = eT(0); + for(uword i=0; i<hist_n_elem; ++i) { acc += eT(hist_mem[i]); } + + if(acc == eT(0)) { acc = eT(1); } + + Row<eT> out(hist_n_elem, arma_nozeros_indicator()); + + eT* out_mem = out.memptr(); + + for(uword i=0; i<hist_n_elem; ++i) { out_mem[i] = eT(hist_mem[i]) / acc; } + + return out; + } + + + +template<typename eT> +template<typename T1> +inline +bool +gmm_full<eT>::learn + ( + const Base<eT,T1>& data, + const uword N_gaus, + const gmm_dist_mode& dist_mode, + const gmm_seed_mode& seed_mode, + const uword km_iter, + const uword em_iter, + const eT var_floor, + const bool print_mode + ) + { + arma_extra_debug_sigprint(); + + const bool dist_mode_ok = (dist_mode == eucl_dist) || (dist_mode == maha_dist); + + const bool seed_mode_ok = \ + (seed_mode == keep_existing) + || (seed_mode == static_subset) + || (seed_mode == static_spread) + || (seed_mode == random_subset) + || (seed_mode == random_spread); + + arma_debug_check( (dist_mode_ok == false), "gmm_full::learn(): dist_mode must be eucl_dist or maha_dist" ); + arma_debug_check( (seed_mode_ok == false), "gmm_full::learn(): unknown seed_mode" ); + arma_debug_check( (var_floor < eT(0) ), "gmm_full::learn(): variance floor is negative" ); + + const unwrap<T1> tmp_X(data.get_ref()); + const Mat<eT>& X = tmp_X.M; + + if(X.is_empty() ) { arma_debug_warn_level(3, "gmm_full::learn(): given matrix is empty" ); return false; } + if(X.internal_has_nonfinite()) { arma_debug_warn_level(3, "gmm_full::learn(): given matrix has non-finite values"); return false; } + + if(N_gaus == 0) { reset(); return true; } + + if(dist_mode == maha_dist) + { + mah_aux = var(X,1,1); + + const uword mah_aux_n_elem = mah_aux.n_elem; + eT* mah_aux_mem = mah_aux.memptr(); + + for(uword i=0; i < mah_aux_n_elem; ++i) + { + const eT val = mah_aux_mem[i]; + + mah_aux_mem[i] = ((val != eT(0)) && arma_isfinite(val)) ? eT(1) / val : eT(1); + } + } + + + // copy current model, in case of failure by k-means and/or EM + + const gmm_full<eT> orig = (*this); + + + // initial means + + if(seed_mode == keep_existing) + { + if(means.is_empty() ) { arma_debug_warn_level(3, "gmm_full::learn(): no existing means" ); return false; } + if(X.n_rows != means.n_rows) { arma_debug_warn_level(3, "gmm_full::learn(): dimensionality mismatch"); return false; } + + // TODO: also check for number of vectors? + } + else + { + if(X.n_cols < N_gaus) { arma_debug_warn_level(3, "gmm_full::learn(): number of vectors is less than number of gaussians"); return false; } + + reset(X.n_rows, N_gaus); + + if(print_mode) { get_cout_stream() << "gmm_full::learn(): generating initial means\n"; get_cout_stream().flush(); } + + if(dist_mode == eucl_dist) { generate_initial_means<1>(X, seed_mode); } + else if(dist_mode == maha_dist) { generate_initial_means<2>(X, seed_mode); } + } + + + // k-means + + if(km_iter > 0) + { + const arma_ostream_state stream_state(get_cout_stream()); + + bool status = false; + + if(dist_mode == eucl_dist) { status = km_iterate<1>(X, km_iter, print_mode); } + else if(dist_mode == maha_dist) { status = km_iterate<2>(X, km_iter, print_mode); } + + stream_state.restore(get_cout_stream()); + + if(status == false) { arma_debug_warn_level(3, "gmm_full::learn(): k-means algorithm failed; not enough data, or too many gaussians requested"); init(orig); return false; } + } + + + // initial fcovs + + const eT var_floor_actual = (eT(var_floor) > eT(0)) ? eT(var_floor) : std::numeric_limits<eT>::min(); + + if(seed_mode != keep_existing) + { + if(print_mode) { get_cout_stream() << "gmm_full::learn(): generating initial covariances\n"; get_cout_stream().flush(); } + + if(dist_mode == eucl_dist) { generate_initial_params<1>(X, var_floor_actual); } + else if(dist_mode == maha_dist) { generate_initial_params<2>(X, var_floor_actual); } + } + + + // EM algorithm + + if(em_iter > 0) + { + const arma_ostream_state stream_state(get_cout_stream()); + + const bool status = em_iterate(X, em_iter, var_floor_actual, print_mode); + + stream_state.restore(get_cout_stream()); + + if(status == false) { arma_debug_warn_level(3, "gmm_full::learn(): EM algorithm failed"); init(orig); return false; } + } + + mah_aux.reset(); + + init_constants(); + + return true; + } + + + +// +// +// + + + +template<typename eT> +inline +void +gmm_full<eT>::init(const gmm_full<eT>& x) + { + arma_extra_debug_sigprint(); + + gmm_full<eT>& t = *this; + + if(&t != &x) + { + access::rw(t.means) = x.means; + access::rw(t.fcovs) = x.fcovs; + access::rw(t.hefts) = x.hefts; + + init_constants(); + } + } + + + +template<typename eT> +inline +void +gmm_full<eT>::init(const gmm_diag<eT>& x) + { + arma_extra_debug_sigprint(); + + access::rw(hefts) = x.hefts; + access::rw(means) = x.means; + + const uword N_dims = x.means.n_rows; + const uword N_gaus = x.means.n_cols; + + access::rw(fcovs).zeros(N_dims,N_dims,N_gaus); + + for(uword g=0; g < N_gaus; ++g) + { + Mat<eT>& fcov = access::rw(fcovs).slice(g); + + const eT* dcov_mem = x.dcovs.colptr(g); + + for(uword d=0; d < N_dims; ++d) + { + fcov.at(d,d) = dcov_mem[d]; + } + } + + init_constants(); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::init(const uword in_n_dims, const uword in_n_gaus) + { + arma_extra_debug_sigprint(); + + access::rw(means).zeros(in_n_dims, in_n_gaus); + + access::rw(fcovs).zeros(in_n_dims, in_n_dims, in_n_gaus); + + for(uword g=0; g < in_n_gaus; ++g) + { + access::rw(fcovs).slice(g).diag().ones(); + } + + access::rw(hefts).set_size(in_n_gaus); + access::rw(hefts).fill(eT(1) / eT(in_n_gaus)); + + init_constants(); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::init_constants(const bool calc_chol) + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const eT tmp = (eT(N_dims)/eT(2)) * std::log(Datum<eT>::tau); + + // + + inv_fcovs.copy_size(fcovs); + log_det_etc.set_size(N_gaus); + + Mat<eT> tmp_inv; + + for(uword g=0; g < N_gaus; ++g) + { + const Mat<eT>& fcov = fcovs.slice(g); + Mat<eT>& inv_fcov = inv_fcovs.slice(g); + + //const bool inv_ok = auxlib::inv(tmp_inv, fcov); + const bool inv_ok = auxlib::inv_sympd(tmp_inv, fcov); + + eT log_det_val = eT(0); + eT log_det_sign = eT(0); + + const bool log_det_status = log_det(log_det_val, log_det_sign, fcov); + + const bool log_det_ok = ( log_det_status && (arma_isfinite(log_det_val)) && (log_det_sign > eT(0)) ); + + if(inv_ok && log_det_ok) + { + inv_fcov = tmp_inv; + } + else + { + // last resort: treat the covariance matrix as diagonal + + inv_fcov.zeros(); + + log_det_val = eT(0); + + for(uword d=0; d < N_dims; ++d) + { + const eT sanitised_val = (std::max)( eT(fcov.at(d,d)), eT(std::numeric_limits<eT>::min()) ); + + inv_fcov.at(d,d) = eT(1) / sanitised_val; + + log_det_val += std::log(sanitised_val); + } + } + + log_det_etc[g] = eT(-1) * ( tmp + eT(0.5) * log_det_val ); + } + + // + + eT* hefts_mem = access::rw(hefts).memptr(); + + for(uword g=0; g < N_gaus; ++g) + { + hefts_mem[g] = (std::max)( hefts_mem[g], std::numeric_limits<eT>::min() ); + } + + log_hefts = log(hefts); + + + if(calc_chol) + { + chol_fcovs.copy_size(fcovs); + + Mat<eT> tmp_chol; + + for(uword g=0; g < N_gaus; ++g) + { + const Mat<eT>& fcov = fcovs.slice(g); + Mat<eT>& chol_fcov = chol_fcovs.slice(g); + + const uword chol_layout = 1; // indicates "lower" + + const bool chol_ok = op_chol::apply_direct(tmp_chol, fcov, chol_layout); + + if(chol_ok) + { + chol_fcov = tmp_chol; + } + else + { + // last resort: treat the covariance matrix as diagonal + + chol_fcov.zeros(); + + for(uword d=0; d < N_dims; ++d) + { + const eT sanitised_val = (std::max)( eT(fcov.at(d,d)), eT(std::numeric_limits<eT>::min()) ); + + chol_fcov.at(d,d) = std::sqrt(sanitised_val); + } + } + } + } + } + + + +template<typename eT> +inline +umat +gmm_full<eT>::internal_gen_boundaries(const uword N) const + { + arma_extra_debug_sigprint(); + + #if defined(ARMA_USE_OPENMP) + const uword n_threads_avail = uword(omp_get_max_threads()); + const uword n_threads = (n_threads_avail > 0) ? ( (n_threads_avail <= N) ? n_threads_avail : 1 ) : 1; + #else + static constexpr uword n_threads = 1; + #endif + + // get_cout_stream() << "gmm_full::internal_gen_boundaries(): n_threads: " << n_threads << '\n'; + + umat boundaries(2, n_threads, arma_nozeros_indicator()); + + if(N > 0) + { + const uword chunk_size = N / n_threads; + + uword count = 0; + + for(uword t=0; t<n_threads; t++) + { + boundaries.at(0,t) = count; + + count += chunk_size; + + boundaries.at(1,t) = count-1; + } + + boundaries.at(1,n_threads-1) = N - 1; + } + else + { + boundaries.zeros(); + } + + // get_cout_stream() << "gmm_full::internal_gen_boundaries(): boundaries: " << '\n' << boundaries << '\n'; + + return boundaries; + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_scalar_log_p(const eT* x) const + { + arma_extra_debug_sigprint(); + + const eT* log_hefts_mem = log_hefts.mem; + + const uword N_gaus = means.n_cols; + + if(N_gaus > 0) + { + eT log_sum = internal_scalar_log_p(x, 0) + log_hefts_mem[0]; + + for(uword g=1; g < N_gaus; ++g) + { + const eT log_val = internal_scalar_log_p(x, g) + log_hefts_mem[g]; + + log_sum = log_add_exp(log_sum, log_val); + } + + return log_sum; + } + else + { + return -Datum<eT>::inf; + } + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_scalar_log_p(const eT* x, const uword g) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const eT* mean_mem = means.colptr(g); + + eT outer_acc = eT(0); + + const eT* inv_fcov_coldata = inv_fcovs.slice(g).memptr(); + + for(uword i=0; i < N_dims; ++i) + { + eT inner_acc = eT(0); + + for(uword j=0; j < N_dims; ++j) + { + inner_acc += (x[j] - mean_mem[j]) * inv_fcov_coldata[j]; + } + + inv_fcov_coldata += N_dims; + + outer_acc += inner_acc * (x[i] - mean_mem[i]); + } + + return eT(-0.5)*outer_acc + log_det_etc.mem[g]; + } + + + +template<typename eT> +inline +Row<eT> +gmm_full<eT>::internal_vec_log_p(const Mat<eT>& X) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_samples = X.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::log_p(): incompatible dimensions" ); + + Row<eT> out(N_samples, arma_nozeros_indicator()); + + if(N_samples > 0) + { + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N_samples); + + const uword n_threads = boundaries.n_cols; + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + eT* out_mem = out.memptr(); + + for(uword i=start_index; i <= end_index; ++i) + { + out_mem[i] = internal_scalar_log_p( X.colptr(i) ); + } + } + } + #else + { + eT* out_mem = out.memptr(); + + for(uword i=0; i < N_samples; ++i) + { + out_mem[i] = internal_scalar_log_p( X.colptr(i) ); + } + } + #endif + } + + return out; + } + + + +template<typename eT> +inline +Row<eT> +gmm_full<eT>::internal_vec_log_p(const Mat<eT>& X, const uword gaus_id) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_samples = X.