summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/newarp_SortEigenvalue.hpp
blob: 5f2c357e03ee9fe526e9a6de0cd46fb501fe22c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


namespace newarp
{


// When comparing eigenvalues, we first calculate the "target" to sort.
// For example, if we want to choose the eigenvalues with largest magnitude, the target will be -std::abs(x).
// The minus sign is due to the fact that std::sort() sorts in ascending order.


// default target: throw an exception
template<typename eT, int SelectionRule>
struct SortingTarget
  {
  arma_inline static typename get_pod_type<eT>::result get(const eT& val)
    {
    arma_ignore(val);
    arma_stop_logic_error("newarp::SortingTarget: incompatible selection rule");
    
    typedef typename get_pod_type<eT>::result out_T;
    return out_T(0);
    }
  };


// specialisation for LARGEST_MAGN: this covers [float, double, complex] x [LARGEST_MAGN]
template<typename eT>
struct SortingTarget<eT, EigsSelect::LARGEST_MAGN>
  {
  arma_inline static typename get_pod_type<eT>::result get(const eT& val)
    {
    return -std::abs(val);
    }
  };


// specialisation for LARGEST_REAL: this covers [complex] x [LARGEST_REAL]
template<typename T>
struct SortingTarget<std::complex<T>, EigsSelect::LARGEST_REAL>
  {
  arma_inline static T get(const std::complex<T>& val)
    {
    return -val.real();
    }
  };


// specialisation for LARGEST_IMAG: this covers [complex] x [LARGEST_IMAG]
template<typename T>
struct SortingTarget<std::complex<T>, EigsSelect::LARGEST_IMAG>
  {
  arma_inline static T get(const std::complex<T>& val)
    {
    return -std::abs(val.imag());
    }
  };


// specialisation for LARGEST_ALGE: this covers [float, double] x [LARGEST_ALGE]
template<typename eT>
struct SortingTarget<eT, EigsSelect::LARGEST_ALGE>
  {
  arma_inline static eT get(const eT& val)
    {
    return -val;
    }
  };


// Here BOTH_ENDS is the same as LARGEST_ALGE, but we need some additional steps,
// which are done in SymEigsSolver => retrieve_ritzpair().
// There we move the smallest values to the proper locations.
template<typename eT>
struct SortingTarget<eT, EigsSelect::BOTH_ENDS>
  {
  arma_inline static eT get(const eT& val)
    {
    return -val;
    }
  };


// specialisation for SMALLEST_MAGN: this covers [float, double, complex] x [SMALLEST_MAGN]
template<typename eT>
struct SortingTarget<eT, EigsSelect::SMALLEST_MAGN>
  {
  arma_inline static typename get_pod_type<eT>::result get(const eT& val)
    {
    return std::abs(val);
    }
  };


// specialisation for SMALLEST_REAL: this covers [complex] x [SMALLEST_REAL]
template<typename T>
struct SortingTarget<std::complex<T>, EigsSelect::SMALLEST_REAL>
  {
  arma_inline static T get(const std::complex<T>& val)
    {
    return val.real();
    }
  };


// specialisation for SMALLEST_IMAG: this covers [complex] x [SMALLEST_IMAG]
template<typename T>
struct SortingTarget<std::complex<T>, EigsSelect::SMALLEST_IMAG>
  {
  arma_inline static T get(const std::complex<T>& val)
    {
    return std::abs(val.imag());
    }
  };


// specialisation for SMALLEST_ALGE: this covers [float, double] x [SMALLEST_ALGE]
template<typename eT>
struct SortingTarget<eT, EigsSelect::SMALLEST_ALGE>
  {
  arma_inline static eT get(const eT& val)
    {
    return val;
    }
  };


// Sort eigenvalues and return the order index
template<typename PairType>
struct PairComparator
  {
  arma_inline bool operator() (const PairType& v1, const PairType& v2)
    {
    return v1.first < v2.first;
    }
  };


template<typename eT, int SelectionRule>
class SortEigenvalue
  {
  private:
  
  typedef typename get_pod_type<eT>::result TargetType;  // type of the sorting target, will be a floating number type, eg. double
  typedef std::pair<TargetType, uword>      PairType;    // type of the sorting pair, including the sorting target and the index
  
  std::vector<PairType> pair_sort;
  
  
  public:

  inline
  SortEigenvalue(const eT* start, const uword size)
    : pair_sort(size)
    {
    arma_extra_debug_sigprint();
    
    for(uword i = 0; i < size; i++)
      {
      pair_sort[i].first  = SortingTarget<eT, SelectionRule>::get(start[i]);
      pair_sort[i].second = i;
      }
    
    PairComparator<PairType> comp;
    
    std::sort(pair_sort.begin(), pair_sort.end(), comp);
    }
  
  
  inline
  std::vector<uword>
  index()
    {
    arma_extra_debug_sigprint();
    
    const uword len = pair_sort.size();
    
    std::vector<uword> ind(len);
    
    for(uword i = 0; i < len; i++) { ind[i] = pair_sort[i].second; }
    
    return ind;
    }
  };


}  // namespace newarp