1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
#pragma once
#include <armadillo>
#include <complex>
#include <cassert>
#include <cmath>
#ifndef CONTROL_H
#define CONTROL_H
#define CT_ASSERT(x) (assert(x))
#define CT_SMALL_TOL 1e-6
#define CT_ASSERT_SMALL(x) (assert(std::abs(x) < CT_SMALL_TOL))
namespace ct
{
using complex = std::complex<double>;
namespace math
{
template<typename T>
struct Poly
{
arma::Col<T> coeffs;
Poly(size_t n_elem) : coeffs(n_elem) {};
Poly(arma::Col<T> c) : coeffs(c) {}
int degree() const { return coeffs.n_elem - 1; }
void add_root(T r) { (*this) = (*this) * Poly({1, -r}); }
arma::Col<T> roots() const { return arma::roots(coeffs); }
template<typename IndexT>
T& operator () (IndexT idx) { return coeffs(idx); };
template<typename IndexT>
T operator () (IndexT idx) const { return coeffs(idx); };
};
template<typename T>
Poly<T> operator * (const Poly<T>& p, const Poly<T>& q)
{
arma::Col<T> coeffs = arma::conv(p.coeffs, q.coeffs);
return Poly<T>(coeffs);
}
template<typename T, typename R = T>
Poly<T> operator * (R scalar, const Poly<T>& p)
{
Poly<T> q(p.coeffs * scalar);
return q;
}
template<typename T>
Poly<T> operator + (const Poly<T>& p, const Poly<T>& q)
{
const Poly<T>& big = (p.degree() > q.degree()) ? p : q;
const Poly<T>& small = (p.degree() > q.degree()) ? q : p;
Poly<T> s(big.degree() + 1);
for (int i = 0; i <= small.degree(); i++)
s(i) = big(i) + small(i);
for (int i = small.degree() + 1; i <= big.degree(); i++)
s(i) = big(i);
return s;
}
}
struct TransferFn
{
complex gain;
math::Poly<complex> num;
math::Poly<complex> den;
TransferFn(complex gain);
inline void add_pole(complex p) { den.add_root(p); }
inline void add_zero(complex z) { num.add_root(z); };
bool is_proper() const;
bool is_strictly_proper() const;
};
TransferFn feedback(const TransferFn& tf, double k = -1);
struct LocusSeries
{
size_t n_samples;
double start, end;
arma::vec in;
arma::cx_mat out;
LocusSeries() = delete;
LocusSeries(double start, double end, size_t n_samples);
};
void rlocus(const TransferFn& tf, LocusSeries& ls);
struct SSModel
{
size_t n_in, n_out, n_states;
arma::cx_mat A, B, C, D;
SSModel() = delete;
SSModel(size_t n_in, size_t n_out, size_t n_states);
};
SSModel ctrb_form(const TransferFn& tf);
// SSModel obsv_form(const TransferFn& tf);
// SSModel eigm_form(const TransferFn& tf);
struct TimeSeries
{
size_t n_samples;
double start, end, dt;
arma::vec time;
arma::cx_mat in, out;
arma::cx_mat state;
TimeSeries() = delete;
TimeSeries(double start, double end, size_t n_samples);
};
void response(const SSModel& ss, TimeSeries& ts);
void step(const SSModel& ss, TimeSeries& ts);
}
#endif // CONTROL_H
// vim:ts=2 sw=2 noet:
|