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::log_p(): incompatible dimensions" ); + arma_debug_check( (gaus_id >= means.n_cols), "gmm_full::log_p(): specified gaussian is out of range" ); + + Row<eT> out(N_samples, arma_nozeros_indicator()); + + if(N_samples > 0) + { + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N_samples); + + const uword n_threads = boundaries.n_cols; + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + eT* out_mem = out.memptr(); + + for(uword i=start_index; i <= end_index; ++i) + { + out_mem[i] = internal_scalar_log_p( X.colptr(i), gaus_id ); + } + } + } + #else + { + eT* out_mem = out.memptr(); + + for(uword i=0; i < N_samples; ++i) + { + out_mem[i] = internal_scalar_log_p( X.colptr(i), gaus_id ); + } + } + #endif + } + + return out; + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_sum_log_p(const Mat<eT>& X) const + { + arma_extra_debug_sigprint(); + + arma_debug_check( (X.n_rows != means.n_rows), "gmm_full::sum_log_p(): incompatible dimensions" ); + + const uword N = X.n_cols; + + if(N == 0) { return (-Datum<eT>::inf); } + + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N); + + const uword n_threads = boundaries.n_cols; + + Col<eT> t_accs(n_threads, arma_zeros_indicator()); + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + eT t_acc = eT(0); + + for(uword i=start_index; i <= end_index; ++i) + { + t_acc += internal_scalar_log_p( X.colptr(i) ); + } + + t_accs[t] = t_acc; + } + + return eT(accu(t_accs)); + } + #else + { + eT acc = eT(0); + + for(uword i=0; i<N; ++i) + { + acc += internal_scalar_log_p( X.colptr(i) ); + } + + return acc; + } + #endif + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_sum_log_p(const Mat<eT>& X, const uword gaus_id) const + { + arma_extra_debug_sigprint(); + + arma_debug_check( (X.n_rows != means.n_rows), "gmm_full::sum_log_p(): incompatible dimensions" ); + arma_debug_check( (gaus_id >= means.n_cols), "gmm_full::sum_log_p(): specified gaussian is out of range" ); + + const uword N = X.n_cols; + + if(N == 0) { return (-Datum<eT>::inf); } + + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N); + + const uword n_threads = boundaries.n_cols; + + Col<eT> t_accs(n_threads, arma_zeros_indicator()); + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + eT t_acc = eT(0); + + for(uword i=start_index; i <= end_index; ++i) + { + t_acc += internal_scalar_log_p( X.colptr(i), gaus_id ); + } + + t_accs[t] = t_acc; + } + + return eT(accu(t_accs)); + } + #else + { + eT acc = eT(0); + + for(uword i=0; i<N; ++i) + { + acc += internal_scalar_log_p( X.colptr(i), gaus_id ); + } + + return acc; + } + #endif + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_avg_log_p(const Mat<eT>& X) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_samples = X.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::avg_log_p(): incompatible dimensions" ); + + if(N_samples == 0) { return (-Datum<eT>::inf); } + + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N_samples); + + const uword n_threads = boundaries.n_cols; + + field< running_mean_scalar<eT> > t_running_means(n_threads); + + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + running_mean_scalar<eT>& current_running_mean = t_running_means[t]; + + for(uword i=start_index; i <= end_index; ++i) + { + current_running_mean( internal_scalar_log_p( X.colptr(i) ) ); + } + } + + + eT avg = eT(0); + + for(uword t=0; t < n_threads; ++t) + { + running_mean_scalar<eT>& current_running_mean = t_running_means[t]; + + const eT w = eT(current_running_mean.count()) / eT(N_samples); + + avg += w * current_running_mean.mean(); + } + + return avg; + } + #else + { + running_mean_scalar<eT> running_mean; + + for(uword i=0; i < N_samples; ++i) + { + running_mean( internal_scalar_log_p( X.colptr(i) ) ); + } + + return running_mean.mean(); + } + #endif + } + + + +template<typename eT> +inline +eT +gmm_full<eT>::internal_avg_log_p(const Mat<eT>& X, const uword gaus_id) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_samples = X.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::avg_log_p(): incompatible dimensions" ); + arma_debug_check( (gaus_id >= means.n_cols), "gmm_full::avg_log_p(): specified gaussian is out of range" ); + + if(N_samples == 0) { return (-Datum<eT>::inf); } + + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(N_samples); + + const uword n_threads = boundaries.n_cols; + + field< running_mean_scalar<eT> > t_running_means(n_threads); + + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + running_mean_scalar<eT>& current_running_mean = t_running_means[t]; + + for(uword i=start_index; i <= end_index; ++i) + { + current_running_mean( internal_scalar_log_p( X.colptr(i), gaus_id) ); + } + } + + + eT avg = eT(0); + + for(uword t=0; t < n_threads; ++t) + { + running_mean_scalar<eT>& current_running_mean = t_running_means[t]; + + const eT w = eT(current_running_mean.count()) / eT(N_samples); + + avg += w * current_running_mean.mean(); + } + + return avg; + } + #else + { + running_mean_scalar<eT> running_mean; + + for(uword i=0; i<N_samples; ++i) + { + running_mean( internal_scalar_log_p( X.colptr(i), gaus_id ) ); + } + + return running_mean.mean(); + } + #endif + } + + + +template<typename eT> +inline +uword +gmm_full<eT>::internal_scalar_assign(const Mat<eT>& X, const gmm_dist_mode& dist_mode) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::assign(): incompatible dimensions" ); + arma_debug_check( (N_gaus == 0), "gmm_full::assign(): model has