summaryrefslogtreecommitdiffstats
path: root/src/Eigen/src/Core/TriangularMatrix.h
blob: fdb8bc15a5b2c9ea0c133b26856a0cd091e3127a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H

namespace Eigen {

namespace internal {

template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;

}

/** \class TriangularBase
  * \ingroup Core_Module
  *
  * \brief Base class for triangular part in a matrix
  */
template<typename Derived> class TriangularBase : public EigenBase<Derived>
{
  public:

    enum {
      Mode = internal::traits<Derived>::Mode,
      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,

      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
                                                   internal::traits<Derived>::ColsAtCompileTime>::ret),
      /**< This is equal to the number of coefficients, i.e. the number of
          * rows times the number of columns, or to \a Dynamic if this is not
          * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */

      MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
                                                   internal::traits<Derived>::MaxColsAtCompileTime>::ret)

    };
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
    typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType;
    typedef DenseMatrixType DenseType;
    typedef Derived const& Nested;

    EIGEN_DEVICE_FUNC
    inline TriangularBase() { eigen_assert(!((int(Mode) & int(UnitDiag)) && (int(Mode) & int(ZeroDiag)))); }

    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index rows() const EIGEN_NOEXCEPT { return derived().rows(); }
    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index cols() const EIGEN_NOEXCEPT { return derived().cols(); }
    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index outerStride() const EIGEN_NOEXCEPT { return derived().outerStride(); }
    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index innerStride() const EIGEN_NOEXCEPT { return derived().innerStride(); }

    // dummy resize function
    EIGEN_DEVICE_FUNC
    void resize(Index rows, Index cols)
    {
      EIGEN_UNUSED_VARIABLE(rows);
      EIGEN_UNUSED_VARIABLE(cols);
      eigen_assert(rows==this->rows() && cols==this->cols());
    }

    EIGEN_DEVICE_FUNC
    inline Scalar coeff(Index row, Index col) const  { return derived().coeff(row,col); }
    EIGEN_DEVICE_FUNC
    inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }

    /** \see MatrixBase::copyCoeff(row,col)
      */
    template<typename Other>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
    {
      derived().coeffRef(row, col) = other.coeff(row, col);
    }

    EIGEN_DEVICE_FUNC
    inline Scalar operator()(Index row, Index col) const
    {
      check_coordinates(row, col);
      return coeff(row,col);
    }
    EIGEN_DEVICE_FUNC
    inline Scalar& operator()(Index row, Index col)
    {
      check_coordinates(row, col);
      return coeffRef(row,col);
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    EIGEN_DEVICE_FUNC
    inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
    EIGEN_DEVICE_FUNC
    inline Derived& derived() { return *static_cast<Derived*>(this); }
    #endif // not EIGEN_PARSED_BY_DOXYGEN

    template<typename DenseDerived>
    EIGEN_DEVICE_FUNC
    void evalTo(MatrixBase<DenseDerived> &other) const;
    template<typename DenseDerived>
    EIGEN_DEVICE_FUNC
    void evalToLazy(MatrixBase<DenseDerived> &other) const;

    EIGEN_DEVICE_FUNC
    DenseMatrixType toDenseMatrix() const
    {
      DenseMatrixType res(rows(), cols());
      evalToLazy(res);
      return res;
    }

  protected:

    void check_coordinates(Index row, Index col) const
    {
      EIGEN_ONLY_USED_FOR_DEBUG(row);
      EIGEN_ONLY_USED_FOR_DEBUG(col);
      eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
      const int mode = int(Mode) & ~SelfAdjoint;
      EIGEN_ONLY_USED_FOR_DEBUG(mode);
      eigen_assert((mode==Upper && col>=row)
                || (mode==Lower && col<=row)
                || ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
                || ((mode==StrictlyLower || mode==UnitLower) && col<row));
    }

    #ifdef EIGEN_INTERNAL_DEBUGGING
    void check_coordinates_internal(Index row, Index col) const
    {
      check_coordinates(row, col);
    }
    #else
    void check_coordinates_internal(Index , Index ) const {}
    #endif

};

/** \class TriangularView
  * \ingroup Core_Module
  *
  * \brief Expression of a triangular part in a matrix
  *
  * \param MatrixType the type of the object in which we are taking the triangular part
  * \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
  *             #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
  *             This is in fact a bit field; it must have either #Upper or #Lower,
  *             and additionally it may have #UnitDiag or #ZeroDiag or neither.
  *
  * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
  * matrices one should speak of "trapezoid" parts. This class is the return type
  * of MatrixBase::triangularView() and SparseMatrixBase::triangularView(), and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::triangularView()
  */
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
{
  typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
  typedef typename MatrixType::PlainObject FullMatrixType;
  typedef MatrixType ExpressionType;
  enum {
    Mode = _Mode,
    FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
    Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
  };
};
}

template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;

template<typename _MatrixType, unsigned int _Mode> class TriangularView
  : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
{
  public:

    typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
    typedef typename internal::traits<TriangularView>::Scalar Scalar;
    typedef _MatrixType MatrixType;

  protected:
    typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;

    typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
    typedef TriangularView<typename internal::add_const<MatrixType>::type, _Mode> ConstTriangularView;

  public:

    typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
    typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;

    enum {
      Mode = _Mode,
      Flags = internal::traits<TriangularView>::Flags,
      TransposeMode = (Mode & Upper ? Lower : 0)
                    | (Mode & Lower ? Upper : 0)
                    | (Mode & (UnitDiag))
                    | (Mode & (ZeroDiag)),
      IsVectorAtCompileTime = false
    };

    EIGEN_DEVICE_FUNC
    explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix)
    {}

    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView)

    /** \copydoc EigenBase::rows() */
    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
    /** \copydoc EigenBase::cols() */
    EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
    inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }

    /** \returns a const reference to the nested expression */
    EIGEN_DEVICE_FUNC
    const NestedExpression& nestedExpression() const { return m_matrix; }

    /** \returns a reference to the nested expression */
    EIGEN_DEVICE_FUNC
    NestedExpression& nestedExpression() { return m_matrix; }

    typedef TriangularView<const MatrixConjugateReturnType,Mode> ConjugateReturnType;
    /** \sa MatrixBase::conjugate() const */
    EIGEN_DEVICE_FUNC
    inline const ConjugateReturnType conjugate() const
    { return ConjugateReturnType(m_matrix.conjugate()); }

    /** \returns an expression of the complex conjugate of \c *this if Cond==true,
     *           returns \c *this otherwise.
     */
    template<bool Cond>
    EIGEN_DEVICE_FUNC
    inline typename internal::conditional<Cond,ConjugateReturnType,ConstTriangularView>::type
    conjugateIf() const
    {
      typedef typename internal::conditional<Cond,ConjugateReturnType,ConstTriangularView>::type ReturnType;
      return ReturnType(m_matrix.template conjugateIf<Cond>());
    }

    typedef TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType;
    /** \sa MatrixBase::adjoint() const */
    EIGEN_DEVICE_FUNC
    inline const AdjointReturnType adjoint() const
    { return AdjointReturnType(m_matrix.adjoint()); }

    typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
     /** \sa MatrixBase::transpose() */
    EIGEN_DEVICE_FUNC
    inline TransposeReturnType transpose()
    {
      EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
      typename MatrixType::TransposeReturnType tmp(m_matrix);
      return TransposeReturnType(tmp);
    }

    typedef TriangularView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType;
    /** \sa MatrixBase::transpose() const */
    EIGEN_DEVICE_FUNC
    inline const ConstTransposeReturnType transpose() const
    {
      return ConstTransposeReturnType(m_matrix.transpose());
    }

    template<typename Other>
    EIGEN_DEVICE_FUNC
    inline const Solve<TriangularView, Other>
    solve(const MatrixBase<Other>& other) const
    { return Solve<TriangularView, Other>(*this, other.derived()); }

  // workaround MSVC ICE
  #if EIGEN_COMP_MSVC
    template<int Side, typename Other>
    EIGEN_DEVICE_FUNC
    inline const internal::triangular_solve_retval<Side,TriangularView, Other>
    solve(const MatrixBase<Other>& other) const
    { return Base::template solve<Side>(other); }
  #else
    using Base::solve;
  #endif

    /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower.
      *
      * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode
      * \sa MatrixBase::selfadjointView() */
    EIGEN_DEVICE_FUNC
    SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
    {
      EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }

