1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
namespace newarp
{
template<typename eT>
inline
SparseGenMatProd<eT>::SparseGenMatProd(const SpMat<eT>& mat_obj)
: op_mat(mat_obj)
, n_rows(mat_obj.n_rows)
, n_cols(mat_obj.n_cols)
{
arma_extra_debug_sigprint();
op_mat_st = op_mat.st(); // pre-calculate transpose
}
// Perform the matrix-vector multiplication operation \f$y=Ax\f$.
// y_out = A * x_in
template<typename eT>
inline
void
SparseGenMatProd<eT>::perform_op(eT* x_in, eT* y_out) const
{
arma_extra_debug_sigprint();
// // OLD METHOD
//
// const Col<eT> x(x_in , n_cols, false, true);
// Col<eT> y(y_out, n_rows, false, true);
//
// y = op_mat * x;
// NEW METHOD
const Row<eT> x(x_in , n_cols, false, true);
Row<eT> y(y_out, n_rows, false, true);
y = x * op_mat_st;
}
} // namespace newarp
|