summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/spop_normalise_meat.hpp
blob: 96a1759d72aa2e80c7f5531e1c38e15845558eeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup spop_normalise
//! @{



template<typename T1>
inline
void
spop_normalise::apply(SpMat<typename T1::elem_type>& out, const SpOp<T1,spop_normalise>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT;
  
  const uword p   = expr.aux_uword_a;
  const uword dim = expr.aux_uword_b;
  
  arma_debug_check( (p   == 0), "normalise(): unsupported vector norm type"   );
  arma_debug_check( (dim >  1), "normalise(): parameter 'dim' must be 0 or 1" );
  
  const unwrap_spmat<T1> U(expr.m);
  
  const SpMat<eT>& X = U.M;
  
  X.sync();
  
  if( X.is_empty() || (X.n_nonzero == 0) )  { out.zeros(X.n_rows, X.n_cols); return; }
  
  if(dim == 0)
    {
    spop_normalise::apply_direct(out, X, p);
    }
  else
  if(dim == 1)
    {
    SpMat<eT> tmp1;
    SpMat<eT> tmp2;
    
    spop_strans::apply_noalias(tmp1, X);
    
    spop_normalise::apply_direct(tmp2, tmp1, p);
    
    spop_strans::apply_noalias(out, tmp2);
    }
  }



template<typename eT>
inline
void
spop_normalise::apply_direct(SpMat<eT>& out, const SpMat<eT>& X, const uword p)
  {
  arma_extra_debug_sigprint();
  
  typedef typename get_pod_type<eT>::result T;
  
  SpMat<eT> tmp(arma_reserve_indicator(), X.n_rows, X.n_cols, X.n_nonzero);
  
  bool has_zero = false;
  
  podarray<T> norm_vals(X.n_cols);
  
  T* norm_vals_mem = norm_vals.memptr();
  
  for(uword col=0; col < X.n_cols; ++col)
    {
    const uword      col_offset = X.col_ptrs[col    ];
    const uword next_col_offset = X.col_ptrs[col + 1];
    
    const eT* start_ptr = &X.values[     col_offset];
    const eT*   end_ptr = &X.values[next_col_offset];
    
    const uword n_elem = end_ptr - start_ptr;
    
    const Col<eT> fake_vec(const_cast<eT*>(start_ptr), n_elem, false, false);
    
    const T norm_val = norm(fake_vec, p);
    
    norm_vals_mem[col] = (norm_val != T(0)) ? norm_val : T(1);
    }
  
  const uword N = X.n_nonzero;
  
  typename SpMat<eT>::const_iterator it = X.begin();
  
  for(uword i=0; i < N; ++i)
    {
    const uword row = it.row();
    const uword col = it.col();
    
    const eT val = (*it) / norm_vals_mem[col];
    
    if(val == eT(0))  { has_zero = true; }
    
    access::rw(tmp.values[i])      = val;
    access::rw(tmp.row_indices[i]) = row;
    access::rw(tmp.col_ptrs[col + 1])++;
    
    ++it;
    }
  
  for(uword c=0; c < tmp.n_cols; ++c)
    {
    access::rw(tmp.col_ptrs[c + 1]) += tmp.col_ptrs[c];
    }
  
  if(has_zero)  { tmp.remove_zeros(); }
  
  out.steal_mem(tmp);
  }



//! @}