    /** This is the const version of selfadjointView() */
    EIGEN_DEVICE_FUNC
    const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
    {
      EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR);
      return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
    }


    /** \returns the determinant of the triangular matrix
      * \sa MatrixBase::determinant() */
    EIGEN_DEVICE_FUNC
    Scalar determinant() const
    {
      if (Mode & UnitDiag)
        return 1;
      else if (Mode & ZeroDiag)
        return 0;
      else
        return m_matrix.diagonal().prod();
    }

  protected:

    MatrixTypeNested m_matrix;
};

/** \ingroup Core_Module
  *
  * \brief Base class for a triangular part in a \b dense matrix
  *
  * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated.
  * It extends class TriangularView with additional methods which available for dense expressions only.
  *
  * \sa class TriangularView, MatrixBase::triangularView()
  */
template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
  : public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
  public:

    typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
    typedef TriangularBase<TriangularViewType> Base;
    typedef typename internal::traits<TriangularViewType>::Scalar Scalar;

    typedef _MatrixType MatrixType;
    typedef typename MatrixType::PlainObject DenseMatrixType;
    typedef DenseMatrixType PlainObject;

  public:
    using Base::evalToLazy;
    using Base::derived;

    typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;

    enum {
      Mode = _Mode,
      Flags = internal::traits<TriangularViewType>::Flags
    };

    /** \returns the outer-stride of the underlying dense matrix
      * \sa DenseCoeffsBase::outerStride() */
    EIGEN_DEVICE_FUNC
    inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
    /** \returns the inner-stride of the underlying dense matrix
      * \sa DenseCoeffsBase::innerStride() */
    EIGEN_DEVICE_FUNC
    inline Index innerStride() const { return derived().nestedExpression().innerStride(); }

    /** \sa MatrixBase::operator+=() */
    template<typename Other>
    EIGEN_DEVICE_FUNC
    TriangularViewType&  operator+=(const DenseBase<Other>& other) {
      internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar,typename Other::Scalar>());
      return derived();
    }
    /** \sa MatrixBase::operator-=() */
    template<typename Other>
    EIGEN_DEVICE_FUNC
    TriangularViewType&  operator-=(const DenseBase<Other>& other) {
      internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar,typename Other::Scalar>());
      return derived();
    }

    /** \sa MatrixBase::operator*=() */
    EIGEN_DEVICE_FUNC
    TriangularViewType&  operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() * other; }
    /** \sa DenseBase::operator/=() */
    EIGEN_DEVICE_FUNC
    TriangularViewType&  operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() / other; }

    /** \sa MatrixBase::fill() */
    EIGEN_DEVICE_FUNC
    void fill(const Scalar& value) { setConstant(value); }
    /** \sa MatrixBase::setConstant() */
    EIGEN_DEVICE_FUNC
    TriangularViewType& setConstant(const Scalar& value)
    { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); }
    /** \sa MatrixBase::setZero() */
    EIGEN_DEVICE_FUNC
    TriangularViewType& setZero() { return setConstant(Scalar(0)); }
    /** \sa MatrixBase::setOnes() */
    EIGEN_DEVICE_FUNC
    TriangularViewType& setOnes() { return setConstant(Scalar(1)); }

    /** \sa MatrixBase::coeff()
      * \warning the coordinates must fit into the referenced triangular part
      */
    EIGEN_DEVICE_FUNC
    inline Scalar coeff(Index row, Index col) const
    {
      Base::check_coordinates_internal(row, col);
      return derived().nestedExpression().coeff(row, col);
    }

    /** \sa MatrixBase::coeffRef()
      * \warning the coordinates must fit into the referenced triangular part
      */
    EIGEN_DEVICE_FUNC
    inline Scalar& coeffRef(Index row, Index col)
    {
      EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType);
      Base::check_coordinates_internal(row, col);
      return derived().nestedExpression().coeffRef(row, col);
    }

    /** Assigns a triangular matrix to a triangular part of a dense matrix */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    TriangularViewType& operator=(const TriangularBase<OtherDerived>& other);

    /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    TriangularViewType& operator=(const MatrixBase<OtherDerived>& other);

