summaryrefslogtreecommitdiffstats
path: root/src/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
blob: 7803fd8170f2f3772fa57abc22726a236026d9ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H

#include <vector>
#include <list>

namespace Eigen {
/**
  * \brief Modified Incomplete Cholesky with dual threshold
  *
  * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
  *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
  *
  * \tparam Scalar the scalar type of the input matrices
  * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
    *               or Upper. Default is Lower.
  * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
  *                       unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
  *
  * \implsparsesolverconcept
  *
  * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
  * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
  * fill-in reducing permutation as computed by the ordering method.
  *
  * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$  be the scaled matrix on which the factorization is carried out,
  * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
  * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
  * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
  * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
  * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
  *
  */
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
{
  protected:
    typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
    using Base::m_isInitialized;
  public:
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef _OrderingType OrderingType;
    typedef typename OrderingType::PermutationType PermutationType;
    typedef typename PermutationType::StorageIndex StorageIndex;
    typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
    typedef Matrix<Scalar,Dynamic,1> VectorSx;
    typedef Matrix<RealScalar,Dynamic,1> VectorRx;
    typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
    typedef std::vector<std::list<StorageIndex> > VectorList;
    enum { UpLo = _UpLo };
    enum {
      ColsAtCompileTime = Dynamic,
      MaxColsAtCompileTime = Dynamic
    };
  public:

    /** Default constructor leaving the object in a partly non-initialized stage.
      *
      * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
      *
      * \sa IncompleteCholesky(const MatrixType&)
      */
    IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {}

    /** Constructor computing the incomplete factorization for the given matrix \a matrix.
      */
    template<typename MatrixType>
    IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false)
    {
      compute(matrix);
    }

    /** \returns number of rows of the factored matrix */
    EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); }

    /** \returns number of columns of the factored matrix */
    EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); }


    /** \brief Reports whether previous computation was successful.
      *
      * It triggers an assertion if \c *this has not been initialized through the respective constructor,
      * or a call to compute() or analyzePattern().
      *
      * \returns \c Success if computation was successful,
      *          \c NumericalIssue if the matrix appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
      return m_info;
    }

    /** \brief Set the initial shift parameter \f$ \sigma \f$.
      */
    void setInitialShift(RealScalar shift) { m_initialShift = shift; }

    /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
      */
    template<typename MatrixType>
    void analyzePattern(const MatrixType& mat)
    {
      OrderingType ord;
      PermutationType pinv;
      ord(mat.template selfadjointView<UpLo>(), pinv);
      if(pinv.size()>0) m_perm = pinv.inverse();
      else              m_perm.resize(0);
      m_L.resize(mat.rows(), mat.cols());
      m_analysisIsOk = true;
      m_isInitialized = true;
      m_info = Success;
    }

    /** \brief Performs the numerical factorization of the input matrix \a mat
      *
      * The method analyzePattern() or compute() must have been called beforehand
      * with a matrix having the same pattern.
      *
      * \sa compute(), analyzePattern()
      */
    template<typename MatrixType>
    void factorize(const MatrixType& mat);

    /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
      *
      * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
      *
      * \sa analyzePattern(), factorize()
      */
    template<typename MatrixType>
    void compute(const MatrixType& mat)
    {
      analyzePattern(mat);
      factorize(mat);
    }

    // internal
    template<typename Rhs, typename Dest>
    void _solve_impl(const Rhs& b, Dest& x) const
    {
      eigen_assert(m_factorizationIsOk && "factorize() should be called first");
      if (m_perm.rows() == b.rows())  x = m_perm * b;
      else                            x = b;
      x = m_scale.asDiagonal() * x;
      x = m_L.template triangularView<Lower>().solve(x);
      x = m_L.adjoint().template triangularView<Upper>().solve(x);
      x = m_scale.asDiagonal() * x;
      if (m_perm.rows() == b.rows())
        x = m_perm.inverse() * x;
    }

    /** \returns the sparse lower triangular factor L */
    const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }

    /** \returns a vector representing the scaling factor S */
    const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }

    /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
    const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }

  protected:
    FactorType m_L;              // The lower part stored in CSC
    VectorRx m_scale;            // The vector for scaling the matrix
    RealScalar m_initialShift;   // The initial shift parameter
    bool m_analysisIsOk;
    bool m_factorizationIsOk;
    ComputationInfo m_info;
    PermutationType m_perm;

  private:
    inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
};

// Based on the following paper:
//   C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
//   Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
//   http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
{
  using std::sqrt;
  eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");

  // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added

  // Apply the fill-reducing permutation computed in analyzePattern()
  if (m_perm.rows() == mat.rows() ) // To detect the null permutation
  {
    // The temporary is needed to make sure that the diagonal entry is properly sorted
    FactorType tmp(mat.rows(), mat.cols());
    tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
    m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
  }
  else
  {
    m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
  }

