1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup fn_fft2
//! @{
// 2D FFT & 2D IFFT
template<typename T1>
arma_warn_unused
inline
typename
enable_if2
<
is_arma_type<T1>::value,
Mat< std::complex<typename T1::pod_type> >
>::result
fft2(const T1& A)
{
arma_extra_debug_sigprint();
// not exactly efficient, but "better-than-nothing" implementation
typedef typename T1::pod_type T;
Mat< std::complex<T> > B = fft(A);
// for square matrices, strans() will work out that an inplace transpose can be done,
// hence we can potentially avoid creating a temporary matrix
B = strans(B);
return strans( fft(B) );
}
template<typename T1>
arma_warn_unused
inline
typename
enable_if2
<
is_arma_type<T1>::value,
Mat< std::complex<typename T1::pod_type> >
>::result
fft2(const T1& A, const uword n_rows, const uword n_cols)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const quasi_unwrap<T1> tmp(A);
const Mat<eT>& B = tmp.M;
const bool do_resize = (B.n_rows != n_rows) || (B.n_cols != n_cols);
return (do_resize) ? fft2(resize(B,n_rows,n_cols)) : fft2(B);
}
template<typename T1>
arma_warn_unused
inline
typename
enable_if2
<
(is_arma_type<T1>::value && (is_cx_float<typename T1::elem_type>::yes || is_cx_double<typename T1::elem_type>::yes)),
Mat< std::complex<typename T1::pod_type> >
>::result
ifft2(const T1& A)
{
arma_extra_debug_sigprint();
// not exactly efficient, but "better-than-nothing" implementation
typedef typename T1::pod_type T;
Mat< std::complex<T> > B = ifft(A);
// for square matrices, strans() will work out that an inplace transpose can be done,
// hence we can potentially avoid creating a temporary matrix
B = strans(B);
return strans( ifft(B) );
}
template<typename T1>
arma_warn_unused
inline
typename
enable_if2
<
(is_arma_type<T1>::value && (is_cx_float<typename T1::elem_type>::yes || is_cx_double<typename T1::elem_type>::yes)),
Mat< std::complex<typename T1::pod_type> >
>::result
ifft2(const T1& A, const uword n_rows, const uword n_cols)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const quasi_unwrap<T1> tmp(A);
const Mat<eT>& B = tmp.M;
const bool do_resize = (B.n_rows != n_rows) || (B.n_cols != n_cols);
return (do_resize) ? ifft2(resize(B,n_rows,n_cols)) : ifft2(B);
}
//! @}
|