no means" ); + + const eT* X_mem = X.colptr(0); + + if(dist_mode == eucl_dist) + { + eT best_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_dist = distance<eT,1>::eval(N_dims, X_mem, means.colptr(g), X_mem); + + if(tmp_dist <= best_dist) + { + best_dist = tmp_dist; + best_g = g; + } + } + + return best_g; + } + else + if(dist_mode == prob_dist) + { + const eT* log_hefts_mem = log_hefts.memptr(); + + eT best_p = -Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_p = internal_scalar_log_p(X_mem, g) + log_hefts_mem[g]; + + if(tmp_p >= best_p) + { + best_p = tmp_p; + best_g = g; + } + } + + return best_g; + } + else + { + arma_debug_check(true, "gmm_full::assign(): unsupported distance mode"); + } + + return uword(0); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::internal_vec_assign(urowvec& out, const Mat<eT>& X, const gmm_dist_mode& dist_mode) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + arma_debug_check( (X.n_rows != N_dims), "gmm_full::assign(): incompatible dimensions" ); + + const uword X_n_cols = (N_gaus > 0) ? X.n_cols : 0; + + out.set_size(1,X_n_cols); + + uword* out_mem = out.memptr(); + + if(dist_mode == eucl_dist) + { + #if defined(ARMA_USE_OPENMP) + { + #pragma omp parallel for schedule(static) + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT tmp_dist = distance<eT,1>::eval(N_dims, X_colptr, means.colptr(g), X_colptr); + + if(tmp_dist <= best_dist) { best_dist = tmp_dist; best_g = g; } + } + + out_mem[i] = best_g; + } + } + #else + { + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT tmp_dist = distance<eT,1>::eval(N_dims, X_colptr, means.colptr(g), X_colptr); + + if(tmp_dist <= best_dist) { best_dist = tmp_dist; best_g = g; } + } + + out_mem[i] = best_g; + } + } + #endif + } + else + if(dist_mode == prob_dist) + { + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(X_n_cols); + + const uword n_threads = boundaries.n_cols; + + const eT* log_hefts_mem = log_hefts.memptr(); + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + for(uword i=start_index; i <= end_index; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_p = -Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT tmp_p = internal_scalar_log_p(X_colptr, g) + log_hefts_mem[g]; + + if(tmp_p >= best_p) { best_p = tmp_p; best_g = g; } + } + + out_mem[i] = best_g; + } + } + } + #else + { + const eT* log_hefts_mem = log_hefts.memptr(); + + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_p = -Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT tmp_p = internal_scalar_log_p(X_colptr, g) + log_hefts_mem[g]; + + if(tmp_p >= best_p) { best_p = tmp_p; best_g = g; } + } + + out_mem[i] = best_g; + } + } + #endif + } + else + { + arma_debug_check(true, "gmm_full::assign(): unsupported distance mode"); + } + } + + + + +template<typename eT> +inline +void +gmm_full<eT>::internal_raw_hist(urowvec& hist, const Mat<eT>& X, const gmm_dist_mode& dist_mode) const + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const uword X_n_cols = X.n_cols; + + hist.zeros(N_gaus); + + if(N_gaus == 0) { return; } + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(X_n_cols); + + const uword n_threads = boundaries.n_cols; + + field<urowvec> thread_hist(n_threads); + + for(uword t=0; t < n_threads; ++t) { thread_hist(t).zeros(N_gaus); } + + + if(dist_mode == eucl_dist) + { + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + uword* thread_hist_mem = thread_hist(t).memptr(); + + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + for(uword i=start_index; i <= end_index; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_dist = distance<eT,1>::eval(N_dims, X_colptr, means.colptr(g), X_colptr); + + if(tmp_dist <= best_dist) { best_dist = tmp_dist; best_g = g; } + } + + thread_hist_mem[best_g]++; + } + } + } + else + if(dist_mode == prob_dist) + { + const eT* log_hefts_mem = log_hefts.memptr(); + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + uword* thread_hist_mem = thread_hist(t).memptr(); + + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + for(uword i=start_index; i <= end_index; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_p = -Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_p = internal_scalar_log_p(X_colptr, g) + log_hefts_mem[g]; + + if(tmp_p >= best_p) { best_p = tmp_p; best_g = g; } + } + + thread_hist_mem[best_g]++; + } + } + } + + // reduction + for(uword t=0; t < n_threads; ++t) + { + hist += thread_hist(t); + } + } + #else + { + uword* hist_mem = hist.memptr(); + + if(dist_mode == eucl_dist) + { + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_dist = distance<eT,1>::eval(N_dims, X_colptr, means.colptr(g), X_colptr); + + if(tmp_dist <= best_dist) { best_dist = tmp_dist; best_g = g; } + } + + hist_mem[best_g]++; + } + } + else + if(dist_mode == prob_dist) + { + const eT* log_hefts_mem = log_hefts.memptr(); + + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT best_p = -Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g < N_gaus; ++g) + { + const eT tmp_p = internal_scalar_log_p(X_colptr, g) + log_hefts_mem[g]; + + if(tmp_p >= best_p) { best_p = tmp_p; best_g = g; } + } + + hist_mem[best_g]++; + } + } + } + #endif + } + + + +template<typename eT> +template<uword dist_id> +inline +void +gmm_full<eT>::generate_initial_means(const Mat<eT>& X, const gmm_seed_mode& seed_mode) + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + if( (seed_mode == static_subset) || (seed_mode == random_subset) ) + { + uvec initial_indices; + + if(seed_mode == static_subset) { initial_indices = linspace<uvec>(0, X.n_cols-1, N_gaus); } + else if(seed_mode == random_subset) { initial_indices = randperm<uvec>(X.n_cols, N_gaus); } + + // initial_indices.print("initial_indices:"); + + access::rw(means) = X.cols(initial_indices); + } + else + if( (seed_mode == static_spread) || (seed_mode == random_spread) ) + { + // going through all of the samples can be extremely time consuming; + // instead, if there are enough samples, randomly choose samples with probability 0.1 + + const bool use_sampling = ((X.n_cols/uword(100)) > N_gaus); + const uword step = (use_sampling) ? uword(10) : uword(1); + + uword start_index = 0; + + if(seed_mode == static_spread) { start_index = X.n_cols / 2; } + else if(seed_mode == random_spread) { start_index = as_scalar(randi<uvec>(1, distr_param(0,X.n_cols-1))); } + + access::rw(means).col(0) = X.unsafe_col(start_index); + + const eT* mah_aux_mem = mah_aux.memptr(); + + running_stat<double> rs; + + for(uword g=1; g < N_gaus; ++g) + { + eT max_dist = eT(0); + uword best_i = uword(0); + uword start_i = uword(0); + + if(use_sampling) + { + uword start_i_proposed = uword(0); + + if(seed_mode == static_spread) { start_i_proposed = g % uword(10); } + if(seed_mode == random_spread) { start_i_proposed = as_scalar(randi<uvec>(1, distr_param(0,9))); } + + if(start_i_proposed < X.n_cols) { start_i = start_i_proposed; } + } + + + for(uword i=start_i; i < X.n_cols; i += step) + { + rs.reset(); + + const eT* X_colptr = X.colptr(i); + + bool ignore_i = false; + + // find the average distance between sample i and the means so far + for(uword h = 0; h < g; ++h) + { + const eT dist = distance<eT,dist_id>::eval(N_dims, X_colptr, means.colptr(h), mah_aux_mem); + + // ignore sample already selected as a mean + if(dist == eT(0)) { ignore_i = true; break; } + else { rs(dist); } + } + + if( (rs.mean() >= max_dist) && (ignore_i == false)) + { + max_dist = eT(rs.mean()); best_i = i; + } + } + + // set the mean to the sample that is the furthest away from the means so far + access::rw(means).col(g) = X.unsafe_col(best_i); + } + } + + // get_cout_stream() << "generate_initial_means():" << '\n'; + // means.print(); + } + + + +template<typename eT> +template<uword dist_id> +inline +void +gmm_full<eT>::generate_initial_params(const Mat<eT>& X, const eT var_floor) + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const eT* mah_aux_mem = mah_aux.memptr(); + + const uword X_n_cols = X.n_cols; + + if(X_n_cols == 0) { return; } + + // as the covariances are calculated via accumulators, + // the means also need to be calculated via accumulators to ensure numerical consistency + + Mat<eT> acc_means(N_dims, N_gaus); + Mat<eT> acc_dcovs(N_dims, N_gaus); + + Row<uword> acc_hefts(N_gaus, arma_zeros_indicator()); + + uword* acc_hefts_mem = acc_hefts.memptr(); + + #if defined(ARMA_USE_OPENMP) + { + const umat boundaries = internal_gen_boundaries(X_n_cols); + + const uword n_threads = boundaries.n_cols; + + field< Mat<eT> > t_acc_means(n_threads); + field< Mat<eT> > t_acc_dcovs(n_threads); + field< Row<uword> > t_acc_hefts(n_threads); + + for(uword t=0; t < n_threads; ++t) + { + t_acc_means(t).zeros(N_dims, N_gaus); + t_acc_dcovs(t).zeros(N_dims, N_gaus); + t_acc_hefts(t).zeros(N_gaus); + } + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + uword* t_acc_hefts_mem = t_acc_hefts(t).memptr(); + + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + for(uword i=start_index; i <= end_index; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT min_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT dist = distance<eT,dist_id>::eval(N_dims, X_colptr, means.colptr(g), mah_aux_mem); + + if(dist < min_dist) { min_dist = dist; best_g = g; } + } + + eT* t_acc_mean = t_acc_means(t).colptr(best_g); + eT* t_acc_dcov = t_acc_dcovs(t).colptr(best_g); + + for(uword d=0; d<N_dims; ++d) + { + const eT x_d = X_colptr[d]; + + t_acc_mean[d] += x_d; + t_acc_dcov[d] += x_d*x_d; + } + + t_acc_hefts_mem[best_g]++; + } + } + + // reduction + acc_means = t_acc_means(0); + acc_dcovs = t_acc_dcovs(0); + acc_hefts = t_acc_hefts(0); + + for(uword t=1; t < n_threads; ++t) + { + acc_means += t_acc_means(t); + acc_dcovs += t_acc_dcovs(t); + acc_hefts += t_acc_hefts(t); + } + } + #else + { + for(uword i=0; i<X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT min_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT dist = distance<eT,dist_id>::eval(N_dims, X_colptr, means.colptr(g), mah_aux_mem); + + if(dist < min_dist) { min_dist = dist; best_g = g; } + } + + eT* acc_mean = acc_means.colptr(best_g); + eT* acc_dcov = acc_dcovs.colptr(best_g); + + for(uword d=0; d<N_dims; ++d) + { + const eT x_d = X_colptr[d]; + + acc_mean[d] += x_d; + acc_dcov[d] += x_d*x_d; + } + + acc_hefts_mem[best_g]++; + } + } + #endif + + eT* hefts_mem = access::rw(hefts).memptr(); + + for(uword g=0; g<N_gaus; ++g) + { + const eT* acc_mean = acc_means.colptr(g); + const eT* acc_dcov = acc_dcovs.colptr(g); + const uword acc_heft = acc_hefts_mem[g]; + + eT* mean = access::rw(means).colptr(g); + + Mat<eT>& fcov = access::rw(fcovs).slice(g); + fcov.zeros(); + + for(uword d=0; d<N_dims; ++d) + { + const eT tmp = acc_mean[d] / eT(acc_heft); + + mean[d] = (acc_heft >= 1) ? tmp : eT(0); + fcov.at(d,d) = (acc_heft >= 