#ifndef EIGEN_PARSED_BY_DOXYGEN
    EIGEN_DEVICE_FUNC
    TriangularViewType& operator=(const TriangularViewImpl& other)
    { return *this = other.derived().nestedExpression(); }

    template<typename OtherDerived>
    /** \deprecated */
    EIGEN_DEPRECATED EIGEN_DEVICE_FUNC
    void lazyAssign(const TriangularBase<OtherDerived>& other);

    template<typename OtherDerived>
    /** \deprecated */
    EIGEN_DEPRECATED EIGEN_DEVICE_FUNC
    void lazyAssign(const MatrixBase<OtherDerived>& other);
#endif

    /** Efficient triangular matrix times vector/matrix product */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    const Product<TriangularViewType,OtherDerived>
    operator*(const MatrixBase<OtherDerived>& rhs) const
    {
      return Product<TriangularViewType,OtherDerived>(derived(), rhs.derived());
    }

    /** Efficient vector/matrix times triangular matrix product */
    template<typename OtherDerived> friend
    EIGEN_DEVICE_FUNC
    const Product<OtherDerived,TriangularViewType>
    operator*(const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs)
    {
      return Product<OtherDerived,TriangularViewType>(lhs.derived(),rhs.derived());
    }

    /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
      *
      * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
      * \a Side==OnTheLeft (the default), or the right-inverse-multiply  \a other * inverse(\c *this) if
      * \a Side==OnTheRight.
      *
      * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft
      *
      * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
      * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
      * is an upper (resp. lower) triangular matrix.
      *
      * Example: \include Triangular_solve.cpp
      * Output: \verbinclude Triangular_solve.out
      *
      * This function returns an expression of the inverse-multiply and can works in-place if it is assigned
      * to the same matrix or vector \a other.
      *
      * For users coming from BLAS, this function (and more specifically solveInPlace()) offer
      * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
      *
      * \sa TriangularView::solveInPlace()
      */
    template<int Side, typename Other>
    inline const internal::triangular_solve_retval<Side,TriangularViewType, Other>
    solve(const MatrixBase<Other>& other) const;

    /** "in-place" version of TriangularView::solve() where the result is written in \a other
      *
      * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
      * This function will const_cast it, so constness isn't honored here.
      *
      * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft
      *
      * See TriangularView:solve() for the details.
      */
    template<int Side, typename OtherDerived>
    EIGEN_DEVICE_FUNC
    void solveInPlace(const MatrixBase<OtherDerived>& other) const;

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    void solveInPlace(const MatrixBase<OtherDerived>& other) const
    { return solveInPlace<OnTheLeft>(other); }

    /** Swaps the coefficients of the common triangular parts of two matrices */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
#ifdef EIGEN_PARSED_BY_DOXYGEN
    void swap(TriangularBase<OtherDerived> &other)
#else
    void swap(TriangularBase<OtherDerived> const & other)
#endif
    {
      EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
      call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
    }

    /** Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */
    template<typename OtherDerived>
    /** \deprecated */
    EIGEN_DEPRECATED EIGEN_DEVICE_FUNC
    void swap(MatrixBase<OtherDerived> const & other)
    {
      EIGEN_STATIC_ASSERT_LVALUE(OtherDerived);
      call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
    }

    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
      if(!internal::is_same_dense(dst,rhs))
        dst = rhs;
      this->solveInPlace(dst);
    }

    template<typename ProductType>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, bool beta);
  protected:
    EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl)
    EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl)

};

/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/

#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>&
TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const MatrixBase<OtherDerived>& other)
{
  internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
  return derived();
}

// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
  internal::call_assignment_no_alias(derived(), other.template triangularView<Mode>());
}



template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline TriangularView<MatrixType, Mode>&
TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const TriangularBase<OtherDerived>& other)
{
  eigen_assert(Mode == int(OtherDerived::Mode));
  internal::call_assignment(derived(), other.derived());
  return derived();
}

template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
  eigen_assert(Mode == int(OtherDerived::Mode));
  internal::call_assignment_no_alias(derived(), other.derived());
}
#endif

/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
  evalToLazy(other.derived());
}

/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/

/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/

/**
  * \returns an expression of a triangular view extracted from the current matrix
  *
  * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
  * \c #Lower, \c #StrictlyLower, \c #UnitLower.
  *
  * Example: \include MatrixBase_triangularView.cpp
  * Output: \verbinclude MatrixBase_triangularView.out
  *
  * \sa class TriangularView
  */
template<typename Derived>
template<unsigned int Mode>
EIGEN_DEVICE_FUNC
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
  return typename TriangularViewReturnType<Mode>::Type(derived());
}