  Index n = m_L.cols();
  Index nnz = m_L.nonZeros();
  Map<VectorSx> vals(m_L.valuePtr(), nnz);         //values
  Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
  Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
  VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
  VectorList listCol(n);  // listCol(j) is a linked list of columns to update column j
  VectorSx col_vals(n);   // Store a  nonzero values in each column
  VectorIx col_irow(n);   // Row indices of nonzero elements in each column
  VectorIx col_pattern(n);
  col_pattern.fill(-1);
  StorageIndex col_nnz;


  // Computes the scaling factors
  m_scale.resize(n);
  m_scale.setZero();
  for (Index j = 0; j < n; j++)
    for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
    {
      m_scale(j) += numext::abs2(vals(k));
      if(rowIdx[k]!=j)
        m_scale(rowIdx[k]) += numext::abs2(vals(k));
    }

  m_scale = m_scale.cwiseSqrt().cwiseSqrt();

  for (Index j = 0; j < n; ++j)
    if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
      m_scale(j) = RealScalar(1)/m_scale(j);
    else
      m_scale(j) = 1;

  // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)

  // Scale and compute the shift for the matrix
  RealScalar mindiag = NumTraits<RealScalar>::highest();
  for (Index j = 0; j < n; j++)
  {
    for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
      vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
    eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
    mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
  }

  FactorType L_save = m_L;

  RealScalar shift = 0;
  if(mindiag <= RealScalar(0.))
    shift = m_initialShift - mindiag;

  m_info = NumericalIssue;

  // Try to perform the incomplete factorization using the current shift
  int iter = 0;
  do
  {
    // Apply the shift to the diagonal elements of the matrix
    for (Index j = 0; j < n; j++)
      vals[colPtr[j]] += shift;

    // jki version of the Cholesky factorization
    Index j=0;
    for (; j < n; ++j)
    {
      // Left-looking factorization of the j-th column
      // First, load the j-th column into col_vals
      Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
      col_nnz = 0;
      for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
      {
        StorageIndex l = rowIdx[i];
        col_vals(col_nnz) = vals[i];
        col_irow(col_nnz) = l;
        col_pattern(l) = col_nnz;
        col_nnz++;
      }
      {
        typename std::list<StorageIndex>::iterator k;
        // Browse all previous columns that will update column j
        for(k = listCol[j].begin(); k != listCol[j].end(); k++)
        {
          Index jk = firstElt(*k); // First element to use in the column
          eigen_internal_assert(rowIdx[jk]==j);
          Scalar v_j_jk = numext::conj(vals[jk]);

          jk += 1;
          for (Index i = jk; i < colPtr[*k+1]; i++)
          {
            StorageIndex l = rowIdx[i];
            if(col_pattern[l]<0)
            {
              col_vals(col_nnz) = vals[i] * v_j_jk;
              col_irow[col_nnz] = l;
              col_pattern(l) = col_nnz;
              col_nnz++;
            }
            else
              col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
          }
          updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
        }
      }

      // Scale the current column
      if(numext::real(diag) <= 0)
      {
        if(++iter>=10)
          return;

        // increase shift
        shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
        // restore m_L, col_pattern, and listCol
        vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
        rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
        colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
        col_pattern.fill(-1);
        for(Index i=0; i<n; ++i)
          listCol[i].clear();

        break;
      }

      RealScalar rdiag = sqrt(numext::real(diag));
      vals[colPtr[j]] = rdiag;
      for (Index k = 0; k<col_nnz; ++k)
      {
        Index i = col_irow[k];
        //Scale
        col_vals(k) /= rdiag;
        //Update the remaining diagonals with col_vals
        vals[colPtr[i]] -= numext::abs2(col_vals(k));
      }
      // Select the largest p elements
      // p is the original number of elements in the column (without the diagonal)
      Index p = colPtr[j+1] - colPtr[j] - 1 ;
      Ref<VectorSx> cvals = col_vals.head(col_nnz);
      Ref<VectorIx> cirow = col_irow.head(col_nnz);
      internal::QuickSplit(cvals,cirow, p);
      // Insert the largest p elements in the matrix
      Index cpt = 0;
      for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
      {
        vals[i] = col_vals(cpt);
        rowIdx[i] = col_irow(cpt);
        // restore col_pattern:
        col_pattern(col_irow(cpt)) = -1;
        cpt++;
      }
      // Get the first smallest row index and put it after the diagonal element
      Index jk = colPtr(j)+1;
      updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
    }

    if(j==n)
    {
      m_factorizationIsOk = true;
      m_info = Success;
    }
  } while(m_info!=Success);
}

template<typename Scalar, int _UpLo, typename OrderingType>
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
{
  if (jk < colPtr(col+1) )
  {
    Index p = colPtr(col+1) - jk;
    Index minpos;
    rowIdx.segment(jk,p).minCoeff(&minpos);
    minpos += jk;
    if (rowIdx(minpos) != rowIdx(jk))
    {
      //Swap
      std::swap(rowIdx(jk),rowIdx(minpos));
      std::swap(vals(jk),vals(minpos));
    }
    firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
    listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
  }
}

} // end namespace Eigen

#endif