1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup op_sp_plus
//! @{
template<typename T1>
inline
void
op_sp_plus::apply(Mat<typename T1::elem_type>& out, const SpToDOp<T1,op_sp_plus>& in)
{
arma_extra_debug_sigprint();
// Note that T1 will be a sparse type, so we use SpProxy.
const SpProxy<T1> proxy(in.m);
out.set_size(proxy.get_n_rows(), proxy.get_n_cols());
out.fill(in.aux);
typename SpProxy<T1>::const_iterator_type it = proxy.begin();
typename SpProxy<T1>::const_iterator_type it_end = proxy.end();
for(; it != it_end; ++it)
{
out.at(it.row(), it.col()) += (*it);
}
}
// force apply into sparse matrix
template<typename T1>
inline
void
op_sp_plus::apply(SpMat<typename T1::elem_type>& out, const SpToDOp<T1,op_sp_plus>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
// Note that T1 will be a sparse type, so we use SpProxy.
const SpProxy<T1> proxy(in.m);
const uword n_rows = proxy.get_n_rows();
const uword n_cols = proxy.get_n_cols();
out.set_size(n_rows, n_cols);
const eT k = in.aux;
// We have to loop over all the elements.
for(uword c = 0; c < n_cols; ++c)
for(uword r = 0; r < n_rows; ++r)
{
out.at(r, c) = proxy.at(r, c) + k;
}
}
// used for the optimization of sparse % (sparse + scalar)
template<typename eT, typename T2, typename T3>
inline
void
op_sp_plus::apply_inside_schur(SpMat<eT>& out, const T2& x, const SpToDOp<T3, op_sp_plus>& y)
{
arma_extra_debug_sigprint();
const SpProxy<T2> proxy2(x);
const SpProxy<T3> proxy3(y.m);
arma_debug_assert_same_size(proxy2.get_n_rows(), proxy2.get_n_cols(), proxy3.get_n_rows(), proxy3.get_n_cols(), "element-wise multiplication");
out.zeros(proxy2.get_n_rows(), proxy2.get_n_cols());
typename SpProxy<T2>::const_iterator_type it = proxy2.begin();
typename SpProxy<T2>::const_iterator_type it_end = proxy2.end();
const eT k = y.aux;
for(; it != it_end; ++it)
{
const uword it_row = it.row();
const uword it_col = it.col();
out.at(it_row, it_col) = (*it) * (proxy3.at(it_row, it_col) + k);
}
}
// used for the optimization of sparse / (sparse + scalar)
template<typename eT, typename T2, typename T3>
inline
void
op_sp_plus::apply_inside_div(SpMat<eT>& out, const T2& x, const SpToDOp<T3, op_sp_plus>& y)
{
arma_extra_debug_sigprint();
const SpProxy<T2> proxy2(x);
const SpProxy<T3> proxy3(y.m);
arma_debug_assert_same_size(proxy2.get_n_rows(), proxy2.get_n_cols(), proxy3.get_n_rows(), proxy3.get_n_cols(), "element-wise division");
out.zeros(proxy2.get_n_rows(), proxy2.get_n_cols());
typename SpProxy<T2>::const_iterator_type it = proxy2.begin();
typename SpProxy<T2>::const_iterator_type it_end = proxy2.end();
const eT k = y.aux;
for(; it != it_end; ++it)
{
const uword it_row = it.row();
const uword it_col = it.col();
out.at(it_row, it_col) = (*it) / (proxy3.at(it_row, it_col) + k);
}
}
//! @}
|