summaryrefslogtreecommitdiffstats
path: root/src/control.cpp
blob: f57baec1ec175a4ede349150b372db3ff481268b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include "control.h"
#include <armadillo>


namespace ct
{
	TransferFn::TransferFn(complex gain)
		: gain(gain)
		, num(math::Poly<complex>{1})
		, den(math::Poly<complex>{1})
	{
		num(0) = 1.;
		den(0) = 1.;
	}

	bool TransferFn::is_proper() const
	{
		return den.degree() >= num.degree();
	}

	bool TransferFn::is_strictly_proper() const
	{
		return den.degree() >= num.degree();
	}

	TransferFn feedback(const TransferFn& tf, double k)
	{
		// TransferFn tf_cl;
	}

	LocusSeries::LocusSeries(double start, double end, size_t nsamples)
		: n_samples(nsamples)
		, start(start)
		, end(end)
		, in(arma::logspace(log10(start), log10(end), n_samples))
		// FIXME: do not hardcode one root locus
		, out(1, n_samples, arma::fill::zeros)
	{}

	void rlocus(const TransferFn& tf, LocusSeries& ls)
	{
		using namespace arma;

		CT_ASSERT(tf.is_proper());
		CT_ASSERT(tf.den.degree() > 0);

		// prepare output
		ls.out = cx_mat(tf.den.degree(), ls.n_samples, fill::zeros);

		// compute roots
		for (int i = 0; i < ls.n_samples; i++)
			ls.out.col(i) = (tf.den + ls.in(i) * tf.num).roots();
		
		// sort the roots
	}

	SSModel::SSModel(size_t n_in, size_t n_out, size_t n_states)
		: n_in(n_in)
		, n_out(n_out)
		, n_states(n_states)
		, A(n_states, n_states)
		, B(n_states, n_in)
		, C(n_out, n_states)
		, D(n_out, n_in)
	{}

	SSModel ctrb_form(const TransferFn& tf)
	{
		// TODO: change to proper by implementing D
		CT_ASSERT(tf.is_strictly_proper());

		int ord = tf.den.degree();
		SSModel ss(1, 1, ord);

		ss.B(ord - 1) = 1;
		for (int i = 0; i < ord; i++)
		{
			ss.A(ord - 1, i) = tf.den(ord - i);
			if (i < tf.num.coeffs.n_elem)
				ss.C(i) = tf.num(i) * tf.gain;
		}
	
		return ss;
	}

	TimeSeries::TimeSeries(double start, double end, size_t n_samples)
		: n_samples(n_samples)
		, start(start)
		, end(end)
		, dt((start - end) / (n_samples - 1))
		, time(arma::linspace(start, end, n_samples))
			// FIXME: do not hardcode SISO
		, in(1, n_samples, arma::fill::zeros)
		, out(1, n_samples, arma::fill::zeros)
	{}

	void response(const SSModel& ss, TimeSeries& ts)
	{
		using namespace arma;

		CT_ASSERT(ts.in.n_rows == ss.n_in);
		CT_ASSERT(ts.in.n_cols == ts.n_samples);

		ts.out = cx_mat(ss.n_out, ts.n_samples, fill::zeros);
		ts.state = cx_mat(ss.n_states, ts.n_samples, fill::zeros);
		// FIXME: non-homogeneous initial condition

		// For the current application we want this to be faster rather than
		// accurate. Hence we use a simulation with ZOH input is cheap and probably
		// good enough.
		// FIXME: do not invert matrix like that
		const cx_mat Ad = expmat(ss.A * ts.dt);
		const cx_mat Bd = (Ad - eye(size(Ad))) * pinv(ss.A) * ss.B;

		for (int k = 0; k < ts.n_samples - 1; k++)
			ts.state.col(k + 1) = Ad * ts.state.col(k) + Bd * ts.in.col(k);

		ts.out = ss.C * ts.state + ss.D * ts.in;
	}


	void step(const SSModel& ss, TimeSeries& ts)
	{
		ts.in = arma::cx_mat(ss.n_in, ts.n_samples);
		ts.in.fill(1.);
		response(ss, ts);
	}
}

// vim: ts=2 sw=2 noet: