summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/op_sqrtmat_meat.hpp
blob: 3c2fae50ad4b2068b50e9827100d62c4da1ab44a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup op_sqrtmat
//! @{


//! implementation partly based on:
//! N. J. Higham.
//! A New sqrtm for Matlab.
//! Numerical Analysis Report No. 336, January 1999.
//! Department of Mathematics, University of Manchester.
//! ISSN 1360-1725
//! http://www.maths.manchester.ac.uk/~higham/narep/narep336.ps.gz


template<typename T1>
inline
void
op_sqrtmat::apply(Mat< std::complex<typename T1::elem_type> >& out, const mtOp<std::complex<typename T1::elem_type>,T1,op_sqrtmat>& in)
  {
  arma_extra_debug_sigprint();
  
  const bool status = op_sqrtmat::apply_direct(out, in.m);
  
  if(status == false)
    {
    arma_debug_warn_level(3, "sqrtmat(): given matrix is singular; may not have a square root");
    }
  }



template<typename T1>
inline
bool
op_sqrtmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Op<T1,op_diagmat>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type T;
  
  const diagmat_proxy<T1> P(expr.m);
  
  arma_debug_check( (P.n_rows != P.n_cols), "sqrtmat(): given matrix must be square sized" );
  
  const uword N = P.n_rows;
  
  out.zeros(N,N);
  
  bool singular = false;
  
  for(uword i=0; i<N; ++i)
    {
    const T val = P[i];
    
    if(val >= T(0))
      {
      singular = (singular || (val == T(0)));
      
      out.at(i,i) = std::sqrt(val);
      }
    else
      {
      out.at(i,i) = std::sqrt( std::complex<T>(val) );
      }
    }
  
  return (singular) ? false : true;
  }



template<typename T1>
inline
bool
op_sqrtmat::apply_direct(Mat< std::complex<typename T1::elem_type> >& out, const Base<typename T1::elem_type,T1>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type       in_T;
  typedef typename std::complex<in_T> out_T;
  
  const quasi_unwrap<T1> expr_unwrap(expr.get_ref());
  const Mat<in_T>& A   = expr_unwrap.M;
  
  arma_debug_check( (A.is_square() == false), "sqrtmat(): given matrix must be square sized" );
  
  if(A.n_elem == 0)
    {
    out.reset();
    return true;
    }
  else
  if(A.n_elem == 1)
    {
    out.set_size(1,1);
    out[0] = std::sqrt( std::complex<in_T>( A[0] ) );
    return true;
    }
  
  if(A.is_diagmat())
    {
    arma_extra_debug_print("op_sqrtmat: detected diagonal matrix");
    
    const uword N = A.n_rows;
    
    out.zeros(N,N);  // aliasing can't happen as op_sqrtmat is defined as cx_mat = op(mat)
    
    for(uword i=0; i<N; ++i)
      {
      const in_T val = A.at(i,i);
      
      if(val >= in_T(0))
        {
        out.at(i,i) = std::sqrt(val);
        }
      else
        {
        out.at(i,i) = std::sqrt( out_T(val) );
        }
      }
    
    return true;
    }
  
  const bool try_sympd = arma_config::optimise_sym && sym_helper::guess_sympd(A);
  
  if(try_sympd)
    {
    arma_extra_debug_print("op_sqrtmat: attempting sympd optimisation");
    
    // if matrix A is sympd, all its eigenvalues are positive
    
    Col<in_T> eigval;
    Mat<in_T> eigvec;
    
    const bool eig_status = eig_sym_helper(eigval, eigvec, A, 'd', "sqrtmat()");
    
    if(eig_status)
      {
      // ensure each eigenvalue is > 0
      
      const uword N          = eigval.n_elem;
      const in_T* eigval_mem = eigval.memptr();
      
      bool all_pos = true;
      
      for(uword i=0; i<N; ++i)  { all_pos = (eigval_mem[i] <= in_T(0)) ? false : all_pos; }
      
      if(all_pos)
        {
        eigval = sqrt(eigval);
        
        out = conv_to< Mat<out_T> >::from( eigvec * diagmat(eigval) * eigvec.t() );
        
        return true;
        }
      }
    
    arma_extra_debug_print("op_sqrtmat: sympd optimisation failed");
    