/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
EIGEN_DEVICE_FUNC
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
  return typename ConstTriangularViewReturnType<Mode>::Type(derived());
}

/** \returns true if *this is approximately equal to an upper triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isLowerTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const
{
  RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
  {
    Index maxi = numext::mini(j, rows()-1);
    for(Index i = 0; i <= maxi; ++i)
    {
      RealScalar absValue = numext::abs(coeff(i,j));
      if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
    }
  }
  RealScalar threshold = maxAbsOnUpperPart * prec;
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j+1; i < rows(); ++i)
      if(numext::abs(coeff(i, j)) > threshold) return false;
  return true;
}

/** \returns true if *this is approximately equal to a lower triangular matrix,
  *          within the precision given by \a prec.
  *
  * \sa isUpperTriangular()
  */
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const
{
  RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
  for(Index j = 0; j < cols(); ++j)
    for(Index i = j; i < rows(); ++i)
    {
      RealScalar absValue = numext::abs(coeff(i,j));
      if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
    }
  RealScalar threshold = maxAbsOnLowerPart * prec;
  for(Index j = 1; j < cols(); ++j)
  {
    Index maxi = numext::mini(j, rows()-1);
    for(Index i = 0; i < maxi; ++i)
      if(numext::abs(coeff(i, j)) > threshold) return false;
  }
  return true;
}


/***************************************************************************
****************************************************************************
* Evaluators and Assignment of triangular expressions
***************************************************************************
***************************************************************************/

namespace internal {


// TODO currently a triangular expression has the form TriangularView<.,.>
//      in the future triangular-ness should be defined by the expression traits
//      such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
template<typename MatrixType, unsigned int Mode>
struct evaluator_traits<TriangularView<MatrixType,Mode> >
{
  typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
  typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
};

template<typename MatrixType, unsigned int Mode>
struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased>
 : evaluator<typename internal::remove_all<MatrixType>::type>
{
  typedef TriangularView<MatrixType,Mode> XprType;
  typedef evaluator<typename internal::remove_all<MatrixType>::type> Base;
  EIGEN_DEVICE_FUNC
  unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {}
};

// Additional assignment kinds:
struct Triangular2Triangular    {};
struct Triangular2Dense         {};
struct Dense2Triangular         {};


template<typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_loop;


/** \internal Specialization of the dense assignment kernel for triangular matrices.
  * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions.
  * \tparam UpLo must be either Lower or Upper
  * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint
  */
template<int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
{
protected:
  typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
  typedef typename Base::DstXprType DstXprType;
  typedef typename Base::SrcXprType SrcXprType;
  using Base::m_dst;
  using Base::m_src;
  using Base::m_functor;
public:

  typedef typename Base::DstEvaluatorType DstEvaluatorType;
  typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
  typedef typename Base::Scalar Scalar;
  typedef typename Base::AssignmentTraits AssignmentTraits;


  EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
    : Base(dst, src, func, dstExpr)
  {}

#ifdef EIGEN_INTERNAL_DEBUGGING
  EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
  {
    eigen_internal_assert(row!=col);
    Base::assignCoeff(row,col);
  }
#else
  using Base::assignCoeff;
#endif

  EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
  {
         if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1));
    else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0));
    else if(Mode==0)                       Base::assignCoeff(id,id);
  }

  EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col)
  {
    eigen_internal_assert(row!=col);
    if(SetOpposite)
      m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0));
  }
};

template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
  typedef evaluator<DstXprType> DstEvaluatorType;
  typedef evaluator<SrcXprType> SrcEvaluatorType;

  SrcEvaluatorType srcEvaluator(src);

