aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--doc/thesis/chapters/implementation.tex79
1 files changed, 37 insertions, 42 deletions
diff --git a/doc/thesis/chapters/implementation.tex b/doc/thesis/chapters/implementation.tex
index 191feba..d35e926 100644
--- a/doc/thesis/chapters/implementation.tex
+++ b/doc/thesis/chapters/implementation.tex
@@ -281,41 +281,41 @@ Thus, they will be distributed among the other whole numbers. A window function
\begin{lstlisting}[
texcl = true, language = python, escapechar = {`},
- float, captionpos = b, label = {lst:fir-block},
+ float, captionpos = b, label = {lst:fractional-delay-fir},
caption = {
- Block FIR Filter function referenced in listing \ref{lst:phasecorr-work}.
+ Implementation of a static fractional delay FIR filter.
},
]
def work(self, input_items, output_items):
inp = input_items[0]
oup = output_items[0]
- # reads the moduled signal
- if len(self.amplitudes) != len(self.delays):
- raise Exception("Amplitudes and Delay length dont match")
- if np.min(self.delays)<0:
- raise Exception("Delay can't be negativ")
- # Some test that there are as match delays as amplitudes and no negative filter values
- max_order = 2 * np.floor(np.max(self.delays)) + 1
- # find the maximal order of the Filter
- max_samples = np.arange(0, max_order +1)
- max_len = len(max_samples)
- sum_x = np.zeros(int(max_len))
-
- for (a,d) in zip(self.amplitudes,self.delays):
+ # find the length of the highest order filter
+ max_order = 2 * np.floor(np.max(self.delays)) + 1
+ max_samples = np.arange(0, max_order +1)
+ max_len = len(max_samples)
+ # total impulse response (of all taps)
+ tot_h = np.zeros(int(max_len))
+ # compute for each tap
+ for (a, d) in zip(self.amplitudes, self.delays):
+ # compute fir coefficients
order = 2 * np.floor(d) + 1
- samples = np.arange(0, order +1)
- h = a*(np.sinc(samples-d))
- # impuls respond
- h_len = np.concatenate([h, np.zeros(max_len-len(h))])
- sum_x += h_len
- # add them al together to have one array with al amplitudes one the position of the delay (in samples)
- sum_x[0] = self.los
- # if there is no direct line ad the first delayed amplitude to a zero else to a one.
- y = np.convolve(inp, sum_x)
- y += np.concatenate([self.temp,np.zeros(len(y)-len(self.temp))])
+ samples = np.arange(0, order + 1)
+ # compute impulse response
+ h = a * np.sinc(samples - d)
+ # correct length
+ h = np.concatenate([h, np.zeros(max_len - len(h))])
+ # add to other filters
+ tot_h += h
+ # add a LOS path if necessary
+ tot_h[0] = self.los
+ # compute output
+ y = np.convolve(inp, tot_h)
+ # add values from previous block processing
+ y += np.concatenate([self.temp, np.zeros(len(y) - len(self.temp))])
+ # write to output
oup[:] = y[:len(inp)]
- self.temp = y[len(inp):]
- # The output need to have the same lenght as the input.
+ # save rest for next block processing
+ self.temp = y[len(inp):]
return len(oup)
\end{lstlisting}
@@ -367,33 +367,28 @@ For generating the Byte error rate it is focus on byte-blocks of a specific leng
}
-
\begin{lstlisting}[
texcl = true, language = python, escapechar = {`},
- float, captionpos = b, label = {lst:ber-block},
+ float, captionpos = b, label = {lst:ber-work},
caption = {
- Block FIR Filter function referenced in listing \ref{lst:phasecorr-work}.
+ Custom block to compute the empirical BER.
},
]
def work(self, input_items, output_items):
+ # input is a list of blocks of k-bytes
inp = input_items[0]
- # input vector
-
+ # for each block
for i in inp:
i = np.array(i, dtype=np.uint8)
+ # XOR to compute the difference
v = np.array(self.vgl, dtype=np.uint8) ^ i
- # XOR comparsion to find the diviation for the bits
+ # compute how many bits differ
ber = sum(np.unpackbits(v))
-
- trueber = ber - 32
- if trueber < 0:
- trueber = 0
-
- self.ber_samples.appendleft(trueber)
-
+ # save BER value
+ self.ber_samples.appendleft(ber)
+ # compute statistics and send to GUI
ber_max, ber_min, ber_avg = self.ber_stats()
- self.send(self.encode([trueber, ber_max, ber_avg]))
- #Send the valuse to the GUI
+ self.send(self.encode([ber_max, ber_min, ber_avg]))
return len(inp)
\end{lstlisting}