2) ? eT((acc_dcov[d] / eT(acc_heft)) - (tmp*tmp)) : eT(var_floor); + } + + hefts_mem[g] = eT(acc_heft) / eT(X_n_cols); + } + + em_fix_params(var_floor); + } + + + +//! multi-threaded implementation of k-means, inspired by MapReduce +template<typename eT> +template<uword dist_id> +inline +bool +gmm_full<eT>::km_iterate(const Mat<eT>& X, const uword max_iter, const bool verbose) + { + arma_extra_debug_sigprint(); + + if(verbose) + { + get_cout_stream().unsetf(ios::showbase); + get_cout_stream().unsetf(ios::uppercase); + get_cout_stream().unsetf(ios::showpos); + get_cout_stream().unsetf(ios::scientific); + + get_cout_stream().setf(ios::right); + get_cout_stream().setf(ios::fixed); + } + + const uword X_n_cols = X.n_cols; + + if(X_n_cols == 0) { return true; } + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const eT* mah_aux_mem = mah_aux.memptr(); + + Mat<eT> acc_means(N_dims, N_gaus, arma_zeros_indicator()); + Row<uword> acc_hefts( N_gaus, arma_zeros_indicator()); + Row<uword> last_indx( N_gaus, arma_zeros_indicator()); + + Mat<eT> new_means = means; + Mat<eT> old_means = means; + + running_mean_scalar<eT> rs_delta; + + #if defined(ARMA_USE_OPENMP) + const umat boundaries = internal_gen_boundaries(X_n_cols); + const uword n_threads = boundaries.n_cols; + + field< Mat<eT> > t_acc_means(n_threads); + field< Row<uword> > t_acc_hefts(n_threads); + field< Row<uword> > t_last_indx(n_threads); + #else + const uword n_threads = 1; + #endif + + if(verbose) { get_cout_stream() << "gmm_full::learn(): k-means: n_threads: " << n_threads << '\n'; get_cout_stream().flush(); } + + for(uword iter=1; iter <= max_iter; ++iter) + { + #if defined(ARMA_USE_OPENMP) + { + for(uword t=0; t < n_threads; ++t) + { + t_acc_means(t).zeros(N_dims, N_gaus); + t_acc_hefts(t).zeros(N_gaus); + t_last_indx(t).zeros(N_gaus); + } + + #pragma omp parallel for schedule(static) + for(uword t=0; t < n_threads; ++t) + { + Mat<eT>& t_acc_means_t = t_acc_means(t); + uword* t_acc_hefts_mem = t_acc_hefts(t).memptr(); + uword* t_last_indx_mem = t_last_indx(t).memptr(); + + const uword start_index = boundaries.at(0,t); + const uword end_index = boundaries.at(1,t); + + for(uword i=start_index; i <= end_index; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT min_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT dist = distance<eT,dist_id>::eval(N_dims, X_colptr, old_means.colptr(g), mah_aux_mem); + + if(dist < min_dist) { min_dist = dist; best_g = g; } + } + + eT* t_acc_mean = t_acc_means_t.colptr(best_g); + + for(uword d=0; d<N_dims; ++d) { t_acc_mean[d] += X_colptr[d]; } + + t_acc_hefts_mem[best_g]++; + t_last_indx_mem[best_g] = i; + } + } + + // reduction + + acc_means = t_acc_means(0); + acc_hefts = t_acc_hefts(0); + + for(uword t=1; t < n_threads; ++t) + { + acc_means += t_acc_means(t); + acc_hefts += t_acc_hefts(t); + } + + for(uword g=0; g < N_gaus; ++g) + for(uword t=0; t < n_threads; ++t) + { + if( t_acc_hefts(t)(g) >= 1 ) { last_indx(g) = t_last_indx(t)(g); } + } + } + #else + { + acc_hefts.zeros(); + acc_means.zeros(); + last_indx.zeros(); + + uword* acc_hefts_mem = acc_hefts.memptr(); + uword* last_indx_mem = last_indx.memptr(); + + for(uword i=0; i < X_n_cols; ++i) + { + const eT* X_colptr = X.colptr(i); + + eT min_dist = Datum<eT>::inf; + uword best_g = 0; + + for(uword g=0; g<N_gaus; ++g) + { + const eT dist = distance<eT,dist_id>::eval(N_dims, X_colptr, old_means.colptr(g), mah_aux_mem); + + if(dist < min_dist) { min_dist = dist; best_g = g; } + } + + eT* acc_mean = acc_means.colptr(best_g); + + for(uword d=0; d<N_dims; ++d) { acc_mean[d] += X_colptr[d]; } + + acc_hefts_mem[best_g]++; + last_indx_mem[best_g] = i; + } + } + #endif + + // generate new means + + uword* acc_hefts_mem = acc_hefts.memptr(); + + for(uword g=0; g < N_gaus; ++g) + { + const eT* acc_mean = acc_means.colptr(g); + const uword acc_heft = acc_hefts_mem[g]; + + eT* new_mean = access::rw(new_means).colptr(g); + + for(uword d=0; d<N_dims; ++d) + { + new_mean[d] = (acc_heft >= 1) ? (acc_mean[d] / eT(acc_heft)) : eT(0); + } + } + + + // heuristics to resurrect dead means + + const uvec dead_gs = find(acc_hefts == uword(0)); + + if(dead_gs.n_elem > 0) + { + if(verbose) { get_cout_stream() << "gmm_full::learn(): k-means: recovering from dead means\n"; get_cout_stream().flush(); } + + uword* last_indx_mem = last_indx.memptr(); + + const uvec live_gs = sort( find(acc_hefts >= uword(2)), "descend" ); + + if(live_gs.n_elem == 0) { return false; } + + uword live_gs_count = 0; + + for(uword dead_gs_count = 0; dead_gs_count < dead_gs.n_elem; ++dead_gs_count) + { + const uword dead_g_id = dead_gs(dead_gs_count); + + uword proposed_i = 0; + + if(live_gs_count < live_gs.n_elem) + { + const uword live_g_id = live_gs(live_gs_count); ++live_gs_count; + + if(live_g_id == dead_g_id) { return false; } + + // recover by using a sample from a known good mean + proposed_i = last_indx_mem[live_g_id]; + } + else + { + // recover by using a randomly seleced sample (last resort) + proposed_i = as_scalar(randi<uvec>(1, distr_param(0,X_n_cols-1))); + } + + if(proposed_i >= X_n_cols) { return false; } + + new_means.col(dead_g_id) = X.col(proposed_i); + } + } + + rs_delta.reset(); + + for(uword g=0; g < N_gaus; ++g) + { + rs_delta( distance<eT,dist_id>::eval(N_dims, old_means.colptr(g), new_means.colptr(g), mah_aux_mem) ); + } + + if(verbose) + { + get_cout_stream() << "gmm_full::learn(): k-means: iteration: "; + get_cout_stream().unsetf(ios::scientific); + get_cout_stream().setf(ios::fixed); + get_cout_stream().width(std::streamsize(4)); + get_cout_stream() << iter; + get_cout_stream() << " delta: "; + get_cout_stream().unsetf(ios::fixed); + //get_cout_stream().setf(ios::scientific); + get_cout_stream() << rs_delta.mean() << '\n'; + get_cout_stream().flush(); + } + + arma::swap(old_means, new_means); + + if(rs_delta.mean() <= Datum<eT>::eps) { break; } + } + + access::rw(means) = old_means; + + if(means.internal_has_nonfinite()) { return false; } + + return true; + } + + + +//! multi-threaded implementation of Expectation-Maximisation, inspired by MapReduce +template<typename eT> +inline +bool +gmm_full<eT>::em_iterate(const Mat<eT>& X, const uword max_iter, const eT var_floor, const bool verbose) + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + if(verbose) + { + get_cout_stream().unsetf(ios::showbase); + get_cout_stream().unsetf(ios::uppercase); + get_cout_stream().unsetf(ios::showpos); + get_cout_stream().unsetf(ios::scientific); + + get_cout_stream().setf(ios::right); + get_cout_stream().setf(ios::fixed); + } + + const umat boundaries = internal_gen_boundaries(X.n_cols); + + const uword n_threads = boundaries.n_cols; + + field< Mat<eT> > t_acc_means(n_threads); + field< Cube<eT> > t_acc_fcovs(n_threads); + + field< Col<eT> > t_acc_norm_lhoods(n_threads); + field< Col<eT> > t_gaus_log_lhoods(n_threads); + + Col<eT> t_progress_log_lhood(n_threads, arma_nozeros_indicator()); + + for(uword t=0; t<n_threads; t++) + { + t_acc_means[t].set_size(N_dims, N_gaus); + t_acc_fcovs[t].set_size(N_dims, N_dims, N_gaus); + + t_acc_norm_lhoods[t].set_size(N_gaus); + t_gaus_log_lhoods[t].set_size(N_gaus); + } + + + if(verbose) + { + get_cout_stream() << "gmm_full::learn(): EM: n_threads: " << n_threads << '\n'; + } + + eT old_avg_log_p = -Datum<eT>::inf; + + const bool calc_chol = false; + + for(uword iter=1; iter <= max_iter; ++iter) + { + init_constants(calc_chol); + + em_update_params(X, boundaries, t_acc_means, t_acc_fcovs, t_acc_norm_lhoods, t_gaus_log_lhoods, t_progress_log_lhood, var_floor); + + em_fix_params(var_floor); + + const eT new_avg_log_p = accu(t_progress_log_lhood) / eT(t_progress_log_lhood.n_elem); + + if(verbose) + { + get_cout_stream() << "gmm_full::learn(): EM: iteration: "; + get_cout_stream().unsetf(ios::scientific); + get_cout_stream().setf(ios::fixed); + get_cout_stream().width(std::streamsize(4)); + get_cout_stream() << iter; + get_cout_stream() << " avg_log_p: "; + get_cout_stream().unsetf(ios::fixed); + //get_cout_stream().setf(ios::scientific); + get_cout_stream() << new_avg_log_p << '\n'; + get_cout_stream().flush(); + } + + if(arma_isfinite(new_avg_log_p) == false) { return false; } + + if(std::abs(old_avg_log_p - new_avg_log_p) <= Datum<eT>::eps) { break; } + + + old_avg_log_p = new_avg_log_p; + } + + + for(uword g=0; g < N_gaus; ++g) + { + const Mat<eT>& fcov = fcovs.slice(g); + + if(any(vectorise(fcov.diag()) <= eT(0))) { return false; } + } + + if(means.internal_has_nonfinite()) { return false; } + if(fcovs.internal_has_nonfinite()) { return false; } + if(hefts.internal_has_nonfinite()) { return false; } + + return true; + } + + + + +template<typename eT> +inline +void +gmm_full<eT>::em_update_params + ( + const Mat<eT>& X, + const umat& boundaries, + field< Mat<eT> >& t_acc_means, + field< Cube<eT> >& t_acc_fcovs, + field< Col<eT> >& t_acc_norm_lhoods, + field< Col<eT> >& t_gaus_log_lhoods, + Col<eT>& t_progress_log_lhood, + const eT var_floor + ) + { + arma_extra_debug_sigprint(); + + const uword n_threads = boundaries.n_cols; + + + // em_generate_acc() is the "map" operation, which produces partial accumulators for means, diagonal covariances and hefts + + #if defined(ARMA_USE_OPENMP) + { + #pragma omp parallel for schedule(static) + for(uword t=0; t<n_threads; t++) + { + Mat<eT>& acc_means = t_acc_means[t]; + Cube<eT>& acc_fcovs = t_acc_fcovs[t]; + Col<eT>& acc_norm_lhoods = t_acc_norm_lhoods[t]; + Col<eT>& gaus_log_lhoods = t_gaus_log_lhoods[t]; + eT& progress_log_lhood = t_progress_log_lhood[t]; + + em_generate_acc(X, boundaries.at(0,t), boundaries.at(1,t), acc_means, acc_fcovs, acc_norm_lhoods, gaus_log_lhoods, progress_log_lhood); + } + } + #else + { + em_generate_acc(X, boundaries.at(0,0), boundaries.at(1,0), t_acc_means[0], t_acc_fcovs[0], t_acc_norm_lhoods[0], t_gaus_log_lhoods[0], t_progress_log_lhood[0]); + } + #endif + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + Mat<eT>& final_acc_means = t_acc_means[0]; + Cube<eT>& final_acc_fcovs = t_acc_fcovs[0]; + + Col<eT>& final_acc_norm_lhoods = t_acc_norm_lhoods[0]; + + + // the "reduce" operation, which combines the partial accumulators produced by the separate threads + + for(uword t=1; t<n_threads; t++) + { + final_acc_means += t_acc_means[t]; + final_acc_fcovs += t_acc_fcovs[t]; + + final_acc_norm_lhoods += t_acc_norm_lhoods[t]; + } + + + eT* hefts_mem = access::rw(hefts).memptr(); + + Mat<eT> mean_outer(N_dims, N_dims, arma_nozeros_indicator()); + + + //// update each component without sanity checking + //for(uword g=0; g < N_gaus; ++g) + // { + // const eT acc_norm_lhood = (std::max)( final_acc_norm_lhoods[g], std::numeric_limits<eT>::min() ); + // + // hefts_mem[g] = acc_norm_lhood / eT(X.n_cols); + // + // eT* mean_mem = access::rw(means).colptr(g); + // eT* acc_mean_mem = final_acc_means.colptr(g); + // + // for(uword d=0; d < N_dims; ++d) + // { + // mean_mem[d] = acc_mean_mem[d] / acc_norm_lhood; + // } + // + // const Col<eT> mean(mean_mem, N_dims, false, true); + // + // mean_outer = mean * mean.t(); + // + // Mat<eT>& fcov = access::rw(fcovs).slice(g); + // Mat<eT>& acc_fcov = final_acc_fcovs.slice(g); + // + // fcov = acc_fcov / acc_norm_lhood - mean_outer; + // } + + + // conditionally update each component; if only a subset of the hefts was updated, em_fix_params() will sanitise them + for(uword g=0; g < N_gaus; ++g) + { + const eT acc_norm_lhood = (std::max)( final_acc_norm_lhoods[g], std::numeric_limits<eT>::min() ); + + if(arma_isfinite(acc_norm_lhood) == false) { continue; } + + eT* acc_mean_mem = final_acc_means.colptr(g); + + for(uword d=0; d < N_dims; ++d) + { + acc_mean_mem[d] /= acc_norm_lhood; + } + + const Col<eT> new_mean(acc_mean_mem, N_dims, false, true); + + mean_outer = new_mean * new_mean.t(); + + Mat<eT>& acc_fcov = final_acc_fcovs.slice(g); + + acc_fcov /= acc_norm_lhood; + acc_fcov -= mean_outer; + + for(uword d=0; d < N_dims; ++d) + { + eT& val = acc_fcov.at(d,d); + + if(val < var_floor) { val = var_floor; } + } + + if(acc_fcov.internal_has_nonfinite()) { continue; } + + eT log_det_val = eT(0); + eT log_det_sign = eT(0); + + const bool log_det_status = log_det(log_det_val, log_det_sign, acc_fcov); + + const bool log_det_ok = ( log_det_status && (arma_isfinite(log_det_val)) && (log_det_sign > eT(0)) ); + + const bool inv_ok = (log_det_ok) ? bool(auxlib::inv_sympd(mean_outer, acc_fcov)) : bool(false); // mean_outer is used as a junk matrix + + if(log_det_ok && inv_ok) + { + hefts_mem[g] = acc_norm_lhood / eT(X.n_cols); + + eT* mean_mem = access::rw(means).colptr(g); + + for(uword d=0; d < N_dims; ++d) + { + mean_mem[d] = acc_mean_mem[d]; + } + + Mat<eT>& fcov = access::rw(fcovs).slice(g); + + fcov = acc_fcov; + } + } + } + + + +template<typename eT> +inline +void +gmm_full<eT>::em_generate_acc + ( + const Mat<eT>& X, + const uword start_index, + const uword end_index, + Mat<eT>& acc_means, + Cube<eT>& acc_fcovs, + Col<eT>& acc_norm_lhoods, + Col<eT>& gaus_log_lhoods, + eT& progress_log_lhood + ) + const + { + arma_extra_debug_sigprint(); + + progress_log_lhood = eT(0); + + acc_means.zeros(); + acc_fcovs.zeros(); + + acc_norm_lhoods.zeros(); + gaus_log_lhoods.zeros(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const eT* log_hefts_mem = log_hefts.memptr(); + eT* gaus_log_lhoods_mem = gaus_log_lhoods.memptr(); + + + for(uword i=start_index; i <= end_index; i++) + { + const eT* x = X.colptr(i); + + for(uword g=0; g < N_gaus; ++g) + { + gaus_log_lhoods_mem[g] = internal_scalar_log_p(x, g) + log_hefts_mem[g]; + } + + eT log_lhood_sum = gaus_log_lhoods_mem[0]; + + for(uword g=1; g < N_gaus; ++g) + { + log_lhood_sum = log_add_exp(log_lhood_sum, gaus_log_lhoods_mem[g]); + } + + progress_log_lhood += log_lhood_sum; + + for(uword g=0; g < N_gaus; ++g) + { + const eT norm_lhood = std::exp(gaus_log_lhoods_mem[g] - log_lhood_sum); + + acc_norm_lhoods[g] += norm_lhood; + + eT* acc_mean_mem = acc_means.colptr(g); + + for(uword d=0; d < N_dims; ++d) + { + acc_mean_mem[d] += x[d] * norm_lhood; + } + + Mat<eT>& acc_fcov = access::rw(acc_fcovs).slice(g); + + // specialised version of acc_fcov += norm_lhood * (xx * xx.t()); + + for(uword d=0; d < N_dims; ++d) + { + const uword dp1 = d+1; + + const eT xd = x[d]; + + eT* acc_fcov_col_d = acc_fcov.colptr(d) + d; + eT* acc_fcov_row_d = &(acc_fcov.at(d,dp1)); + + (*acc_fcov_col_d) += norm_lhood * (xd * xd); acc_fcov_col_d++; + + for(uword e=dp1; e < N_dims; ++e) + { + const eT val = norm_lhood * (xd * x[e]); + + (*acc_fcov_col_d) += val; acc_fcov_col_d++; + (*acc_fcov_row_d) += val; acc_fcov_row_d += N_dims; + } + } + } + } + + progress_log_lhood /= eT((end_index - start_index) + 1); + } + + + +template<typename eT> +inline +void +gmm_full<eT>::em_fix_params(const eT var_floor) + { + arma_extra_debug_sigprint(); + + const uword N_dims = means.n_rows; + const uword N_gaus = means.n_cols; + + const eT var_ceiling = std::numeric_limits<eT>::max(); + + for(uword g=0; g < N_gaus; ++g) + { + Mat<eT>& fcov = access::rw(fcovs).slice(g); + + for(uword d=0; d < N_dims; ++d) + { + eT& var_val = fcov.at(d,d); + + if(var_val < var_floor ) { var_val = var_floor; } + else if(var_val > var_ceiling) { var_val = var_ceiling; } + else if(arma_isnan(var_val) ) { var_val = eT(1); } + } + } + + + eT* hefts_mem = access::rw(hefts).memptr(); + + for(uword g1=0; g1 < N_gaus; ++g1) + { + if(hefts_mem[g1] > eT(0)) + { + const eT* means_colptr_g1 = means.colptr(g1); + + for(uword g2=(g1+1); g2 < N_gaus; ++g2) + { + if( (hefts_mem[g2] > eT(0)) && (std::abs(hefts_mem[g1] - hefts_mem[g2]) <= std::numeric_limits<eT>::epsilon()) ) + { + const eT dist = distance<eT,1>::eval(N_dims, means_colptr_g1, means.colptr(g2), means_colptr_g1); + + if(dist == eT(0)) { hefts_mem[g2] = eT(0); } + } + } + } + } + + const eT heft_floor = std::numeric_limits<eT>::min(); + const eT heft_initial = eT(1) / eT(N_gaus); + + for(uword i=0; i < N_gaus; ++i) + { + eT& heft_val = hefts_mem[i]; + + if(heft_val < heft_floor) { heft_val = heft_floor; } + else if(heft_val > eT(1) ) { heft_val = eT(1); } + else if(arma_isnan(heft_val) ) { heft_val = heft_initial; } + } + + const eT heft_sum = accu(hefts); + + if((heft_sum < (eT(1) - Datum<eT>::eps)) || (heft_sum > (eT(1) + Datum<eT>::eps))) { access::rw(hefts) /= heft_sum; } + } + + + +} // namespace gmm_priv + + +//! @} |