  Index dstRows = src.rows();
  Index dstCols = src.cols();
  if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
    dst.resize(dstRows, dstCols);
  DstEvaluatorType dstEvaluator(dst);

  typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite,
                                              DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
  Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());

  enum {
      unroll = DstXprType::SizeAtCompileTime != Dynamic
            && SrcEvaluatorType::CoeffReadCost < HugeCost
            && DstXprType::SizeAtCompileTime * (int(DstEvaluatorType::CoeffReadCost) + int(SrcEvaluatorType::CoeffReadCost)) / 2 <= EIGEN_UNROLLING_LIMIT
    };

  triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(kernel);
}

template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
  call_triangular_assignment_loop<Mode,SetOpposite>(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}

template<> struct AssignmentKind<TriangularShape,TriangularShape> { typedef Triangular2Triangular Kind; };
template<> struct AssignmentKind<DenseShape,TriangularShape>      { typedef Triangular2Dense      Kind; };
template<> struct AssignmentKind<TriangularShape,DenseShape>      { typedef Dense2Triangular      Kind; };


template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular>
{
  EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
  {
    eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode));

    call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
  }
};

template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense>
{
  EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
  {
    call_triangular_assignment_loop<SrcXprType::Mode, (int(SrcXprType::Mode) & int(SelfAdjoint)) == 0>(dst, src, func);
  }
};

template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular>
{
  EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
  {
    call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
  }
};


template<typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite>
struct triangular_assignment_loop
{
  // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
  typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
  typedef typename DstEvaluatorType::XprType DstXprType;

  enum {
    col = (UnrollCount-1) / DstXprType::RowsAtCompileTime,
    row = (UnrollCount-1) % DstXprType::RowsAtCompileTime
  };

  typedef typename Kernel::Scalar Scalar;

  EIGEN_DEVICE_FUNC
  static inline void run(Kernel &kernel)
  {
    triangular_assignment_loop<Kernel, Mode, UnrollCount-1, SetOpposite>::run(kernel);

    if(row==col)
      kernel.assignDiagonalCoeff(row);
    else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row<col) )
      kernel.assignCoeff(row,col);
    else if(SetOpposite)
      kernel.assignOppositeCoeff(row,col);
  }
};

// prevent buggy user code from causing an infinite recursion
template<typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite>
{
  EIGEN_DEVICE_FUNC
  static inline void run(Kernel &) {}
};



// TODO: experiment with a recursive assignment procedure splitting the current
//       triangular part into one rectangular and two triangular parts.


template<typename Kernel, unsigned int Mode, bool SetOpposite>
struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite>
{
  typedef typename Kernel::Scalar Scalar;
  EIGEN_DEVICE_FUNC
  static inline void run(Kernel &kernel)
  {
    for(Index j = 0; j < kernel.cols(); ++j)
    {
      Index maxi = numext::mini(j, kernel.rows());
      Index i = 0;
      if (((Mode&Lower) && SetOpposite) || (Mode&Upper))
      {
        for(; i < maxi; ++i)
          if(Mode&Upper) kernel.assignCoeff(i, j);
          else           kernel.assignOppositeCoeff(i, j);
      }
      else
        i = maxi;

      if(i<kernel.rows()) // then i==j
        kernel.assignDiagonalCoeff(i++);

      if (((Mode&Upper) && SetOpposite) || (Mode&Lower))
      {
        for(; i < kernel.rows(); ++i)
          if(Mode&Lower) kernel.assignCoeff(i, j);
          else           kernel.assignOppositeCoeff(i, j);
      }
    }
  }
};

} // end namespace internal

/** Assigns a triangular or selfadjoint matrix to a dense matrix.
  * If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
EIGEN_DEVICE_FUNC void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
  other.derived().resize(this->rows(), this->cols());
  internal::call_triangular_assignment_loop<Derived::Mode, (int(Derived::Mode) & int(SelfAdjoint)) == 0 /* SetOpposite */>(other.derived(), derived().nestedExpression());
}

namespace internal {

// Triangular = Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
  typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename SrcXprType::Scalar> &)
  {
    Index dstRows = src.rows();
    Index dstCols = src.cols();
    if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
      dst.resize(dstRows, dstCols);

    dst._assignProduct(src, Scalar(1), false);
  }
};

// Triangular += Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
  typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,typename SrcXprType::Scalar> &)
  {
    dst._assignProduct(src, Scalar(1), true);
  }
};

// Triangular -= Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular>
{
  typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,typename SrcXprType::Scalar> &)
  {
    dst._assignProduct(src, Scalar(-1), true);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_TRIANGULARMATRIX_H