diff options
Diffstat (limited to 'src/armadillo/include/armadillo_bits/op_princomp_meat.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/op_princomp_meat.hpp | 319 |
1 files changed, 319 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/op_princomp_meat.hpp b/src/armadillo/include/armadillo_bits/op_princomp_meat.hpp new file mode 100644 index 0000000..db6f83f --- /dev/null +++ b/src/armadillo/include/armadillo_bits/op_princomp_meat.hpp @@ -0,0 +1,319 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup op_princomp +//! @{ + + + +//! \brief +//! principal component analysis -- 4 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +//! tsquared_out -> Hotelling's T^2 statistic +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + Col<typename T1::pod_type>& latent_out, + Col<typename T1::elem_type>& tsquared_out, + const Base<typename T1::elem_type, T1>& X + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in; score_out.each_row() -= mean(in); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); + + if(svd_ok == false) { return false; } + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<T> s_tmp(n_cols, arma_zeros_indicator()); + + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + + // compute the Hotelling's T-squared + s_tmp.rows(0,n_rows-2) = T(1) / s_tmp.rows(0,n_rows-2); + + const Mat<eT> S = score_out * diagmat(Col<T>(s_tmp)); + tsquared_out = sum(S%S,1); + } + else + { + // compute the Hotelling's T-squared + // TODO: replace with more robust approach + const Mat<eT> S = score_out * diagmat(Col<T>( T(1) / s)); + tsquared_out = sum(S%S,1); + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + + tsquared_out.set_size(n_rows); + tsquared_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 3 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +//! latent_out -> eigenvalues of principal vectors +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + Col<typename T1::pod_type>& latent_out, + const Base<typename T1::elem_type, T1>& X + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in; score_out.each_row() -= mean(in); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); + + if(svd_ok == false) { return false; } + + // normalize the eigenvalues + s /= std::sqrt( double(n_rows - 1) ); + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + + Col<T> s_tmp(n_cols, arma_zeros_indicator()); + + s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); + s = s_tmp; + } + + // compute the eigenvalues of the principal vectors + latent_out = s%s; + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + + score_out.copy_size(in); + score_out.zeros(); + + latent_out.set_size(n_cols); + latent_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 2 arguments version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +//! score_out -> projected samples +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + Mat<typename T1::elem_type>& score_out, + const Base<typename T1::elem_type, T1>& X + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + const unwrap_check<T1> Y( X.get_ref(), score_out ); + const Mat<eT>& in = Y.M; + + const uword n_rows = in.n_rows; + const uword n_cols = in.n_cols; + + if(n_rows > 1) // more than one sample + { + // subtract the mean - use score_out as temporary matrix + score_out = in; score_out.each_row() -= mean(in); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); + + if(svd_ok == false) { return false; } + + // project the samples to the principals + score_out *= coeff_out; + + if(n_rows <= n_cols) // number of samples is less than their dimensionality + { + score_out.cols(n_rows-1,n_cols-1).zeros(); + } + } + else // 0 or 1 samples + { + coeff_out.eye(n_cols, n_cols); + score_out.copy_size(in); + score_out.zeros(); + } + + return true; + } + + + +//! \brief +//! principal component analysis -- 1 argument version +//! computation is done via singular value decomposition +//! coeff_out -> principal component coefficients +template<typename T1> +inline +bool +op_princomp::direct_princomp + ( + Mat<typename T1::elem_type>& coeff_out, + const Base<typename T1::elem_type, T1>& X + ) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + typedef typename T1::pod_type T; + + const unwrap<T1> Y( X.get_ref() ); + const Mat<eT>& in = Y.M; + + if(in.n_elem != 0) + { + Mat<eT> tmp = in; tmp.each_row() -= mean(in); + + // singular value decomposition + Mat<eT> U; + Col< T> s; + + const bool svd_ok = (in.n_rows >= in.n_cols) ? svd_econ(U, s, coeff_out, tmp) : svd(U, s, coeff_out, tmp); + + if(svd_ok == false) { return false; } + } + else + { + coeff_out.eye(in.n_cols, in.n_cols); + } + + return true; + } + + + +template<typename T1> +inline +void +op_princomp::apply + ( + Mat<typename T1::elem_type>& out, + const Op<T1,op_princomp>& in + ) + { + arma_extra_debug_sigprint(); + + const bool status = op_princomp::direct_princomp(out, in.m); + + if(status == false) + { + out.soft_reset(); + + arma_stop_runtime_error("princomp(): decomposition failed"); + } + } + + + +//! @} |