1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup spop_strans
//! @{
template<typename eT>
inline
void
spop_strans::apply_noalias(SpMat<eT>& B, const SpMat<eT>& A)
{
arma_extra_debug_sigprint();
B.reserve(A.n_cols, A.n_rows, A.n_nonzero); // deliberately swapped
if(A.n_nonzero == 0) { return; }
// This follows the TRANSP algorithm described in
// 'Sparse Matrix Multiplication Package (SMMP)'
// (R.E. Bank and C.C. Douglas, 2001)
const uword m = A.n_rows;
const uword n = A.n_cols;
const eT* a = A.values;
eT* b = access::rwp(B.values);
const uword* ia = A.col_ptrs;
const uword* ja = A.row_indices;
uword* ib = access::rwp(B.col_ptrs);
uword* jb = access::rwp(B.row_indices);
// // ib is already zeroed, as B is freshly constructed
//
// for(uword i=0; i < (m+1); ++i)
// {
// ib[i] = 0;
// }
for(uword i=0; i < n; ++i)
{
for(uword j = ia[i]; j < ia[i+1]; ++j)
{
ib[ ja[j] + 1 ]++;
}
}
for(uword i=0; i < m; ++i)
{
ib[i+1] += ib[i];
}
for(uword i=0; i < n; ++i)
{
for(uword j = ia[i]; j < ia[i+1]; ++j)
{
const uword jj = ja[j];
const uword ib_jj = ib[jj];
jb[ib_jj] = i;
b[ib_jj] = a[j];
ib[jj]++;
}
}
for(uword i = m-1; i >= 1; --i)
{
ib[i] = ib[i-1];
}
ib[0] = 0;
}
template<typename T1>
inline
void
spop_strans::apply(SpMat<typename T1::elem_type>& out, const SpOp<T1,spop_strans>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap_spmat<T1> U(in.m);
if(U.is_alias(out))
{
SpMat<eT> tmp;
spop_strans::apply_noalias(tmp, U.M);
out.steal_mem(tmp);
}
else
{
spop_strans::apply_noalias(out, U.M);
}
}
//! for transpose of non-complex matrices, redirected from spop_htrans::apply()
template<typename T1>
inline
void
spop_strans::apply(SpMat<typename T1::elem_type>& out, const SpOp<T1,spop_htrans>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap_spmat<T1> U(in.m);
if(U.is_alias(out))
{
SpMat<eT> tmp;
spop_strans::apply_noalias(tmp, U.M);
out.steal_mem(tmp);
}
else
{
spop_strans::apply_noalias(out, U.M);
}
}
//! @}
|