    // fallthrough if eigen decomposition failed or an eigenvalue is <= 0
    }
  
  
  Mat<out_T> U;
  Mat<out_T> S(A.n_rows, A.n_cols, arma_nozeros_indicator());
  
  const  in_T* Amem = A.memptr();
        out_T* Smem = S.memptr();
  
  const uword n_elem = A.n_elem;
  
  for(uword i=0; i<n_elem; ++i)
    {
    Smem[i] = std::complex<in_T>( Amem[i] );
    }
  
  const bool schur_ok = auxlib::schur(U,S);
  
  if(schur_ok == false)
    {
    arma_extra_debug_print("sqrtmat(): schur decomposition failed");
    out.soft_reset();
    return false;
    }
  
  const bool status = op_sqrtmat_cx::helper(S);
  
  const Mat<out_T> X = U*S;
  
  S.reset();
  
  out = X*U.t();
  
  return status;
  }



template<typename T1>
inline
void
op_sqrtmat_cx::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sqrtmat_cx>& in)
  {
  arma_extra_debug_sigprint();
  
  const bool status = op_sqrtmat_cx::apply_direct(out, in.m);
  
  if(status == false)
    {
    arma_debug_warn_level(3, "sqrtmat(): given matrix is singular; may not have a square root");
    }
  }



template<typename T1>
inline
bool
op_sqrtmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Op<T1,op_diagmat>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT;
  
  const diagmat_proxy<T1> P(expr.m);
  
  bool status = false;
  
  if(P.is_alias(out))
    {
    Mat<eT> tmp;
    
    status = op_sqrtmat_cx::apply_direct_noalias(tmp, P);
    
    out.steal_mem(tmp);
    }
  else
    {
    status = op_sqrtmat_cx::apply_direct_noalias(out, P);
    }
  
  return status;
  }



template<typename T1>
inline
bool
op_sqrtmat_cx::apply_direct_noalias(Mat<typename T1::elem_type>& out, const diagmat_proxy<T1>& P)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT;
  
  arma_debug_check( (P.n_rows != P.n_cols), "sqrtmat(): given matrix must be square sized" );
  
  const uword N = P.n_rows;
  
  out.zeros(N,N);
  
  const eT zero = eT(0);
  
  bool singular = false;
  
  for(uword i=0; i<N; ++i)
    {
    const eT val = P[i];
    
    singular = (singular || (val == zero));
    
    out.at(i,i) = std::sqrt(val);
    }
  
  return (singular) ? false : true;
  }



template<typename T1>
inline
bool
op_sqrtmat_cx::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::pod_type   T;
  typedef typename T1::elem_type eT;
  
  Mat<eT> U;
  Mat<eT> S = expr.get_ref();
  
  arma_debug_check( (S.n_rows != S.n_cols), "sqrtmat(): given matrix must be square sized" );
  
  if(S.n_elem == 0)
    {
    out.reset();
    return true;
    }
  else
  if(S.n_elem == 1)
    {
    out.set_size(1,1);
    out[0] = std::sqrt(S[0]);
    return true;
    }
  
  if(S.is_diagmat())
    {
    arma_extra_debug_print("op_sqrtmat_cx: detected diagonal matrix");
    
    const uword N = S.n_rows;
    
    out.zeros(N,N);  // aliasing can't happen as S is generated
    
    for(uword i=0; i<N; ++i)  { out.at(i,i) = std::sqrt( S.at(i,i) ); }
    
    return true;
    }
  
  const bool try_sympd = arma_config::optimise_sym && sym_helper::guess_sympd(S);
  
  if(try_sympd)
    {
    arma_extra_debug_print("op_sqrtmat_cx: attempting sympd optimisation");
    
    // if matrix S is sympd, all its eigenvalues are positive
    
    Col< T> eigval;
    Mat<eT> eigvec;
    
    const bool eig_status = eig_sym_helper(eigval, eigvec, S, 'd', "sqrtmat()");
    
    if(eig_status)
      {
      // ensure each eigenvalue is > 0
      
      const uword N          = eigval.n_elem;
      const T*    eigval_mem = eigval.memptr();
      
      bool all_pos = true;
      
      for(uword i=0; i<N; ++i)  { all_pos = (eigval_mem[i] <= T(0)) ? false : all_pos; }
      
      if(all_pos)
        {
        eigval = sqrt(eigval);
        
        out = eigvec * diagmat(eigval) * eigvec.t();
        
        return true;
        }
      }
    
    arma_extra_debug_print("op_sqrtmat_cx: sympd optimisation failed");
    
