1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup glue_polyfit
//! @{
template<typename eT>
inline
bool
glue_polyfit::apply_noalias(Mat<eT>& out, const Col<eT>& X, const Col<eT>& Y, const uword N)
{
arma_extra_debug_sigprint();
// create Vandermonde matrix
Mat<eT> V(X.n_elem, N+1, arma_nozeros_indicator());
V.tail_cols(1).ones();
for(uword i=1; i <= N; ++i)
{
const uword j = N-i;
Col<eT> V_col_j (V.colptr(j ), V.n_rows, false, false);
Col<eT> V_col_jp1(V.colptr(j+1), V.n_rows, false, false);
V_col_j = V_col_jp1 % X;
}
Mat<eT> Q;
Mat<eT> R;
const bool status1 = auxlib::qr_econ(Q, R, V);
if(status1 == false) { return false; }
const bool status2 = auxlib::solve_trimat_fast(out, R, (Q.t() * Y), uword(0));
if(status2 == false) { return false; }
return true;
}
template<typename T1, typename T2>
inline
bool
glue_polyfit::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& X_expr, const Base<typename T1::elem_type, T2>& Y_expr, const uword N)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const quasi_unwrap<T1> UX(X_expr.get_ref());
const quasi_unwrap<T2> UY(Y_expr.get_ref());
const Mat<eT>& X = UX.M;
const Mat<eT>& Y = UY.M;
arma_debug_check
(
( ((X.is_vec() == false) && (X.is_empty() == false)) || ((Y.is_vec() == false) && (Y.is_empty() == false)) ),
"polyfit(): given object must be a vector"
);
arma_debug_check( (X.n_elem != Y.n_elem), "polyfit(): given vectors must have the same number of elements" );
if(X.n_elem == 0)
{
out.reset();
return true;
}
arma_debug_check( (N >= X.n_elem), "polyfit(): N must be less than the number of elements in X" );
const Col<eT> X_as_colvec( const_cast<eT*>(X.memptr()), X.n_elem, false, false);
const Col<eT> Y_as_colvec( const_cast<eT*>(Y.memptr()), Y.n_elem, false, false);
bool status = false;
if(UX.is_alias(out) || UY.is_alias(out))
{
Mat<eT> tmp;
status = glue_polyfit::apply_noalias(tmp, X_as_colvec, Y_as_colvec, N);
out.steal_mem(tmp);
}
else
{
status = glue_polyfit::apply_noalias(out, X_as_colvec, Y_as_colvec, N);
}
return status;
}
template<typename T1, typename T2>
inline
void
glue_polyfit::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_polyfit>& expr)
{
arma_extra_debug_sigprint();
const bool status = glue_polyfit::apply_direct(out, expr.A, expr.B, expr.aux_uword);
if(status == false)
{
out.soft_reset();
arma_stop_runtime_error("polyfit(): failed");
}
}
//! @}
|