    // fallthrough if eigen decomposition failed or an eigenvalue is <= 0
    }
  
  const bool schur_ok = auxlib::schur(U, S);
  
  if(schur_ok == false)
    {
    arma_extra_debug_print("sqrtmat(): schur decomposition failed");
    out.soft_reset();
    return false;
    }
  
  const bool status = op_sqrtmat_cx::helper(S);
  
  const Mat<eT> X = U*S;
  
  S.reset();
  
  out = X*U.t();
  
  return status;
  }



template<typename T>
inline
bool
op_sqrtmat_cx::helper(Mat< std::complex<T> >& S)
  {
  typedef typename std::complex<T> eT;
  
  if(S.is_empty())  { return true; }
  
  const uword N = S.n_rows;
  
  const eT zero = eT(0);
  
  eT& S_00 = S[0];
  
  bool singular = (S_00 == zero);
  
  S_00 = std::sqrt(S_00);
  
  for(uword j=1; j < N; ++j)
    {
    eT* S_j = S.colptr(j);
    
    eT& S_jj = S_j[j];
    
    singular = (singular || (S_jj == zero));
    
    S_jj = std::sqrt(S_jj);
    
    for(uword ii=0; ii <= (j-1); ++ii)
      {
      const uword i = (j-1) - ii;
      
      const eT* S_i = S.colptr(i);
      
      //S_j[i] /= (S_i[i] + S_j[j]);
      S_j[i] /= (S_i[i] + S_jj);
      
      for(uword k=0; k < i; ++k)
        {
        S_j[k] -= S_i[k] * S_j[i];
        }
      }
    }
  
  return (singular) ? false : true;
  }



template<typename T1>
inline
void
op_sqrtmat_sympd::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_sqrtmat_sympd>& in)
  {
  arma_extra_debug_sigprint();
  
  const bool status = op_sqrtmat_sympd::apply_direct(out, in.m);
  
  if(status == false)
    {
    out.soft_reset();
    arma_stop_runtime_error("sqrtmat_sympd(): transformation failed");
    }
  }



template<typename T1>
inline
bool
op_sqrtmat_sympd::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& expr)
  {
  arma_extra_debug_sigprint();
  
  #if defined(ARMA_USE_LAPACK)
    {
    typedef typename T1::elem_type eT;
    typedef typename T1::pod_type   T;
    
    const unwrap<T1>   U(expr.get_ref());
    const Mat<eT>& X = U.M;
    
    arma_debug_check( (X.is_square() == false), "sqrtmat_sympd(): given matrix must be square sized" );
    
    if((arma_config::debug) && (is_cx<eT>::yes) && (sym_helper::check_diag_imag(X) == false))
      {
      arma_debug_warn_level(1, "sqrtmat_sympd(): imaginary components on the diagonal are non-zero");
      }
    
    if(is_op_diagmat<T1>::value || X.is_diagmat())
      {
      arma_extra_debug_print("op_sqrtmat_sympd: detected diagonal matrix");
      
      out = X;
      
      eT* colmem = out.memptr();
      
      const uword N = X.n_rows;
      
      for(uword i=0; i<N; ++i)
        {
        eT& out_ii      = colmem[i];
         T  out_ii_real = access::tmp_real(out_ii);
        
        if(out_ii_real < T(0))  { return false; }
        
        out_ii = std::sqrt(out_ii);
        
        colmem += N;
        }
      
      return true;
      }
    
    Col< T> eigval;
    Mat<eT> eigvec;
    
    const bool status = eig_sym_helper(eigval, eigvec, X, 'd', "sqrtmat_sympd()");
    
    if(status == false)  { return false; }
    
    const uword N          = eigval.n_elem;
    const T*    eigval_mem = eigval.memptr();
    
    bool all_pos = true;
    
    for(uword i=0; i<N; ++i)  { all_pos = (eigval_mem[i] < T(0)) ? false : all_pos; }
    
    if(all_pos == false)  { return false; }
    
    eigval = sqrt(eigval);
    
    out = eigvec * diagmat(eigval) * eigvec.t();
    
    return true;
    }
  #else
    {
    arma_ignore(out);
    arma_ignore(expr);
    arma_stop_logic_error("sqrtmat_sympd(): use of LAPACK must be enabled");
    return false;
    }
  #endif
  }



//! @}